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This article develops fundamental theory related to the use of simulation-based nonadaptive random search
as a means of optimizing a function that can be expressed as an expectation. Our results establish rates of
convergence that express the trade-off between exploration and estimation, and fully characterize the limit
distributions that arise. Our rates of convergence results should be viewed as a baseline against which to
compare more intelligent algorithms.
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1. INTRODUCTION

Many different applications require solving optimization problems of the form

max
θ∈�

α(θ), (1)

where � ⊆ IRd is the feasible set, and α(·) is the objective function. When α(·) is avail-
able in “closed form” and is smooth, (1) is generally solved numerically by applying
derivative-based iterative algorithms; see, for example, Gill et al. [1981].

In this article, we focus on the case where α(θ) is defined as the expectation of a real-
valued random variable, X(θ). We assume that EX(θ) is not available in closed form,
and must be computed via (Monte Carlo) simulation. Perhaps the simplest possible
algorithm for solving (1) is what we shall call “simple random search”. Simple random
search proceeds by first generating points θ1, θ2, . . . , θm randomly from �. One then
simulates n independent realizations of X(θ) at each θ ∈ {θ1, . . . , θm} and computes the

sample mean, αn(θi)
�= n−1∑n

j=1 Xj(θi) (1 ≤ i ≤ m), at each of the m random points.
The maximum of the problem (1) is then estimated via max{αn(θi) : 1 ≤ i ≤ m}, and
the maximizer is estimated via the empirical maximizer of {αn(θi) : 1 ≤ i ≤ m}.

This algorithm does not take advantage of potential smoothness in α(·), nor does
it adapt its behavior in light of the information gained from previously generated ob-
servations. On the other hand, simple random search is trivial to implement, in part
because it makes no effort to estimate derivatives (which are generally difficult to
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16:2 Y. L. Chia and P. W. Glynn

compute in the simulation setting; see, for example, Robbins and Monro [1951],
Kiefer and Wolfowitz [1952] and L’Ecuyer and Perron [1994]). In addition, simple
random search is convergent even in the presence of (many) local maxima. Such multi-
modality significantly complicates the implementation of more intelligent derivative-
based methods. For these reasons, simple random search is a potentially attractive
algorithm from a practitioner viewpoint.

Despite the attractiveness of simple random search, no analysis of the best possible
convergence rate is presently available. Our main contribution in this article is to
supply a relatively complete convergence theory for simple random search. Deriving
the best possible rates of convergence (that optimally balance the relative magnitudes
of m and n) also gives us a “benchmark” convergence rate for the simplest possible
simulation-based optimization algorithm, against which all other algorithms can be
compared.

The major contributions of this article are theoretical in nature and include the
following

(a) We establish that the optimal trade-off between exploration (m) and estimation
(n) occurs when m is of order nd/4, so that in low dimensions (d ≤ 4), one needs
accurate estimation (n � m) whereas in high-dimensional settings (d ≥ 5), lots of
exploration (m � n) is necessary; see Theorems 3.2 and 3.3. A related result can
be found in Yakowitz et al. [2000], in a setting in which quasi-random sequences
are used to determine the placement of the θi’s.

(b) We present the first derivation of the limit distributions that arise in the context
of simple random search; see Theorems 3.2 and 3.3.

This article is organized as follows Section 2 carefully introduces the mathemati-
cal setting for our discussion and reviews previous theory on conditions under which
random search is consistent, while Section 3 presents the large-sample limit theo-
rems that form the core results of this article. Section 4 provides some brief concluding
remarks.

2. PROBLEM FORMULATION AND BASIC THEORY

We start by reviewing the basic theory of simple random search. We assume that � ⊆
IRd is a compact set with a nonempty interior. For each θ ∈ �, there exists an integrable
random variable X(θ) for which EX(θ) = α(θ).

Given a computer (time) budget c, we generate m independent identically distributed
(iid) random points θ1, θ2, . . . , θm from a common density g that is concentrated on �.
The density g is assumed to be positive and continuous on �; g can then be extended to
IRd by setting its values to zero on IRd \ �. Given the random points {θ1, θ2, . . . , θm}, we
perform n simulations at each of the m points. In view of the computer time constraint,
we set n = 	c/m
, so that the total number of simulations (aggregated across all m
points) is approximately equal to c. More precisely, we simulate mn random variables
{Xj(θi) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} having conditional distribution

P(Xj(θi) ∈ dxij, 1 ≤ i ≤ m, 1 ≤ j ≤ n|θ1, θ2, . . .) =
m∏

i=1

n∏
j=1

F(θi, dxij),

where F(θ , ·) is the distribution function of X(θ). For i ≥ 1, put

αn(θi) = 1
n

n∑
j=1

Xj(θi),

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 16, Publication date: July 2013.
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so that αn(θi) is the sample mean of the Xj(θi)’s associated with the ith random point
θi. Then,

α̂(c) = max
1≤i≤m

αn(θi)

is the associated estimator of max{α(θ) : θ ∈ �}.
Intuitively, it seems clear that if n is too small relative to m, then the noise that is

present in the sample mean αn(θi) will dominate, and the simple random search algo-
rithm will be inconsistent (i.e., nonconvergent). The remainder of this section discusses
what is known about consistency for random search, and provides context for the more
precise convergence rate results of Section 3.

Conditions under which α̂(c) converges to max{α(θ) : θ ∈ �} have been previously
studied. To describe these results, put s(θ) = sup{y : P(X(θ) ≤ y) < 1}, and s =
sup{s(θ) : θ ∈ �}, so that s is the maximal value that can be taken on by any of the
X(θ)’s. We assume the following.

Assumption 1. α : � → IR is continuous.

Assumption 2. There exists t > 0 such that sup{E exp(t|X(θ)|) : θ ∈ �} < ∞.

Assumption 3. If s < ∞, then there exists, for each ε > 0, a choice of θ0 ∈ � and
δ > 0 such that

inf‖θ−θ0‖<δ
P(X(θ) > s − ε) > 0.

If s = ∞, there exists, for each x > 0, a choice of θ0 ∈ � and δ > 0 such that

inf‖θ−θ0‖<δ
P(X(θ) > x) > 0.

Note that Assumption 2 ensures (via application of Markov’s inequality) that the
tail of X(θ) converges to zero exponentially fast uniformly in θ , and is a strong version
of what is known in the probability literature as a statement that the X(θ)’s are light-
tailed. This assumption is critical to the validity of Theorem 2.1 below. When the X(θ)’s
are heavy-tailed, a different consistency theory holds.

For θ ∈ �, γ ∈ IR, set ψ(θ , γ ) = log[E exp(γ X(θ))]. Part (i) of the following theorem
is Theorem 2′, p. 145, in Devroye [1978]; see also Proposition 4.2 of Ensor and Glynn
[1997]. Part (ii) is Proposition 4.1 of that paper and (iii) is Theorem 4.1 of Ensor and
Glynn [1997]. (These proofs are given when � =[0, 1]d, but go over without change in
the current setting.)

THEOREM 2.1. If Assumption 1, Assumption 2, and Assumption 3 hold, then:

(i) If (log m)/n → 0 as c → ∞, then

α̂(c) ⇒ max
θ∈�

α(θ)

as c → ∞.
(ii) If (log m)/n → ∞ as c → ∞, then

α̂(c) ⇒ s

as c → ∞.
(iii) Suppose (log m)/n → τ ∈ (0, ∞) as c → ∞. Assume that for each θ ∈ �, there

exists a root γ̃ = γ̃ (θ) > 0 satisfying

γ̃
∂

∂γ
ψ(θ , γ̃ ) − ψ(θ , γ̃ ) = τ .

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 16, Publication date: July 2013.



�

�

�

�

�

�

�

�

16:4 Y. L. Chia and P. W. Glynn

Furthermore, suppose that ψ is twice continuously differentiable on �×[0, γ0],
where γ0 > supθ∈� γ̃ (θ). Then,

α̂(c) ⇒ max
θ∈�

∂

∂γ
ψ(θ , γ̃ (θ))

as c → ∞.

Theorem 2.1 establishes that when the noise has a tail that decays exponentially
rapidly, then (log m)/n → 0 as c → ∞ is typically required for consistency of sim-
ple random search. For a discussion of consistency in the presence of heavy tails, see
Theorem 3.1 of Ensor and Glynn [1997].

3. LIMIT DISTRIBUTIONS FOR THE MAXIMUM

Section 2 establishes conditions under which simple random search is consistent. In
this section, our focus is on developing an understanding of the optimal trade-off be-
tween m and n for a given value of c.

We first consider the case where X(θ) = α(θ) a.s., so that the function evaluations
are deterministic. If we throw m points uniformly into �, then there is (in expectation)
one point in each subset of � having volume vol(�)/m. The radius of a d-sphere having
volume of order 1/m is of order m−1/d. This suggests that the closest sampled point θi
to the maximizer θ∗ of α(·) is at a distance of order m−1/d from θ∗. If α(·) is smooth,
then α(·) is locally quadratic around θ∗. Hence, the difference between α(θi) and α(θ∗)
should be of order m−2/d. This analysis suggests that the rate of convergence of α̂(c)
to max{α(θ) : θ ∈ �} is of order c−2/d in the deterministic function evaluation setting.
(Note that in this setting, n = 1 so that m = 	c
.)

We now proceed to make this analysis precise; the three assumptions needed for
Theorem 3.1 are completely natural when considering global optimization of smooth
objective functions (whether via random search or otherwise).

Assumption 4. α(·) is three times continuously differentiable on �.

Assumption 5. α(·) has a unique maximizer θ∗ lying in the interior of �.

Assumption 6. The Hessian of α(·), when evaluated at θ∗ (and denoted H(θ∗)), is
negative definite.

Since H(θ∗) is symmetric and negative definite, the eigenvalues of H(θ∗) are negative
real numbers (see Strang [1986]). We denote the d eigenvalues as

−λ1, −λ2, . . . , −λd,

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λd.

THEOREM 3.1. If Assumption 4, Assumption 5, and Assumption 6 hold and X(θ) =
α(θ) a.s. for θ ∈ �, then

c2/d(α(θ∗) − α̂(c)) ⇒ Weibull(a, d/2)

as c → ∞, where Weibull(a, d/2) is a Weibull random variable with shape parameter
d/2 and scale parameter 1/a where

a = 2π

(
g(θ∗)

(d/2 + 1)
√| det H(θ∗)|

)2/d

.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 16, Publication date: July 2013.
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PROOF. For x > 0, observe that

P(α(θ∗) − α̂(c) ≥ xc−2/d)

= [P(α(θ1) ≤ α(θ∗) − xc−2/d)]m

= exp{m log[1 − P(α(θ1) > α(θ∗) − xc−2/d)] }. (2)

Since α(·) has a unique maximizer and g is continuous on �, P(α(θ1) > α(θ∗)−xc−2/d) ↘
0 as c → ∞. So

log(1 − P(α(θ1) > α(θ∗) − xc−2/d))

= −P(α(θ1) > α(θ∗) − xc−2/d)(1 + o(1)) (3)

as c → ∞. But

P(α(θ1) > α(θ∗) − xc−2/d)

=
∫

�

I(xc−2/d > α(θ∗) − α(y))g(y) dy. (4)

Furthermore, Assumption 4 ensures that

α(θ∗) − α(y) = −1
2

(y − θ∗)TH(θ∗)(y − θ∗) + o(‖ y − θ∗ ‖2) (5)

as y → θ∗. The uniqueness of the maximizer guarantees that for each ε > 0,

{y : xc−2/d > −1
2

(1 + ε)(y − θ∗)TH(θ∗)(y − θ∗)}
⊆ {y ∈ � : xc−2/d > α(θ∗) − α(y)}
⊆ {y : xc−2/d > −1

2
(1 − ε)(y − θ∗)TH(θ∗)(y − θ∗)}

for c large enough. To see why this is true, note that (5) implies that if Q(y) =
−(1/2)(y − θ∗)TH(θ∗)(y − θ∗), then

α(θ∗) − α(y) = Q(y) + o(‖y − θ∗‖2).

But since Q(y) ≥ (λ1/2)‖y − θ∗‖2, it follows that there exists δ > 0 for which α(θ∗) −
α(y) ≥ (1 − ε)Q(y) for ‖y − θ∗‖ ≤ δ. For c sufficiently large, the uniqueness of the
maximizer θ∗ and continuity of α(·) guarantee that {y ∈ � : xc−2/d > α(θ∗) − α(y)} ⊆
{y ∈ � : ‖y − θ∗‖ < δ}. So, for such values of c, {y ∈ � : xc−2/d ≥ (1 − ε)Q(y)} ⊇ {y ∈ � :
xc−2/d > α(θ∗) − α(y)}. The other set inclusion can be similarly argued.

Hence, an upper bound on (4) is

∫
IRd

I
(

xc−2/d > −1
2

(1 − ε)(y − θ∗)TH(θ∗)(y − θ∗)
)

g(y) dy. (6)

Because −H(θ∗) is a symmetric matrix, it can be diagonalized via an orthogonal matrix
A (see Strang [1986, p. 254]). In particular, there exists a d × d matrix A such that

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 16, Publication date: July 2013.
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ATA = I, with −H(θ∗) = ATDA, where D = diag(λ1, λ2, . . . , λd). Hence, this integral
can be re-written as∫

IRd
I
(

2x
1 − ε

> (c1/dA(y − θ∗))TD(c1/dA(y − θ∗))
)

g(y) dy

= c−1
∫

IRd
I
(

2x
1 − ε

> zTDz
)

g(θ∗ + c−1/dATz) dz

= 1
c
√

λ1λ2 · · · λd

∫
IRd

I

⎛
⎝ 2x

1 − ε
>

d∑
i=1

z̃2
i

⎞
⎠ g(θ∗ + c−1/dATD−1/2z̃) dz̃.

(We used the fact that | det A| = 1 in the change-of-variables in the first equality.)
Note that

g(θ∗ + c−1/dATD−1/2z̃) → g(θ∗)

as c → ∞ uniformly over the region {z̃ : 2x(1 − ε)−1 >
∑d

i=1 z̃2
i } because

‖c−1/dATD−1/2z̃‖ ≤ c−1/d{2x/[ λ1(1 − ε)] }1/2 for every z̃ in that region. Also,

∫
IRd

I

⎛
⎝ 2x

1 − ε
>

d∑
i=1

z̃2
i

⎞
⎠ dz̃

is the volume of a d-sphere having radius (2x/(1 − ε))1/2. It therefore equals(
2πx
1 − ε

)d/2 1
(d/2 + 1)

;

see, for example, Zhigljavsky [1991, pg. 78]. Finally, λ1λ2 · · · λd = det D = | det H(θ∗)|,
so we conclude that the integral (6) equals

1

c
√| det H(θ∗)|(d/2 + 1)

g(θ∗)
(

2πx
1 − ε

)d/2

(1 + o(1)),

as c → ∞. By appealing to (2),(3), (4), and (6), and using the fact that m = 	c
, in this
context, we therefore find that

lim inf
c→∞ P(α(θ∗) − α̂(c) ≥ xc−2/d)

≥ exp

(
−
(

ax
1 − ε

)d/2
)

.

Similarly, we find that

lim sup
c→∞

P(α(θ∗) − α̂(c) ≥ xc−2/d)

≤ exp

(
−
(

ax
1 + ε

)d/2
)

.

Since ε was arbitrary, this proves the theorem.

The Weibull structure of the limit was previously identified by Archetti et al. [1977]
and de Haan [1981]. The new feature of the above result is its explicit computation of
the scale parameter of the Weibull limit law. Theorem 3.1 shows that when function
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evaluations are deterministic, then the rate of convergence to the maximum is of order
c−2/d. This result makes clear that simple random search degrades rapidly when the
dimension d is large, even when the function can be evaluated without (random) error.

Our goal is next to identify the optimal rate of convergence in the setting of stochas-
tic function evaluations. It seems intuitively clear that the optimum trade-off between
m and n is attained when the error contributed by the finite number m of random
points and the Monte Carlo error associated with the sample size n are roughly bal-
anced. In view of our previous discussion of the rates attained in deterministic setting
and the n−1/2 associated with Monte Carlo estimators (due to the central limit theo-
rem), this suggests that an optimal trade-off is attained when m−2/d ≈ n−1/2. When
expressed in terms of c, this leads to consideration of limit distributions for α̂(c) in
which the asymptotic regime is given by

m ∼ rcd/(d+4)

n ∼ r−1c4/(d+4) (7)

as c → ∞ (with 0 < r < ∞).
To analyze this asymptotic regime, we make some additional assumptions.

Assumption 7. The collection of distributions {F(θ , ·) : θ ∈ �} is weakly continuous
over � (i.e., if θ ′

n ∈ � is such that θ ′
n → θ ′∞, then F(θ ′

n, ·) ⇒ F(θ ′∞, ·) as n → ∞).

Assumption 8. var X(θ∗) > 0.

Assumption 7 is a mild assumption in practice, and merely asserts that the distri-
bution of the (random) noise varies continuously in the decision variable θ , while
Assumption 8 is a nondegeneracy assumption that asserts that nonzero noise is
present when evaluating the objective function at the maximizer.

Set σ(θ) = √
varX(θ). Our next result describes the behavior of α̂(c) where m and n

are balanced according to (7).

THEOREM 3.2. Suppose that Assumption 4 through Assumption 8 hold and
sup{E|X(θ)|p : θ ∈ �} < ∞ for p > max(3, d2). If m and n satisfy (7), then

c2/(d+4)(α̂(c) − α(θ∗)) ⇒ β

as c → ∞, where

P(β ≤ x) = exp

(
− r(4+d)/4g(θ∗)πd/2

(d/2)
√| det H(θ∗)|

∫ ∞

0
P
(

N(0, 1) >
2x + y
2σ(θ∗)

)
yd/2−1 dy

)
.

PROOF. We start by observing that

P(n1/2(α̂(c) − α(θ∗)) ≤ x)

= P( max
1≤i≤m

αn(θi) − α(θ∗) ≤ xn−1/2)

= [P(αn(θ1) ≤ α(θ∗) + xn−1/2)]m

= exp(m log[1 − P(αn(θ1) > α(θ∗) + xn−1/2)] ). (8)

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 16, Publication date: July 2013.
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For δ > 0, let B0(δ) = {θ :‖ θ − θ∗ ‖≤ δ}, where ‖ · ‖ is the Euclidean norm on IRd. Then,
for ε > 0,

P(αn(θ1) > α(θ∗) + xn−1/2)

=
∫

B0(n−ε)

P(αn(θ) > α(θ∗) + xn−1/2)g(θ) dθ

+
∫

[B0(n−ε)]c∩�

P(αn(θ) > α(θ∗) + xn−1/2)g(θ) dθ .

(9)

The uniform boundedness of E|X(θ)|p (with p > 2) ensures that (X2(θ) : θ ∈ �) and
(X(θ) : θ ∈ �) are uniformly integrable families of rv’s. In view of the weak continuity of
P(X(θ) ∈ ·) in θ , it follows that σ 2(θ) is continuous in θ over �. Put α̃n(θ) = n1/2(αn(θ)−
α(θ)). The positivity of σ 2(θ∗) allows us to write, for n so large that B0(n−ε) ⊂ {θ ∈ � :
σ 2(θ) > 0}, ∫

B0(n−ε)

P(αn(θ) > α(θ∗) + xn−1/2)g(θ) dθ

=
∫

B0(n−ε)

P

(
α̃n(θ)

σ (θ)
>

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)
g(θ) dθ .

The Berry-Esseen theorem asserts that for θ ∈ B0(n−ε),∣∣∣∣∣P
(

α̃n(θ)

σ (θ)
>

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)
− P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)∣∣∣∣∣
≤ 3n−1/2 supθ∈� E[ |X(θ) − α(θ)|3]

infθ∈B0(n−ε)[ σ(θ)]3
;

see, for example, p. 542 of Feller [1971]. Hence, the first integral on the right-hand side
of (9) equals

∫
B0(n−ε)

P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)
g(θ) dθ + n−1/2O(vol(B0(n−ε)))

=
∫

B0(n−ε)

P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)
g(θ) dθ + O(n−1/2−dε). (10)

Turning next to the second integral on the right-hand side of (9), we start by noting
that Markov’s inequality shows that

P(αn(θ) > α(θ∗) + xn−1/2)

= P(α̃n(θ) > n1/2(α(θ∗) − α(θ)) + x)

≤ |n1/2(α(θ∗) − α(θ)) + x|−pE|α̃n(θ)|p. (11)

But, according to Petrov [1995, p. 62],

E|α̃n(θ)|p ≤ C(p)E[|X1(θ) − α(θ)|p] , (12)

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 16, Publication date: July 2013.
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where C(p) is a universal constant (not depending on the distribution of X1(θ)). Also,
the compactness of � guarantees that for each n, there exists θn ∈ � that maximizes α
over [ B0(2n−ε)]c ∩�. Clearly,

θ̃n = θ∗ + n−ε(θn − θ∗)/‖θn − θ∗‖ ∈ {θ : n−ε ≤ ‖θ − θ∗‖ ≤ 2n−ε}

and note that θ̃n − θ∗ = rn(θn − θ∗) with 0 < rn ≤ 1/2. Furthermore, we claim that
α(θ̃n) > α(θn) for n sufficiently large. Note that if this is false, then exists a subsequence
θn′ for which α(θ̃n′) ≤ α(θn′). Since θ∗ is the unique maximizer of α, it is evident that
θn′ → θ∗. Let zn′ = A(θn′ − θ∗), z̃n′ = A(θ̃n′ − θ∗) (where A is the orthogonal matrix
introduced in the proof of Theorem 3.1), and observe that z̃n′ = rn′zn′ . Also,

α(θn′) − α(θ̃n′)

= −(1 − r2
n′)

d∑
i=1

λi
z2

n′,i
2

+ o(‖zn′ ‖2),

which is negative for n sufficiently large, yielding a contradiction. We conclude that

min{|α(θ) − α(θ∗)| : θ ∈[ B0(n−ε)]c ∩�}
= min{|α(θ) − α(θ∗)| : n−ε ≤ ‖θ − θ∗‖ ≤ 2n−ε}
= min{(1/2)|(θ − θ∗)TH(θ∗)(θ − θ∗) + o(n−2ε)| : n−ε ≤ ‖θ − θ∗‖ ≤ 2n−ε}(1 + o(1))

= O(n−2ε) (13)

as n → ∞. It follows from (11), (12), and (13) that

sup
θ∈[B0(n−ε)]c∩�

P(αn(θ) > α(θ∗) + xn−1/2)

= O(n−p(1/2−2ε))

as n → ∞, and consequently

∫
[B0(n−ε)]c∩�

P(αn(θ) > α(θ∗) + xn−1/2)g(θ) dθ

= O(n−p(1/2−2ε)). (14)

Put ε = 1/4 − 1/(8d). Relations (10) and (14) then guarantee that

P(αn(θ1) > α(θ∗) + xn−1/2) → 0

as n → ∞, so that

m log[1 − P(αn(θ1) > α(θ∗) + xn−1/2)]

∼ −mP(αn(θ1) > α(θ∗) + xn−1/2). (15)
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16:10 Y. L. Chia and P. W. Glynn

as n → ∞. Also, with this choice for ε, (10) and (14) in turn establish that

mP(αn(θ1) > α(θ∗) + xn−1/2)

= m
∫

B0(n−ε)

P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)
g(θ) dθ + O(mn−1/2−dε)

+O(mn−p(1/2−2ε))

= m
∫

B0(n−ε)

P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)
g(θ) dθ + O(n−3/8)

+O(nd/4−p/(4d))

= m
∫

B0(n−ε)

P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ)) + x
σ(θ)

)
g(θ) dθ + o(1) (16)

as c → ∞.
To evaluate this integral, using the fact that the symmetric negative definite matrix

H(θ∗) can be diagonalized via an orthogonal similarity transformation, we now do a
change of variables so that y = n1/4A(θ − θ∗). Let B(δ) = {y ∈ IRd : ‖y‖ ≤ δ}. Since
| det(A)| = 1,

∫
B0(n−ε)

P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ))

σ (θ)
+ x

σ(θ)

)
g(θ) dθ

= n−d/4
∫

B(n1/4−ε)

[
P

(
N(0, 1) >

n1/2(α(θ∗) − α(θ∗ + n−1/4ATy)) + x
σ(θ∗ + n−1/4ATy)

)

× g(θ∗ + n−1/4ATy)
]

dy.

Uniformly in y ∈ B(n1/4−ε),(
n1/2(α(θ∗) − α(θ∗ + n−1/4ATy)) + x)

σ (θ∗ + n−1/4ATy)

)

= −yTAH(θ∗)ATy + 2x
2σ(θ∗)

(1 + o(1))

= (yTDy + 2x)

2σ(θ∗)
(1 + o(1))

and

g(θ∗ + n−1/4ATy) = g(θ∗)(1 + o(1))

as n → ∞. Consequently,

m
∫

B0(n−ε)

P

(
α̃n(θ)

σ (θ)
>

n1/2(α(θ∗) − α(θ))

σ (θ)
+ x

σ(θ)

)
g(θ) dθ

∼ r(4+d)/4
∫

B(n1/4−ε)

P

{
N(0, 1) >

(
2x +∑d

i=1 λiy2
i

2σ(θ∗)

)}
g(θ∗)(1 + o(1)) dy. (17)
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Because P(N(0, 1) > (x + 2−1∑d
i=1 λiy2

i )/σ (θ∗)) is integrable over IRd and dominates
the integrand of (17) uniformly in n, it follows that the integral (17) converges to

g(θ∗)r(4+d)/4
∫

IRd
P

(
N(0, 1) >

2x +∑d
i=1 λiy2

i
2σ(θ∗)

)
dy (18)

as n → ∞. To simplify the limit distribution further, let zi = √
λiyi. Then, it follows

that ∫
IRd

P

(
N(0, 1) >

2x +∑d
i=1 λiy2

i
2σ(θ∗)

)
dy

= 1√
λ1λ2 . . . λd

∫
IRd

P

(
N(0, 1) >

2x +∑d
i=1 z2

i
2σ(θ∗)

)
dz

= 1√| det H(θ∗)|
∫

IRd
P

⎛
⎝N(0, 1) >

x
σ(θ∗)

+ 1
2σ(θ∗)

d∑
i=1

z2
i

⎞
⎠ dz.

(19)

Finally, we convert from Cartesian coordinates to hyperspherical coordinates using
the transformation

r =
√∑d

i=1 z2
i ,

φ1 = arc cot
(

z1/

√
z2

2 + . . . + z2
d

)
,

φ2 = arc cot
(

z2/

√
z2

3 + . . . + z2
d

)
,

...

φd−2 = arc cot
(
zd−2/

√
z2

d−1 + z2
d

)
,

φd−1 = arc cot
(
zd−1/zd

)
.

With this transformation, φi ∈ [0, π ] for 1 ≤ i ≤ d − 2, φd−1 ∈ [0, 2π ], and

| det J(r, φ1, . . . , φd−1)| = rd−1 sind−2(φ1) sind−3(φ2) · · · sin(φd−2);

see Edwards [1995, p. 268].
Note that

vol(B(1)) =
∫ 2π

0

∫ π

0
· · ·
∫ π

0

∫ 1

0
| det J(r, φ1, · · · , φd−1)| dr dφ1 · · · dφd−1

= 1
d

∫ 2π

0

⎡
⎣d−2∏

k=1

∫ π

0
sind−1−k(φk) dφk

⎤
⎦dφd−1.

Then, it follows from p. 342 of Edwards [1995] that

(surface area of B(1)) = d · vol(B(1))

=
∫ 2π

0

⎡
⎣d−2∏

k=1

∫ π

0
sind−1−k(φk) dφk

⎤
⎦dφd−1.
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16:12 Y. L. Chia and P. W. Glynn

Therefore,

∫
IRd

P

⎛
⎝N(0, 1) > x[σ(θ∗)]−1 + (2σ(θ∗))−1

d∑
i=1

z2
i

⎞
⎠dz

=
∫ ∞

0

∫ 2π

0

⎡
⎣d−2∏

k=1

∫ π

0
sind−1−k(φk)dφk

⎤
⎦dφd−1 P

(
N(0, 1) >

2x + r2

2σ(θ∗)

)
rd−1dr

= (surface area of B(1)) ·
∫ ∞

0
P

(
N(0, 1) >

2x + r2

2σ(θ∗)

)
rd−1dr

= dπd/2

(d/2 + 1)

∫ ∞

0
P

(
N(0, 1) >

2x + r2

2σ(θ∗)

)
rd−1dr

= dπd/2

2(d/2 + 1)

∫ ∞

0
P
(

N(0, 1) >
2x + y
2σ(θ∗)

)
yd/2−1dy

= πd/2

(d/2)

∫ ∞

0
P
(

N(0, 1) >
2x + y
2σ(θ∗)

)
yd/2−1dy. (20)

The theorem then follows from (8), (14), (15),(16), (17), and (20).

According to Theorem 3.2, the rate of convergence in the asymptotic regime (7) is
c−2/(d+4) as c → ∞. This makes clear that simple random search converges slowly
when the number of decision variables d is large. On the other hand, when d is large,
the rate is only marginally worse than the rate c−2/d obtained in the setting of deter-
ministic function evaluations (see Theorem 3.1). This suggests that when d is large, the
stochastic nature of the function evaluations only modestly degrades the performance
of simple random search. The principal factor contributing to the slow convergence
rate for d large is the fact that there is no learning effect that is present in the way
the points θ1, θ2, . . . are generated. By learning effect, we mean that one can devise
algorithms that “learn” the shape of the objective function over time, and direct their
sampling effort (in terms of point placement and sample sizes used) to those regions of
the feasible set that appear most promising.

A key difference in the setting of random search with “noise” (as opposed to random
search in the presence of deterministic function evaluations) is that the error α̂(c) −
α(θ∗) can be of either positive or negative sign, whereas the error in the deterministic
case can only be negative; see Theorem 3.1. Furthermore, unlike a normal distribution,
the asymptotic distribution of the error is not symmetric about zero. Note that the limit
distribution takes the form

P(β ≤ x) = exp
(

−w
∫ ∞

0
P
[
N(0, 1) >

2x + y
2σ(θ∗)

]
yd/2−1 dy

)
,

where w = (r(4+d)/4g(θ∗)πd/2)/((d/2)
√| det H(θ∗)|). The standard deviation σ(θ∗) acts

as a scale parameter, so that larger values of σ(θ∗) make the error distribution more
diffuse. But the behavior of the error distribution as a function of the parameter w is
much more complex, as w affects the shape of the distribution in a nontrivial manner.
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Limit Theorems for Simulation-Based Optimization via Random Search 16:13

Note that if one sends w → 0, then P(β ≤ x) → 1 for each x, establishing that β
P→ −∞

as w → 0. On the other hand, if w → ∞, P(β ≤ x) → 0 for each x, establishing that

β
P→ ∞ as w → ∞. In other words, the magnitude of the error is not monotone as a

function w, suggesting there is a value w∗ that minimizes (for example) E|β| for fixed
σ(θ∗). So, a w that is either “too large” or “too small” creates an asymptotic error for
random search that is substantial. For example, if r is too small, then the number
m of sampled points is too small (relative to n) and it is less likely that one of the
sampled points will be close to θ∗, so that the value of the objective function at the
closest sampled point will be significantly smaller than α(θ∗). This creates a strong
negative bias in α̂(c) so that the error α̂(c) − α(θ∗) tends to be quite negative (which,

of course, is in agreement with the fact that β
P→ −∞ as w → 0). On the other hand,

if r is large, then we will have more sampled points close to θ∗, with smaller sample
sizes at each point. Consequently, there will be more points, with objective values very
close to α(θ∗), at which their associated approximately normal “noise” (with larger
standard deviation, due to n being reduced) will be competing to be the maximum.
The maximum of this collection of normal random variables will therefore be made
larger, pushing the probability mass of the error α̂(c) − α(θ∗) towards larger values

(as is consistent with the observation that β
P→ ∞ as w → ∞). Similarly, if g(θ∗) is

small, there will be fewer sampled points close to θ∗, increasing the tendency of the
error to be negative (as in our discussion of r), while if g(θ∗) is (very) big, there will
be many sampled points close to θ∗, with all the associated (approximately normally
distributed) errors competing to be the maximum, thereby increasing the tendency of
the error to be positive (as for r). Finally, if | det H(θ∗)| is large, the objective function is
very peaked near θ∗, so that the sampled points need to be close to θ∗ in order that the
bias (as an estimate of α(θ∗)) be small. Thus, the error α̂(c)−α(θ∗) tends to be negative
(due to large negative bias) when | det H(θ∗)| is large (which is again consistent with

β
P→ −∞ as w → 0). On the other hand, if | det H(θ∗)| is small, the objective function

is “flat” in a neighborhood of θ∗, increasing the magnitude of the error, due to the
presence of more sampled points at which the associated “noise” can compete to be the

maximum (as is suggested by β
P→ ∞ as w → ∞).

We turn next to identifying the convergence rate of the simple random search when
m and n are chosen so that the algorithm is consistent but fails to satisfy (7).

THEOREM 3.3. If Assumption 2 and Assumptions 4 through 8 hold, then

(i) If m ∼ rcq as c → ∞, with 0 < q < d/(d + 4) and 0 < r < ∞, then

c2q/d(α(θ∗) − α̂(c)) ⇒ r−2/dWeibull(a, d/2)

as c → ∞, where a is defined as in Theorem 3.1.
(ii) If m ∼ rcq as c → ∞, with d/(d + 4) < q < 1 and 0 < r < ∞, then

(
c1−q

log c

)1/2

(α̂(c) − α(θ∗)) ⇒ σ(θ∗)

√
2r
(

4 + d
4

)(
q − d

d + 4

)

as c → ∞.
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16:14 Y. L. Chia and P. W. Glynn

PROOF. For part (i), observe that

m2/d| max
1≤i≤m

α(θi) − α̂(c)|

= m2/d| max
1≤i≤m

(α(θi) − α̂(c))|

= m2/dn−1/2| max
1≤i≤m

n1/2(α(θi) − α̂(c))|

≤ m2/dn−1/2 max
1≤i≤m

|α̃n(θi)|

= r2/d+1/2c−(1/2)(1−q(4+d)/d) max
1≤i≤m

|α̃n(θi)|(1 + o(1)),

where α̃(·) is again defined, as in the proof of Theorem 3.2, to be α̃n(θ) = n1/2(αn(θ) −
α(θ)) and the o(1) term absorbs the difference between m and n and their asymptotic
values rcq and r−1c1−q, respectively.

Put p0 = (1/2)
(
1 − q(4 + d)/d

)
. For ε > 0, the union bound and Markov’s inequality

implies

P(c−p0 max
1≤i≤m

|α̃n(θi)| > ε)

≤ mP(|α̃n(θ1)| > εcp0)

≤ C(p)rε−pcq−pp0

∫
�

E|X1(θ) − α(θ)|pg(θ) dθ ; (21)

see (12) for the last inequality. If we use Assumption 2, it follows that (21) converges
to zero as c → ∞ for p sufficiently large, and consequently

m2/d(α̂(c) − max
1≤i≤m

α(θi))
P→ 0

as c → ∞. Theorem 3.1 therefore implies that

m2/d(α(θ∗) − α̂(c))

= m2/d{α(θ∗) − max
1≤i≤m

α(θi)} + m2/d{ max
1≤i≤m

α(θi) − α̂(c)}
⇒ Weibull(a, d/2) + 0 = Weibull(a, d/2)

as c → ∞, proving part (i).
For part (ii), observe that, for x > 0,

P

(
α̂(c) ≤ α(θ∗) + x

√
log c
c1−q

)

= exp

[
m log

{
1 −

∫
IRd

g(θ)P

(
αn(θ) > α(θ∗) + x

√
log c
c1−q

)
dθ

}]
. (22)
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This integral is lower bounded for c sufficiently large, by

∫
B(1)

[
g(θ∗ + n−1/4ATy)

nd/4

× P

(
α̃n(θ∗ + n−1/4ATy) >

1
2

yTDy(1 + o(1)) + x

√
n log c
c1−q

)]
dy

≥ infθ∈� g(θ)

nd/4
·
∫

B(1)

P

(
α̃n(θ∗ + n−1/4ATy) > λd + x

√
log c

r

)
dy

≥ infθ∈� g(θ) · vol(B(1))

nd/4
· inf
‖θ−θ∗‖≤n−1/4

P

(
α̃n(θ) ≥ λd + x

√
log c

r

)

= infθ∈� g(θ) · vol(B(1))

nd/4
inf

‖θ−θ∗‖≤n−1/4
P

(
N(0, 1) ≥ λd + x

√
r−1 log c

σ(θ)

)
(1 + o(1)),

where the o(1) terms are uniform over their respective domains. This final equality
follows from a careful consideration of the argument of p. 548–552 of Feller [1971], in
support of the Corollary stated there on p. 552; such considerations make clear that
the o(1) term can indeed be taken to be uniform, in view of the bounded exponential
moments implied by Assumption 2. Using a well-known asymptotic for the normal tail
probability (see, for example, p. 175 of Feller [1968]) then establishes the following
lower bound on the integral in (22), namely

= inf
θ∈�

g(θ) · n−d/4 · vol(B(1))

× inf
‖θ−θ∗‖≤n−1/4

σ(θ) exp
{
−(λd + x

√
r−1 log c)2/[2σ 2(θ)]

}
√

2π(λd + x
√

r−1 log c)
(1 + o(1)).

When multiplied by m, the lower bound can therefore be represented as

exp

[
log c

(
q − (1 − q)

d
4

− x2

2rσ 2(θ∗)

)
+ o(log c)

]

= exp

[
log c

(
4 + d

4

{
q − d

d + 4

}
− x2

2rσ 2(θ∗)

)
+ o(log c)

]
(23)

by the continuity of σ 2(θ) in B0(n−1/4).
As a consequence, if x <

√
2rσ 2(θ∗)(1 + d/4)(q − d/(d + 4)), this quantity converges

to infinity as c → ∞. This implies that P(α̂(c) ≤ α(θ∗) + x
√

log c/c1−q) → 0 as c → ∞.
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We now need to show that if x >
√

2rσ 2(θ∗)(1 + d/4)(q − d/(d + 4)), then P(α̂(c) ≤
α(θ∗) + x

√
log c/c1−q) → 1 as c → ∞. The integral appearing in (22) can be written as

∫
B(k

√
log c)

[
g(θ∗ + n−1/4ATy)

nd/4

× P

(
α̃n(θ∗ + n−1/4ATy) >

1
2

yTDy(1 + o(1)) + x

√
n log c
c1−q

)]
dy

+
∫

[B(k
√

log c)]c

[
g(θ∗ + n−1/4ATy)

nd/4

× P

(
α̃n(θ∗ + n−1/4ATy) > n1/2{α(θ∗) − α(θ∗ + n−1/4ATy)} + x

√
n log c
c1−q

)]
dy. (24)

For the first integral, we can upper bound it via

(k
√

log c)dvol(B(1)) · n−d/4 sup
‖θ−θ∗‖≤n−1/4

g(θ) · sup
‖θ−θ∗‖≤n−1/4

P

(
α̃n(θ) ≥

√
n log c
c1−q

)
.

Applying the same arguments as leading to (23) establishes that this upper bound,
when multiplied by m, tends to zero for x in the above range.

For the second integral, we note that n1/2{α(θ∗)−α(θ∗ + n−1/4ATy)} ≥ (λ1/2)k2 log c ·
(1 + o(1)) in [B(k

√
log c)]c, so n1/2{α(θ∗) − α(θ∗ + n−1/4ATy)} ≥ (λ1/4)k2 log c for c suffi-

ciently large. So, the second integral can be upper bounded by∫
[B(k

√
log c)]c

g(θ∗ + n−1/4ATy)

nd/4
P
(

α̃n(θ∗ + n−1/4ATy) >
λ1

4
k2 log c

)
dy

≤
∫

IRd

g(θ∗ + n−1/4ATy)

nd/4
· sup

θ∈�

P
(

α̃n(θ) >
λ1

4
k2 log c

)
dy

= sup
θ∈�

P
(

α̃n(θ) >
λ1

4
k2 log c

)

≤ sup
θ∈�

P
(

α̃n(θ) >
λ1

4
k2
√

log c
)

.

We again apply the argument leading to (23), thereby establishing that this upper
bound, when multiplied by m, takes the following form.

exp

[
log c

(
q − λ2

1k4

32 supθ∈� σ 2(θ)

)
+ o(log c)

]
→ 0

if k is chosen sufficiently large. As a consequence, both integrals in (24), when multi-
plied by m, converge to zero for x >

√
2rσ 2(θ∗)(1 + d/4)(q − d/(d + 4)), thereby proving

that P(α̂(c) ≤ α(θ∗) + x
√

log c/c1−q → 1 for such x.

Theorem 3.3 shows that when m and n do not satisfy the optimal trade-off condition
described by (7), then α̂(c) converges to α(θ∗) at a rate slower than c−2/(d+4). In ad-
dition, the result describes the precise limit distributions that appear in this setting.
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Note that both Theorems 3.2 and 3.3 imply that α̂(c) is consistent as an estimator of
α(θ∗), a conclusion that is in agreement with our consistency results of Section 2 (since
it is evident that when m and n are powers of c that log(m)/n necessarily converges
to zero).

4. CONCLUSION

As indicated in the introduction, the main contribution of this article is the develop-
ment of large-sample limit theory for simple (nonadaptive) simulation-based random
search for the optimizer of an objective function that can be expressed as an expecta-
tion. This large-sample theory provides insight into the rates of convergence that arise
as a consequence of the trade-off between exploration (m) and estimation (n), as well
as the associated limit distributions that describe the random error associated with
such search methods. From a practical standpoint, it should be noted that (by far) the
most important such limit distribution is that arising in the context of Theorem 3.2.
In particular, observe that when a simulator sets the values of m and n, the presence
of the parameter r always permits one to fit such a (m, n) combination into the setting
of Theorem 3.2 (by, for example, putting c = mn and r = √

m/nc(4−d)/(4+d). Thus, the
limit distribution of Theorem 3.2 can, in principle, be used to develop large-sample
confidence intervals for the class of simple random search algorithms described in
this article. However, one is then faced with the difficulty of needing to estimate, from
the sample, the ratio of g(θ∗) to

√| det H(θ∗)|. While g(θ∗) can be easily estimated
from the simulated data (via g evaluated at the sample minimizer), | det H(θ∗)| is
much more challenging to estimate. In particular, since our method does not take
advantage of estimated derivatives, computing an approximation to H(θ∗) would be
difficult.
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