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ABSTRACT

We analyze the convergence to equilibrium of one-dimensional reflected Brownian motion (RBM) and
compute a number of related initial transient formulae. These formulae are of interest as approximations
to the initial transient for queueing systems in heavy traffic, and help us to identify settings in which
initialization bias is significant. We conclude with a discussion of mean square error for RBM. Our analysis
supports the view that initial transient effects for RBM and related models are typically of modest size
relative to the intrinsic stochastic variability, unless one chooses an especially poor initialization.

1 INTRODUCTION

This paper is concerned with using one-dimensional reflected Brownian motion (RBM) as a theoretical
vehicle for studying the initial transient problem. Given that RBM is a commonly used approximation to
a wide variety of different queueing models, the initial transient behavior of RBM can be viewed as being
representative of a large class of simulation models in which congestion is a key factor.

The stochastic process X = (X(t) : t ≥ 0) is said to be a (one-dimensional) RBM if it satisfies the
stochastic differential equation (SDE)

dX(t) =−rdt +σdB(t)+dL(t),

where B = (B(t) : t ≥ 0) is standard Brownian motion and L is a continuous nondecreasing process that
increases only when X is at the origin (so that I(X(t) > 0)dL(t) = 0). In particular, the process L is a
“boundary process” that serves to keep X nonnegative as befits an approximation to a queue. The parameter
−r represents the “drift” of the RBM, and σ is its “volatility” parameter.

To illustrate the sense in which RBM can be used to approximate a queue, consider a system with
a single queue that is being fed by a renewal arrival process in which χ denotes a generic interarrival
time random variable (rv). Customers are served by one of m identical servers, in the order in which they
arrive. The service times are independent and identically distributed (iid) across the servers and across
the customers, and are also independent of the interarrival times. If V is a rv having the common service
time distribution, set λ = 1/Eχ, µ = 1/EV and σ2

A = var χ, σ2
S = varV . It is well known that if Z(t) is

the number-in-system at time t, then

Z(·) D
≈ X(·),

where X is an RBM with r = mµ−λ and σ 2 = λ 3σ2
A +mµ3σ2

S , provided that mµ−λ is small (so that

the system is in “heavy traffic”) and t is of the order (mµ−λ )−2. Here,
D
≈ means “has approximately the

same distribution as”, and the rigorous support rests on a so-called “heavy traffic” limit theorem; see, for
example, (Iglehart and Whitt 1970).

This paper begins with a discussion of the convergence to equilibrium of RBM (Section 2). It subsequently
develops closed-form expressions for various initial transient quantities associated with RBM, distinguishing
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between “functional” (Section 3) and “distributional” (Section 4) perspectives. These expressions can be
used to help plan steady-state/equilibrium simulations of queueing models that can be approximated by
RBM as well as to identify settings in which initial bias is significant (Section 5). We conclude by deriving
a decomposition of mean square error (MSE) in the setting of RBM (Section 6).

Though only in the context of RBM, the results in this paper are intended develop general insights into
the initial transient problem that can be of potentially broader applicability.

2 CONVERGENCE TO EQUILIBRIUM FOR RBM

It is well known that if r > 0, then X has an equilibrium, in the sense that

X(t)⇒ X(∞)

as t → ∞, where ⇒ denotes weak convergence. The distribution of X(∞) is given by P(X(∞) ∈ dx) ∆
=

π(dx) = ηe−ηxdx for x≥ 0, where η
∆
= 2r

σ2 (see, for example, (Harrison 1985) pg.94). A key question in
the study of the initial transient problem for X is its rate of convergence to equilibrium. One vehicle for
studying this question is the well-known formula

p(t, x, y) = ηe−ηy
Φ

(
rt− x− y

σ
√

t

)
+

1
σ
√

t
φ

(
−rt + x− y

σ
√

t

)
+

1
σ
√

t
e−ηy

φ

(
−rt + x+ y

σ
√

t

)
(1)

for the transition density of X ; see (Harrison 1985) pg.49. Here, p(t, x, y)dy ∆
= P(X(t) ∈ dy |X(0) = x),

Φ(x) = P(N(0, 1) ≤ x) (where N(0, 1) denotes a normal rv with mean 0 and unit variance), and φ(x) is
the density associated with φ . But it is difficult to “read off” the rate of convergence from (1).

However, an alternative representation for the transition density of X can be computed. Recall that the
rate at which the transition probabilities of a Markov jump process converge to their respective equilibrium
probabilities can easily be determined once the eigenvalues and eigenvectors of the rate matrix are known.
Something similar can be implemented in the RBM setting. This leads to an alternative representation of
the transition density known as the spectral decomposition.

To determine the eigenvalues and eigenfunctions associated with X , note that Itô’s formula guarantees
that

d(e−λ tu(X(t))) = −λe−λ tu(X(t))dt + e−λ tu′(X(t))dX(t)+ e−λ t u′′(X(t))
2

σ
2dt

= e−λ t((L u)(X(t))−λu(X(t)))dt + e−λ tu′(X(t))σdB(t)+ e−λ tu′(X(t))dL(t),

where L is the second order differential operator given by

L
∆
=−r

d
dx

+
σ 2

2
d2

dx2 .

Note that because L increases only when X is at the origin, u′(X(t))dL(t) = u′(0)dL(t). Consequently, if
u′(0) = 0 and the stochastic integral is integrable,

e−λ tu(X(t))−
∫ t

0
e−λ s((L u)(X(s))−λu(X(s)))ds

is a martingale. It follows that if u also satisfies L u = λu, then Exu(X(t)) = eλ tu(x) for t, x ≥ 0, where
Ex(·)

∆
= E(· |X(0) = x). In other words, u is an eigenfunction of L (and X), and λ is its associated

eigenvalue. Since the eigenvalues of a Markov process automatically have non-positive real parts, sending
t→∞ allows us to conclude that Eu(X(∞)) = 0, and the rate of convergence of Exu(X(t)) is exponentially
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fast with associated rate parameter λ .

Remark: This makes clear that the rate of convergence of Ex f (X(t)) to E f (X(∞)) can depend on the choice
of f . In particular, when f is an eigenfunction, the rate depends on its associated eigenvalue.

Eigenfunction/eigenvalue pairs for RBM exist only when λ = 0 and λ ≤ −γ , where γ
∆
= r2/(2σ2).

Any λ ∈ (−∞,−γ] is an eigenvalue, with associated eigenfunction

uλ (x) = e
rx
σ2

(
s(λ )cos

(
s(λ )x

σ2

)
− r sin

(
s(λ )x

σ2

))
,

where s(λ ) = σ
√
−2(λ + γ). As a consequence, the distance between the top two eigenvalues of L ,

namely 0 and −γ , is equal to γ . This distance is known, in the Markov process literature, as the spectral
gap of X .

Given the eigenvalues and eigenfunctions, there is a standard “recipe” for constructing the transition
density for reversible diffusion processes (of which RBM is one) that can be found, for example, on pg.332
of (Karlin and Taylor 1981). When specialized to the RBM setting, one obtains the spectral decomposition
for p(t, x, y), namely

p(t, x, y) =
2r
σ2 e−

2r
σ2 y

+
2

πσ2 e−
r(y−x)

σ2 −
r2t
2σ2

·
∫

∞

0

e−
v2t
2σ2

v2 + r2

(
vcos

( vx
σ2

)
− r sin

( vx
σ2

))(
vcos

( vy
σ2

)
− r sin

( vy
σ2

))
dv

= ηe−ηy− 1
2πr
·
∫ −γ

−∞

eλ tuλ (x)uλ (y)
1

s(λ )λ
ηe−ηydλ

(see (Linetsky 2005)). We thus find that, for f appropriately integrable,

Ex f (X(t)) = E f (X(∞))− 1
2πr
·
∫ −γ

−∞

eλ tuλ (x)〈 f , uλ 〉
1

s(λ )λ
dλ , (2)

where
〈 f , uλ 〉

∆
=
∫

∞

0
f (y)uλ (y)ηe−ηydy.

The spectral representation (2) makes clear that the spectral gap γ is precisely the exponential rate
constant governing the rate at which Ex f (X(t)) converges to E f (X(∞)). Furthermore, when t is large, it is
primarily the “projection” of f onto u−γ (i.e. the magnitude of 〈 f , uλ 〉) that determines the magnitude of
Ex f (X(t))−E f (X(∞)) (given that the integral is largely determined by the integrand’s contribution from
a neighborhood of λ =−γ).

3 THE INITIAL TRANSIENT EFFECT

Given a performance measure f , we have studied in Section 2 the rate of convergence of Ex f (X(t)) to
its equilibrium value E f (X(∞)). Our goal here is to compute the magnitude of the initial transient effect,
assuming that no deletion is implemented. This can inform our decision as to how serious the initial
transient effect is, and whether/how deletion is warranted. Because the typical estimator used to compute
an equilibrium quantity in a simulation context is a time-average, the effect of the initial transient in the
steady-state simulation setting is, in some sense, an integrated version of the theory of Section 2.

To compute the effect of the initial transient, note that if h is twice continuously differentiable with
h′(0) = 0, then Itô’s formula yields

dh(X(t)) = (L h)(X(t))dt +h′(X(t))σdB(t).
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It follows that if the stochastic integral is integrable and L h = − fc (with fc(x) = f (x)−E f (X(∞)) for
x≥ 0), then

M(t) ∆
= h(X(t))+

∫ t

0
fc(X(s))ds =

∫ t

0
h′(X(s))σdB(s)

is a martingale, from which we conclude that∫ t

0
Ex fc(X(s))ds = h(x)−Exh(X(t)).

In view of our discussion in Section 2, we expect that

Exh(X(t)) = Eh(X(∞))+O(e−γt)

as t→ ∞, where O(a(t)) represents a function for which O(a(t))/a(t) remains bounded as t→ ∞. Thus

Ex
1
t

∫ t

0
f (X(s))ds = E f (X(∞))+

1
t

hc(x)+O(e−γt)

as t → ∞, where hc(x) = h(x)−Eh(X(∞)). Hence, the constant hc(x) expresses (up to an exponentially
small order) the bias of the estimator t−1 ∫ t

0 f (X(s))ds induced by the initial transient.
We now turn to computing hc(x). The solution h to Poisson’s equation

(L h)(x) =− fc(x), x≥ 0

h′(0) = 0, h(0) = 0

is given by

h(x) =−1
r

∫ x

0
fc(y)(e−η(y−x)−1)dy,

from which we can conclude that

hc(x) =−
1
r

∫ x

0
fc(y)

(
e−η(y−x)−1

)
dy+

2
σ2

∫
∞

0

∫ x

0
fc(y)(e−ηy− e−ηx)dydx. (3)

Example 1 For f (x) = x,

hc(x) =
x2

2r
− σ 4

4r3 .

Example 2 For f (x) = x2,

hc(x) =
x3

3r
+

σ2x2

2r2 −
σ6

2r4 .

Example 3 For f (x) = eθx (with θ < η),

hc(x) =
−θ 2σ4 +4r2

(
−θx+ eθx−1

)
+2θrσ2

(
θx− eθx +1

)
θr (θσ2−2r)2 .

Example 4 For f (x) = I(x > b), where I(·) is the indicator function,

hc(x) =


e
− 2br

σ2
(

σ2
(

e
2rx
σ2 −1

)
−2r(b+x)

)
2r2 x < b

e
− 2br

σ2
(

e
2br
σ2 (−2br+2rx+σ2)−2r(b+x)−σ2

)
2r2 x≥ b.
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Given the performance measure f , the functional unconditional initial transient effect (UNITE) measure
is given by

β f (µ) =

∣∣∣∣∫ ∞

0
hc(x)µ(dx)

∣∣∣∣
for a given initial distribution µ , while the functional conditional initial transient effect (CITE) measure
is defined by

β̃ f (µ) =
∫

∞

0
β f (δx)µ(dx),

where δx(·) is a unit point mass distribution at x; see (Wang and Glynn 2014) for a more detailed discussion
of these measures. Note that in a single replication setting, the initial transient effect is determined by the
random placement of X(0), so that averaging the effect over the initial distribution µ (as in CITE) seems
reasonable. Given this viewpoint, it is then appropriate to view β̃ f (π) as a benchmark against which β̃ f (µ)
for other initializations µ can be compared. (After all, initializing with π makes X a stationary process in
which no initial transient is present.)

In particular, we can now separate the state space into “good states” and “bad states”, depending on
whether β f (δx)≤ cβ̃ f (π) for the state x or not, where c is a given constant. For example, for c = 1, the
good states are all those states x for which β f (δx) is smaller than the CITE measure associated with π . Of
course, the set of good states is sensitive to the choice of c. Hence, it is of interest to study the dependence
of the set of good states on the parameter c; see Figure 1 below. We note that the notion of good state is
related to the “typical state” idea introduced by (Grassmann 2011) and (Grassmann 2014).

For f (x) = x, the set of good states G (r, σ2; c) ∆
= {x : β f (δx)≤ cβ̃ f (π)} is given by

G (r, σ
2; c) =

{
x :
∣∣∣∣ x2

2r
− σ4

4r3

∣∣∣∣≤ c

(
(1+
√

2)e−
√

2σ4

2r3

)}

=

{
x :

∣∣∣∣∣12
(

x
EX(∞)

)2

−1

∣∣∣∣∣≤ 2(1+
√

2)ce−
√

2

}
.

For this performance measure, G (r, σ2; c) = EX(∞)G (1, 2; c), so it suffices to graph G (r, σ2)
∆
= {(x, c) :

x ∈ G (r, σ2; c), c≥ 0} only for EX(∞) = 1; the resulting graph can be found below. Note that for c = 1,
the set of good states already covers [0, 2.09], so that the set of initial values providing single-replication
bias characteristics roughly comparable to that associated with initializing under π is quite robust (in fact,
more than twice the mean).

Figure 1: Plot of Good States: EX(∞) = 1
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4 THE DISTRIBUTIONAL INITIAL TRANSIENT

The convergence of X(t) to X(∞) involves the entire distribution of X (as opposed to only the convergence
of Ex f (X(t)) for a single performance measure f ), so that much of the probability literature is concerned
with the rate of convergence at which the distribution of X(t) approaches that of X(∞). In fact, one
commonly used measure for judging the rate of convergence to equilibrium is the weighted total variation
norm defined by

sup
| f |≤w
|Eµ f (X(t))−E f (X(∞))|

for a given weight function w : R+→ R+.
By analogy, with the discussion of Section 3, it is natural to study the distributional UNITE measure

given by
β (µ)

∆
= sup
| f |≤w

β f (µ)

and the distributional CITE measure defined by

β̃ (µ)
∆
=
∫

∞

0
β (δx)µ(dx).

In view of the calculation of Section 3, specifically (3), it is evident that

β f (δx) =

∣∣∣∣∫ ∞

0
f (y)

1
r

m(ηx, ηy)dy
∣∣∣∣ ,

where

m(u, v) =

{
1− (u+ v)e−v 0≤ v≤ u,
e−(v−u)− (u+ v)e−v v > u.

According to (Pollard 2002) pg.60,

β (δx) =
∫

∞

0

1
r
|m(ηx, ηy)|w(y)dy.

Hence, if w(y) = yp for p≥ 0,

β (δx) =
1
r

η
−p−1

∫
∞

0
vp|m(ηx, v)|dv

and
β̃ (π) =

1
r

η
−p−1

∫
∞

0

∫
∞

0
vp|m(u, v)|dve−udu.

So, as in Section 3, we can analogously define the set of “good states” as

H (r, σ
2; c) ∆

= {x : β (δx)≤ cβ̃ (π)}
= EX(∞)H (1, 2; c),

so that H (r, σ 2; c) again scales similarly as does the set G (r, σ 2; c) of Section 3, due to the homogeneity
of w(y) = yp. (For the function w(y) = eθy, such a scaling relationship does not hold.)

By numerically computing β̃ (π) (via a numerical integration of β (δx) against π), the graph of the
set H (1, 2) ∆

= {(x, c) : x ∈H (1, 2; c), c≥ 0} can be determined. In particular, it is computed below for
w(x) ≡ 1; see Figure 2. Unlike the set G (1, 2) of Section 3, it does not touch the x-axis. This is not
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surprising, because in the functional setting of Section 3, it will often be the case that the bias is monotone
in the initial state. For example, for nondecreasing f , the stochastic monotonicity of RBM ensures that the
bias will be negative for small values of x, and positive for large values of x, yielding (using a continuity
argument) the existence of an intermediate x at which β f (δx) = 0. On the other hand, in the distributional
setting, β (δx) involves looking at the largest possible bias over a large class of functions f , and there
typically will be no initial x at which β (δx) will vanish.

We further note that the shape of H (1, 2) is quite different than that of G (1,2). For example, the
minimizer of β (δx) as a function of x is achieved at a point x∗ that is smaller than that of β f (δx) for f (x) = x.
This occurs because β (δx) is defined in terms of the bias of bounded functions, while the set G (1,2) of
Section 3 was computed for the identity mapping (which is unbounded). In computing the expectation of
such a performance measure, it is advantageous to initialize the process at a larger value, because such an
initialization will lead to higher likelihood paths that will quickly sample the large state values that typically
contribute the most to the expectation of the performance measure. We further note that the set of good
x’s associated with H (1, 2) is a bit smaller than that of Section 3 (in part, because H (1, 2) involves a
worst case bias, where as G (1, 2) is determined only by a single function f ). Nevertheless, the set of good
states, with values of β (δx) of a magnitude less than or equal to that associated with initializing under the
equilibrium distribution (i.e., β̃ (π)), is large, and includes all the states x with a value less than or equal
to 1.84EX(∞).

Figure 2: Plot of Good States: EX(∞) = 1

5 WHEN DOES INITIAL TRANSIENT BIAS MATTER?

Given the time-average estimator α(t) ∆
= t−1 ∫ t

0 f (X(s))ds for α = E f (X(∞)), its (single replication) rate
of convergence is determined by the central limit theorem (CLT). To develop the CLT for α(t), recall that
(M(t) : t ≥ 0) is a martingale; see Section 3. The martingale CLT as applied to the stochastic integral
associated with the martingale then guarantees that

√
t(α(t)−α)⇒ κN(0, 1)

as t → ∞, where κ2 = σ2Eh′(X(∞))2; see, for example, pg.339-340 of (Ethier and Kurtz 2005). The
CLT asserts that the expected stochastic variability of α(t), for large t, is governed by κE|N(0, 1)|t−1/2 =
κ(2/π)1/2t−1/2.

On the other hand, the systematic error in α(t) (namely, the bias) was analyzed in Section 3 and
determined to be β f (δx)/t for t large, assuming that the process was initialized at state x. It is clear that for

t large enough, the stochastic variability dominates the bias. Specifically, for t ≥ t∗(x) ∆
= β f (δx)

2π/(2κ2),
the bias contribution is smaller than the error due to stochastic variability.

To help put the quantity t∗(x) in perspective, note that the CLT suggests that a relative error ε∗ =
2κ(2/π)1/2/(t∗(x)1/2|E f (X(∞))|) is achieved at a run-length t∗(x) (contributed in equal measures from
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stochastic variability and bias). In other words,

ε
∗(x) ∆

=
2κ2

|β f (δx)| · |E f (X(∞))|
2
π

is the relative precision at which a simulation designed to achieve such an error tolerance will have an error
that is contributed equally from stochastic variability and initial transient bias. At all smaller values of the
relative precision, the stochastic variability dominates the error. In particular, to achieve a relative error
tolerance of ε = νε∗(x) (with ν < 1), the associated run-length t that must be used is such that the error
due to initial transient bias at such a run-length is roughly a proportion ν of the stochastic error. Thus, the
quantity ε∗(x) is an important measure of the threshold error tolerance at which the initial transient is no
longer a dominant source of error in computing steady-state quantities.

Figure 3 below provides a graph of the threshold error tolerance as a function of x for f (y) = y, with
(r, σ2) = (1, 2). Given that a relative error precision of 10% or less is typically desired, we note that the
set of states x for which ε∗(x)≥ 0.1 is large, specifically the interval [0, 10.19].

Figure 3: Plot of ε∗(x) vs. x: r = 1 and σ2 = 2

6 MEAN SQUARE ERROR FOR RBM EQUILIBRIUM CALCULATIONS

Because MSE is so frequently utilized in theoretical analyses of the initial transient problem, we provide
here a detailed analysis of MSE in the setting of RBM. For a given performance measure f , recall the
martingale (M(t) : t ≥ 0) of Section 3. Hence, in view of the martingale property of the stochastic integral,

Ex

(∫ t

0
fc(X(s))ds

)2

= σ
2
∫ t

0
Exh′c(X(s))2ds+h2

c(x)+Exh2
c(X(t))

− 2Exhc(x)hc(X(t))−2σExhc(X(t))
∫ t

0
h′c(X(s))dB(s).

But

Exhc(X(t))
∫ t

0
h′c(X(s))dB(s) = E

[
hc(X(0))

∫ 0

−t
h′c(X(s))dB(s)

∣∣∣∣X(−t) = x
]

= Ehc(X∗(0))
∫ 0

−∞

h′c(X
∗(s))dB(s)+o(1)

as t → ∞, where o(1) is a deterministic function tending to 0 as t → ∞, and (X∗, B) = ((X∗(t), B(t)) :
−∞ < t < ∞) is such that X∗ is a stationary RBM driven by the Brownian motion B. Of course,

Ehc(X∗(0))
∫ 0

−∞

h′c(X
∗(s))dB(s) =−Ehc(X∗(0))

∫
∞

0
h′c(X

∗(−s))dB(−s). (4)
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Since X∗ is a reversible one-dimensional diffusion driven by B (see, for example, (Kent 1978)),

((X∗(−t),−B(−t)) :−∞ < t < ∞)
D
= ((X∗(t), B(t)) : −∞ < t < ∞),

where D
= denotes equality in distribution. Consequently, (4) equals

Ehc(X∗(0))
∫

∞

0
h′c(X

∗(t))dB(t) = 0,

because of the martingale property of the stochastic integral.
Furthermore, Exh2

c(X(t)) = Eh2
c(X(∞))+o(1) as t→∞ and Exhc(X(t)) = Ehc(X(∞))+o(1) as t→∞.

Finally, by following the same argument as in Section 3, we find that∫ t

0
Exh′(X(s))2ds = tEh′(X(∞))2 +

∫ t

0
(Exh′c(X(s))2−Eh′c(X(∞))2)ds

= κ
2t/σ

2 + kc(x)+o(1)

as t→ ∞, where kc is the solution of the Poisson’s equation associated with h′2c , namely kc satisfies

(L kc)(x) =−(h′c(x)2−Eh′c(X(∞))2), x≥ 0

subject to k′c(0) = 0, Ekc(X(∞)) = 0. In view of (3),

kc(x) =−
1
r

∫ x

0
h′c(y)

2
(

e−η(y−x)−1
)

dy+
2

σ2

∫
∞

0

∫ x

0
h′c(y)

2(e−ηy− e−ηx)dydx.

With kc now computed, the mean square error of α(t) is given by

E(α(t)−α)2 =
κ2

t
+

σ 2kc(x)
t2 +

hc(x)2

t2 +
Eh2

c(X(∞))

t2 +
1
t2 o(1) (5)

as t→ ∞. In particular, for f (x) = x,

E(α(t)−α)2 =
σ6

2r4t
+

σ 2
(
2r3x3 +3r2σ2x2−3σ6

)
6r6t2 +

(
σ 4−2r2x2

)2

16r6t2 +
5σ8

16r6t2 +
1
t2 o(1)

=
σ6

2r4t
+

6r4x4 +8r3σ2x3 +6r2σ4x2−3σ8

24r6t2 +
1
t2 o(1)

as t→ ∞.
The term hc(x)2/t2 is the squared bias contribution to the MSE due to the initial transient. The

expression (5) makes clear that the MSE includes other state-dependent contributions of the same order of
magnitude (that are contributed by the variance of α(t) rather than the bias), namely σ 2kc(x)/t2. Hence, a
full analysis of the MSE impact of the effect of the initial transient should also (ideally) include an analysis
of this variance term involving kc, in addition to the bias contribution that is typically included in such an
MSE analysis.

7 CONCLUSION

We have developed various formulae related to the initial transient problem for RBM. These formulae can
be used directly in a simulation context, to approximate the impact of the initial transient for queueing
simulations for which RBM is a suitable guide (eg. simulations of queues in heavy traffic). Our formulae
also make clear a key insight that is likely true in a much broader class of simulations. In particular, for
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RBM, there is typically a robust set of initializing states for which the impact of the initial transient is
roughly comparable to that associated with initializing in equilibrium. Since initializing in equilibrium
corresponds to a setting in which there is no initial transient, this suggests that one should not worry
excessively about the initial transient unless one has inadvertently initialized the simulation with a very
poor (“bad”) choice of state. If one instead initializes with a reasonable (“good”) choice of state, the key
element to a successful calculation of E f (X(∞)) is ensuring that the run-length is long enough to ensure
that the stochastic variability has been reduced to a level commensurate with the desired accuracy. This
suggests that a focus of initial transient research should be on building reliable algorithms for identifying
settings in which one has inadvertently chosen a poor initialization that induces a large transient.
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