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Abstract

Let (Q (k) : k � 0) be an M=M=1 queue with tra¢ c intensity � 2
(0; 1). Consider the quantity

Sn(p) =
1

n

nX
j=1

Q (j)p

for any p > 0. The ergodic theorem yields that Sn (p) ! � (p) :=
E[Q (1)p], whereQ (1) is geometrically distributed with mean �=(1�
�). It is known that one can explicitly characterize I (") > 0 such that

lim
n!1

1

n
logP (Sn(p) < � (p)� ") = �I (") ; " > 0:

In this paper, we show that the approximation of the right tail asymp-
totics requires a di¤erent logarithm scaling, giving

lim
n!1

1

n1=(1+p)
logP (Sn(p) > � (p) + ") = �C (p) "1=(1+p);

where C (p) > 0 is obtained as the solution of a variational problem.
We discuss why this phenomenon � Weibullian right tail asymp-

totics rather than exponential asymptotics � can be expected to occur
in more general queueing systems.
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1 Introduction

The theory of large deviations for random walks is important both in its
own right and as a starting point for establishing large deviations for more
complex models (such as �small noise�di¤usions and �slow Markov random
walks�); see, for example, [6, 9, 14]. Furthermore, because of the close con-
nection between queues and random walks, a good understanding of the large
deviations for random walks is an essential ingredient in building a successful
large deviations theory for queues.
A natural extension to the existing theory of large deviations for random

walks is that of Markov random walks (i.e. sums of increments that are
a function of a Markov chain). As in the conventional independent and
identically distributed (i.i.d.) setting, such large deviations computations
are of both intrinsic interest, and as a key ingredient in the theory of queues
that are fed by exogenous Markov-dependent input sequences (e.g. Markov
modulated arrival streams). Our goal in this paper is to study a qualitatively
new phenomenon that can arise in the context of such Markov random walks,
in particular those with unbounded increments. We shall provide a more
detailed analysis of a phenomenon �rst considered in [7]. As in [7], we focus
our attention on the random walk generated by the number in system of the
M=M=1 queue.
Let Q = (Q (k) : k � 0) be the embedded discrete time Markov chain

corresponding to the number in system of anM=M=1 queue with arrival rate
� and service rate �; we assume that � = �=� 2 (0; 1) so that the stability
of the system is ensured. De�ne

Sn(p) :=
nX
j=1

Q (j)p

for any p > 0.
Note that this class of integrated processes arise as a special case of the

large deviations for Markov random walks of the form

Sn :=
nX
j=1

f (Xj) ;

where f ( � ) is real-valued and unbounded and X = (Xj : j � 0) is a suitably
regular Markov process (e.g. geometrically ergodic). We will now provide a
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heuristic explanation as to why the large deviations theory in this unbounded
setting will often look fundamentally di¤erent both from the large deviations
for conventional i.i.d. random walks and for Markov random walks with
bounded increments. Recall that in the i.i.d. light-tailed setting, the most
likely way in which a large deviation of order n will occur for a random walk
involving n increments is through conspiratorial behavior that persists over
essentially the entire time interval of length n, and its corresponding proba-
bility is roughly exponential in n. In fact, the Gibbs conditioning principle
asserts that the random walk continues to have i.i.d. increments under the
conditioning, with a marginal distribution that is a suitably exponentially
twisted version of the original marginal distribution; see [4], Section 3.3. A
similar picture typically asserts itself in the Markov random walk setting
when f ( � ) is bounded. In particular, when Sn exhibits a large deviation
from its equilibrium mean of order n, the conditional behavior of the process
over essentially the entire interval of length n follows that of a new Markov
process for which the transition function is an exponentially twisted version
of the original underlying transition function of the process, and its corre-
sponding probability is roughly exponential in n. This exponential twist is
determined by solving a suitable eigenvalue problem; see [13] for the details
in the �nite state space case and, for example, [10] for a discussion of general
state spaces. At an intuitive level, the fact that the probability is exponential
in n follows from the observation that because f ( � ) is bounded, the probabil-
ity distribution of roughly n increments (that are essentially independent due
to mixing) must be modi�ed, each increment providing a O(1) contribution
to the probability.
On the other hand, when f ( � ) is unbounded, a large deviation of order

n from the mean can be achieved in o(n) time steps. Because of the mix-
ing that is present in Markov processes, this suggests that the probability
of such a large deviation will be exponential with an exponent that is o(n).
Furthermore, the conditional dynamics of X that achieve the large devia-
tion will not typically involve modifying the dynamics of the process over
the entire time interval [0; n], and will take advantage of the fact that the
�cost� of pushing X into a region having high f�values can be amortized
over the entire time scale over which X then relaxes back to equilibrium,
during which. further contributions to the large deviation will be accumu-
lated. Furthermore, if f ( � ) is unbounded above but bounded below, this
intuition suggests that the large deviations that are smaller than normal will
be qualitatively identical to those in the setting in which f ( � ) is bounded
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(e.g. large deviations probabilities that are exponential in n), while only the
large deviations that are larger than typical will exhibit the qualitatively new
features that can arise in the unbounded setting (which is strikingly di¤erent
from what is manifested in the theory of large deviations for random walk
in the conventional context). Thus, a number of qualitatively new features
manifest themselves in the setting of unbounded f ( � ).
As indicated above, theM=M=1 queue and the associated Markov random

walks S (p) = (Sn(p) : n � 0) form an excellent vehicle for illustrating these
qualitatively new behaviors. Since we have assumed that the M=M=1 queue
is stable we have that Q (n) =) Q (1) as n!1, where Q (1) is geometric
with mean �=(1��), so that � (p) := EQ (1)p <1 for each p > 0. Note �rst
that fp (x) := jxjp is bounded below, so our above discussion suggests that
large deviations for Sn (p) that are order n smaller than n� (p) will follow the
same pattern as in the setting of bounded f ( � ). This has previously been
veri�ed in (see [11], following [10]), in which it was established that for " > 0,

lim
n!1

1

n
logP0 (Sn(p)=n < � (p)� ") = �I (") ; (1)

where I (") > 0 can be explicitly computed. On the other hand, for large
deviations that are larger than n� (p), observe that the geometric stationary
distribution for Q implies that the probability of exceeding nr within a busy
cycle is exponential in a term of order nr, thereby contributing an f�value
to the Markov random walk Sp of order npr. Once Q has achieved a level
of order nr, it takes a time of order nr for the system to relax back to
equilibrium, during which the typical value of fp (Q (�)) continues to be of
order npr, thereby yielding a total contribution to S (p) of order nr+pr. Thus,
in order to produce a large deviation in Sn (p) of order n above n� (p), we
should choose r = 1=(p + 1), leading to an associated large probability that
is exponential in n1=(p+1). Rigorously verifying this intuition is the main
contribution of this paper.

Theorem 1 For each p > 0, there exists C (p) > 0 such that the following
limit holds for any " > 0,

lim
n!1

1

n1=(p+1)
logP0 (Sn(p)=n > � (p) + ") = �C (p) "1=(p+1) : (2)

The function C(p) is characterized in Section 2 � see (11).
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The limit in (2) for the case p = 1 might be conjectured from the re-
sults of [7]. It follows from the main results there that there is a function
K : (0;1)! (0;1] such that for positive �,

lim
n!1

1

n
logP0 (Sn(1)=n > � (1) + n�) = �K(�) : (3)

See also Proposition 11.3.4 of [12]. For theM=M=1 queue, one can show that
K(�) � c

p
� for � su¢ ciently close to zero and some c > 0 (as illustration,

see Figure 7 of [7]). If formally one sets �n = "=n in (3), we would obtain,
for all " > 0,

lim
n!1

1p
n
logP0 (Sn(1)=n > � (1) + ") = �c

p
" (4)

This coincides with the form of (2) in the case p = 1 and c = C (1).
The rigorous veri�cation of (4) was posed as an open problem in the

Workshop on Simulation of Networks organized at the Newton Institute in
the Summer of 2010. The motivation from a simulation perspective relates
to the speed of convergence of steady-state estimation estimators.
Note that a key property of the M=M=1 queue is that it relaxes to equi-

librium slowly. It is this property that allows us to �amortize�the e¤ort of
pushing the process Q to level nr over a time scale of su¢ cient duration so
as to produce the desired large deviation. This amortization strategy would
fail if the process were one that relaxes to equilibrium so rapidly that only
a small contribution to the area under f(X ( � )) ensued. As a consequence,
when f ( � ) is unbounded, it is still possible that the interaction of f ( � ) with
the dynamics of X can be such the conventional large deviations explanation
(i.e. modifying the dynamics of X over an interval of length n, thereby pro-
ducing a large deviation that is exponential in n) holds. For example, this
is the case for random walks with light-tailed i.i.d. increments having �nite
support. A more interesting such example (in the context of the natural
continuous time analogue) is that of a mean-reverting Ornstein-Uhlenbeck
process X with f (x) = x. (However, even in this setting, the conventional
explanation can break down with f (x) = xp with p large enough.)
In computing large deviations for Markov dependent random walks (e.g.

Sn = f (X0) + ::: + f (Xn), where X = (Xk : k � 0) is a Markov chain),
we have a reasonably clear understanding of what this theory looks like for
bounded f ( � ) and geometrically ergodic chains. In particular, the theory

5



in this context looks similar like that in the setting of light-tailed indepen-
dent and identically distributed (i.i.d.) increments. In particular, the large
deviations asymptotics (in logarithmic scale), both lower and upper bounds,
involve normalizing by n (with a common rate function). At an intuitive
level, this makes perfect sense; to create a deviation from typical behavior of
order n, the cheapest way is to modify the dynamics of each increment over
a time scale of order n (since the largest possible contribution to the sum is
O (1) in the bounded setting). The cost of modifying the likelihood of such a
path is then exponential in n. Furthermore, the conditional dynamics (con-
ditioned on the large deviation) involve a time-homogeneous Markov chain
(with a transition kernel that is suitably exponentially twisted).
However, the story looks very di¤erent in the setting of unbounded f ( � ),

and the M=M=1 queue represents perhaps the simplest example in which
these new phenomena present themselves. In this case, the contribution from
a given summand may no longer be O(1); one may (and actually one does, as
we will see) get cheaper paths corresponding to the large deviation by forcing
the chain into a set where the values of f ( � ) are large (i.e. increasing in the
parameter n), so that we can then generate a large deviation of order n by
modifying the dynamics over a time scale that is o(n). As a consequence, one
can potentially obtain a large deviation of order n with a probability that is
exponential of order o(n) (i.e. large deviations asymptotics, in logarithmic
scale, normalized by a function that is o (n)). Furthermore, the conditional
dynamics can now involve non-time homogeneous dynamics (over a time scale
of order o(n)) that are essentially randomly and uniformly initiated at some
time within the interval [0; n]. We shall �esh out the details behind this story
in the context of the M=M=1 queue.
The rest of the paper is devoted to the proof of Theorem 1.

2 Proof of Theorem 1

Our strategy is to relate the limit in (2) to a large deviations problem in-
volving heavy-tailed random variables. For simplicity we concentrate on the
case p = 1. Given Q (0) = 0, we de�ne Tj = inffk > Tj�1 : Q (k) = 0g,
with j = 1; 2; : : : and �j = Tj � Tj�1 for j � 1 and T0 = 0. Then Q ( � ) is
regenerative with respect to the sequence fTj : j � 0g, which in turn induces
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a renewal process de�ned via N (n) = maxfk � 0 : Tk � ng. We write

Sn(p) =

N(n)X
j=1

Tj�1X
k=Tj�1

Q (j)p +
nX

k=TN(n)

Q (j)p :

Now, de�ne

Yj(p) =

Tj�1X
k=Tj�1

Q (j)p =

Z Tj

Tj�1

Q (bsc)p ds; (5)

and note that the Yj (p)�s are i.i.d. Moreover, observe that � (p) = EQ (1)p =
EY1 (p) =E�1 and therefore

P0(Sn (p) > n� (p) + n") � P0(
bn=E�1cX
j=1

(Yj (p)� � (p)) +
nX

k=TN(n)

Q (j)p > n"):

(6)
In our discussion here we use ���non-rigorously, but all the statements are
proved in the sense of logarithmic asymptotics as n!1, which is ultimately
the statement given in Theorem 1.
Now, since n is large, then the distribution of Q (n) is close to that of

Q (1), which we denoted by � ( � ). In turn, since the M=M=1 queue is
reversible, then the current cycle in progress can be interpreted as the area
enclosed starting from steady-state until hitting zero. In other words, we can
write the approximation

P0(Sn (p) > n� (p)) � P�(Y0 (p) +
bn=E�1cX
j=1

(Yj (p)� �) > n�+ n"); (7)

where

Y0 (p) =

T0�1X
j=0

Q (j)p =

Z T0

0

Q (bsc)p ds; and T0 = inffk � 0 : Q (k) = 0g:

The rigorous justi�cation behind the approximation in (7) starting from the
steady-state distribution involves the following result (see [2], we provide
a proof at the end of this section in order to make our exposition self-
contained).
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Lemma 1 For any selection of measurable sets A1; : : : ; An

P0 (Q (k) 2 Ak : 1 � k � n)

=
1

� (0)
P� (Q (0) 2 An; Q (1) 2 An�1; : : : ; Q (n� 1) 2 A1; Q (n) = 0) :

Returning to (7). Intuitively,

Y0 (p) � �(
Q(1)X
j=1

jp) = �(Q (1)p+1):

In turn, Q (1)p+1 has Weibullian-type tails with index 1=(p+1), and there-
fore Y0 (p) is expected to have Weibullian tails with index (or shape pa-
rameter) 1=(p + 1). A similar argument follows for the random variables
Y1 (p) ; Y2 (p) ; :::, which actually have lighter tails than Y0 (p) (because Yj (p)
with j � 1 constitutes an accumulated area starting from the origin to the
�rst time the process returns to the origin, whereas Y0 (p) is the area starting
from steady state). We now can take advantage of the way in which large
deviations occur for the sum of mean-zero heavy-tailed random variables,
which states that the large deviations behavior arises due to the contribution
to a single large jump; this in particular explains the scaling n1=(p+1) that ap-
pears in (2). In order to make the principle of the single large jump rigorous
we take advantage of the following result which is proved in the appendix at
the end of this section.

Proposition 1 Consider a sequence fZ1; Z2; : : : g of mean zero i.i.d. ran-
dom variables and assume that Z0 is independent of the Zj�s for j � 1.
Moreover, suppose that E(Z21) + E (Z

2
0) <1 and that

P (Z0 > t) = exp
�
�ct� + o

�
t�
��

(8)

as t ! 1 for some c 2 (0;1) and � 2 (0; 1). Finally, suppose that there
exists � > 0 such that

P (Zj > t) � �P (Z0 > t) ; (9)

then for any a > 0

logP (Z0 + Z1 + � � �+ Zn > an) � logP (Z0 > an)

as n!1.

8



Although the large deviations theory for heavy-tailed (more precisely,
subexponential random variables) is well developed; see for instance, [15], [3],
[5] and the textbooks of [8] and [1]. The subexponential or semiexponential
property in our current setting is di¢ cult to verify. If we could verify some
of these properties we might be able to obtain more precise results than just
logarithmic asymptotics. Nevertheless, the assumption on the tail of Z0 as
indicated in (8) is enough for the issue that is of main concern for us, namely,
logarithmic asymptotics as indicated by (2). This is why we cannot apply
the existing theory directly and we needed to develop the corresponding
asymptotics in Proposition 1.
Applying then the principle of the largest jump from heavy-tailed analysis

yields

P0(Sn > n�) � P�(
T0�1X
k=0

Q (j) > n")

= P�(
1

n

Z T0

0

Q (bsc) ds > ")

= P�(

Z T0=n1=2

0

Q
��
un1=2

��
n1=2

du > ")

The right hand side is easy to evaluate using Laplace�s principle and standard
large deviations analysis given that now the initial condition can be chosen to
be Q (0) =

�
ny1=(p+1)

�
with probability �

��
ny1=(p+1)

��
= �bny1=(p+1)c(1 � �)

because now the random variable of interest has been expressed as a func-
tional of a properly scaled (by n1=(p+1) in time and space) queue length process
that satis�es a large deviations principle with rate n1=(p+1). In particular,
evaluating the constant C (p) in (2) is equivalent to obtaining logarithmic
asymptotics for the tail of Y0 (p) assuming that Q (0) follows the steady-
state distribution. Now, suppose that Q (0) = y > 0, then the distribution
of (Q (k) : k � T0) coincides with that of (R(k) : k � T ), where R ( � ) is the
random walk

R (k + 1) = R (k) +W (k + 1) ;

where P (W (k) = 1) := r(�) := �=(�+ �) = 1� P (W (k) = �1), R (0) = y
and T = inffk � 0 : R (k) = 0g. Note that E[W (1)] = �(���)=(�+�) < 0.
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Recall that the local large deviations rate function of R ( � ) is given by

I (z) = sup
�
[�z � logE exp (�W (k))]

= sup
�
[�z � log(exp(�)p (�) + exp (��) q (�)]:

Mogulskii�s theorem (see [4]) establishes that the sequence fn�1R(bn � c)g
satis�es a large deviations principle in the space ofD[0;1) with the standard
Skorokhod topology with a rate function equal to

J (x ( � )) =
Z 1

0

I ( _x (s)) ds (10)

where _x (s) denotes the derivative of the function x ( � ) (the rate function
J (x ( � )) evaluated at a function x ( � ) that is not absolutely continuous is
set equal to in�nity). Our characterization of the tail of Y0 (p) given that
Q (0) follows the steady-state distribution takes advantage of the associated
sample path large deviations for the random walk. This is precisely the
content of the next result, which is proved in the appendix.

Proposition 2 Let C (p) be the solution of the variational problem of min-
imizing

y log (1=�) +

Z �

0

I
�
_� (s)

�
ds (11)

subject to � (0) = y, � (s) > 0 for all s 2 (0; �) and � (�) = 0; the min-
imization is performed over y and over functions � ( � ) that are absolutely
continuous and that satisfy the constraints indicated earlier and also thatR �
0
� (s)p ds � 1. Then, we have that

lim
t!1

1

t1=(p+1)
logP� (Y0 (p) > t) = �C (p) :

We now are ready to provide the rigorous details behind the previous
outline. We prove the lower and upper bounds leading to the statement of
Theorem 1 separately.
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2.1 Proof of Theorem 1: The Lower Bound

First de�ne Q (j) = Q (j)� � (p) and put

Sn (p) = Sn (p)� n� (p) . (12)

We have, owing to Lemma 1,

P0 (Sn(p) > n(� (p) + "))

= P0
�
Sn(p) > n"

�
=

1

� (0)
P�
�
Sn(p) > n";Q (n) = 0

�
: (13)

Note that the initial position of the process given in the last equality of the
previous display is not the origin any longer. So, the induced regenerative
process is now delayed. We set T0 = inffk � 0 : Q (k) = 0g (note that
if Q (0) = 0, T0 = 0, we are consistent with our notation introduced for
the non-delayed process given in the Introduction).As before, we put Tj =
inffk > Tj�1 : Q (k) = 0g and

N (n) = maxfk : Tk � ng:

Observe that (13) induces the representation

Sn(p) =

T0�1X
k=0

Q (k) +

N(n)X
j=1

Tj�1X
i=Tj�1

Q (k) :

We let

Z0 =

T0�1X
k=0

Q (k) ; and Zj =

Tj�1X
i=Tj�1

Q (k) ; j = 1; 2; : : : ;

so that the equality in (13) becomes equivalent to

P0 (Sn(p) > n� (p) + n") =
1

� (0)
P�(Z0 +

N(n)X
j=1

Zj > n";Q (n) = 0): (14)

11



Now, let "0 > 0 be arbitrary and note that

P�(Z0 +

N(n)X
j=1

Zj > n";Q (n) = 0)

� P�(Z0 +

N(n)X
j=1

Zj > n"; j
N(n)X
j=1

Zjj � "0n;Q (n) = 0)

� P�(Z0 > n("+ "0); j
N(n)X
j=1

Zjj � n"0; Q (n) = 0)

To see that we actually have

lim
n!1

1

np=(1+p)
logP�

n
Z0 � n";

���N(n)X
j=1

Zj

��� �n"0; Q (n) = 0o
= �C (p) ("+ "0)p=(1+p) ;

(15)

we take advantage of the large deviations analysis behind the proof of Propo-
sition 2. Note that

P� (Z0 > n ("+ "0)) = P� (Y0(p)� T0� (p) > n ("+ "0))
� P� (Y0(p) > n ("+ "0))

and also note that for each "1 > 0 we have that

P�(Y0(p)�T0� (p) > n ("+ "0))
� P� (Y0(p) > n ("+ "0 + "1) ; T0� (p) � n"1)
= P� (Y0(p) > n ("+ "0 + "1))� P� (T0� (p) > n"1) :

It is easy to see that T0 has a �nite moment generating function and therefore

P� (T0� (p) > n"1) = O (exp (�cn"1))

for some c > 0. Since "1 > 0 is arbitrary, by Proposition 2 we conclude that

lim
n!1

logP� (Z0 > n ("+ "0))

logP� (Y0(p) > n ("+ "0))
= 1: (16)
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Now, the large deviations analysis behind Proposition 2, in particular the
associated calculus of variations problem, indicates that conditional on Z0 >
n ("+ "0), T0 = O

�
n1=(p+1)

�
with very high probability. It then follows that

lim
n!1

P�(j
N(n)X
j=1

Zjj � n"0; Q (n) = 0jZ0 > n ("+ "0)) = � (0) ;

which, together with (16), yields (15).

2.2 Proof of Theorem 1: The Upper Bound

Our departing point is equation (14), which combined with (13) implies that

P0
�
Sn(p) > n"

�
� 1

� (0)
P�(Z0 +

N(n)X
j=1

Zj > n"):

In turn, we have that for some c > 0, and each "0 > 0,

P�(Z0 +

N(n)X
j=1

Zj > n") (17)

= P�(Z0 +

N(n)X
j=1

Zj > n"; jN (n)� n=E�1j � n"0) +O
�
e�nc"0

�
Moreover, we have that

P�(Z0 +

N(n)X
j=1

Zj > n"; jN (n)� n=E�1j � n"0)

�
n"0X

k=�n"0

P�(Z0 +

n=E�1+kX
j=1

Zj > (n=E�1) "E�1):

Using Proposition 1 we conclude that for each k � "0n

lim sup
n!1

1

np=(1+p)
logP�(Z0 +

n=E�1+kX
j=1

Zj � (n=E�1) "E�1)

� lim sup
n!1

1

np=(1+p)
logP�(Z0 � n (1=E�1 � "0) "E�1)

� �C (p) ("� "0"E�1)p=(1+p):
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Therefore, we conclude from these observations that

lim sup
n!1

1

n1=(p+1)
logP0

�
Sn(p) > n"

�
� �C (p) ("� "0"E�1)�1=(p+1) :

Since "0 > 0 is arbitrary, we arrive at the result.

2.3 Appendix: Proof of Auxiliary Results

Proof of Lemma 1. Let K (i; j) be the Markov transition matrix of the
process Q; in particular,

K (i; j) =

8<:
�=(�+ �) i > 0; j = i+ 1
�= (�+ �) i > 0; j = i� 1

1 i = 0
;

and K (i; j) = 0 otherwise. It is well known that Q is reversible, so

� (i)K (i; j) = � (j)K (j; i)

and then

� (0)P0 (Q (k) 2 Ak : 1 � k � n)
=

X
q1;q2;:::;qn

� (0)K (0; q1) : : : K (qn�1; qn) I(qk 2 Ak : 1 � k � n)

=
X

q1;q2;:::;qn

K (q1; 0)� (q1) : : : K (qn�1; qn) I(qk 2 Ak : 1 � k � n)

: : :

=
X

q1;q2;:::;qn

� (qn)K (qn; qn�1) : : : K (q2; q1)K (q1; 0) I(qk 2 Ak : 1 � k � n):

If we write ik = qn�k for k = 0; 1; : : : ; n we obtain

� (0)P0 (Q (k) 2 Ak : 1 � k � n)
=

X
i0;i1;:::;in=0

� (i0)K (i0; i1) : : : K (in�1; in) I(in�k 2 Ak : 1 � k � n):

The right hand side is just

P� (Q (0) 2 An; Q (1) 2 An�1; : : : ; Q (n� 1) 2 A1; Q (n) = 0) :
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Dividing by � (0) we complete the proof of the proposition.

Proof of Proposition 1. We let us introduce "0 > 0 to be selected later
and let us write �n = "0= log(n). Note that

P (Z0 + Z1 + � � �+ Zn > an)
= P (Z0 + Z1 + � � �+ Zn > an;[nj=0fZj > an1��ng)
+P (Z0 + Z1 + � � �+ Zn > an;\nj=0fZj � an1��ng) : (18)

Now, we have that for any "1 > 0,

P (Z0 > (a+ "1)n)P (jZ1 + � � �+ Znj � n"1)
= P (Z0 > (a+ "1)n; jZ1 + � � �+ Znj � n"1)
� P (Z0 + Z1 + � � �+ Zn > an;[nj=0fZj > an1��ng)
� P ([nj=0fZj > an1��ng) � (n+ 1)�P (Z0 > an1��n):

Therefore, since EZ1 = 0 we conclude that

lim sup
n!1

1

n�
logP

�
Z0 + Z1 + � � �+ Zn > an;

n[
j=0

�
Zj > an

1��n
	�

� �ca� exp (��"0)
(19)

and the corresponding lower bound,

lim inf
n!1

1

n�
logP

�
Z0 + Z1 + � � �+ Zn > an;[nj=0

�
Zj > an

1��n
	�

� �c (a+ "1)� :
(20)

Later on we will argue that "0; "1 > 0 can be chosen arbitrarily small, but
before we do that �rst let us provide an upper bound for the second term in
the right hand side of (18).
Without loss of generality we can assume that EZ0 = 0, if not, we rede�ne

Z0 � EZ0 and analyze

P (Z0 � EZ0 + Z1 + � � �+ Zn > an� EZ0;\nj=0fZj � an1��n � EZ0g) ;

the whole analysis to be presented would be identical, just keeping track of
EZ0 which asymptotically does not play any role; note that given the form

15



of (8), assumption (23) would still hold after possibly rede�ning the constant
K.
Now, de�ne �n = �nn such that n < 1� �n and

P (Z0 + Z1 + � � �+ Zn > an;\nj=0fZj � an1��ng)
= P ((Z0 + Z1 + � � �+ Zn)=n1��n > an�n ;\nj=0fZj � an1��ng)
� (E exp

�
�nZ0=n

1��n
�
I(Z0 � an1��n))

�
�
E exp

�
�nZ1=n

1��n
�
I(Z1 � an1��n)

�n
exp

�
��nan�n

�
:

Our strategy is to show that if � and n are selected appropriately then the
contribution of the term

nY
j=0

(E exp
�
�nZj=n

1��n
�
I(Zj � an1��n)) = O (1) (21)

and that we can �nd a constant �0 > 0 such that

exp
�
��nan�n

�
� �0 exp

�
�a�cn�(1� "3)

�
for an arbitrary "3 > 0. To execute this strategy we �rst provide a Taylor
development for the expectations in the product (21). Note that

E exp
�
�nZj=n

1��n
�
I(Zj � an1��n)

= P (Zj � an1��n) +
�n
n1��n

EZjI(Zj � an1��n)

+
�2n

2n2(1��n)
Efexp

�
�nZj=n

1��n
�
Z2j I(Zj � an1��n)g :

Note that

Efexp
�
�nZj=n

1��n
�
Z2j I(Zj � an1��n)g

� Efexp
�
�nZj=n

1��n
�
Z2j I(0 � Zj � an1��n)g

+ EfZ2j I(0 � Zj < 0)g :

16



Now we have that

E exp
�
�nZj=n

1��n
�
Z2j I(0 � Zj � an1��n)

= E

Z 1

�Zj

�n
n1��n

exp
�
��nu=n1��n

�
Z2j I(0 � Zj � an1��n)du

= E

Z 1

�1

�n
n1��n

exp
�
��nu=n1��n

�
Z2j I(0 � Zj � an1��n ;�u � Zj)du

=

Z 1

�1

�n
n1��n

exp
�
��nu=n1��n

�
EZ2j I(�u _ 0 � Zj � an1��n)du

= EZ2j I(0 � Zj � an1��n)

+

Z 0

�an1��n

�n
n1��n

exp
�
��nu=n1��n

�
EZ2j I(�u � Zj � an1��n)du :

Observe thatZ 0

�an1��n

�n
n1��n

exp
�
��nu=n1��n

�
EZ2j I(�u � Zj � an1��n)du

=

Z an1��n

0

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(t � Zj � an1��n)dt

=

Z an1��n

0

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t)dt

� EZ2j I(Zj > an1��n)(exp (�na)� 1)

�
Z an1��n

0

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t)dt :

Now, let us writeZ an1��n

0

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t)dt

=

Z an1��n�n

0

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t)dt

+

Z an1��n

an1��n�n

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t)dt :

17



We analyze the previous two integrals, �rst we note thatZ an1��n�n

0

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t) dt

� �n
n1��n

exp (a�)

Z 1

0

EZ2j I(Zj > t) dt:

For the second integral, we use assumption (9), which implies that for any
"2 > 0 there exists K ("2) > 0 such that for t � 0

EZ2j I(Zj > t) � K ("2) exp
�
�c(1� "2)t�

�
:

Therefore, Z an1��n

an1��n�n

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t)dt

� K ("2)
Z an1��n

an1��n�n

�n
n1��n

exp (gn (t)) dt ;

where

gn (t) =
�nt

n1��n
� c(1� "2)t�:

Note that
max

an1��n�n�t�an1��n
gn (t) = gn(an

1��n);

thusZ an1��n

an1��n�n

�n
n1��n

exp (gn (t)) dt � an1��n exp
�
a�n � c(1� "2)a�n(1��n)�

�
= an1��n exp

�
a�nn � c(1� "2)a�n(1��n)�

�
:

Now, let us pick D > 0 and note that

n = (1� �n)� �D�n < 1� �n;

so we have that

an1��n exp
�
a�nn � c(1� "2)a�n(1��n)�

�
� an1��n exp

�
�n(1��n)�[a�c(1� "2)� a�exp(�D"0)]

�
:

18



We can clearly select D := D ("0;�) such that

exp(�D"0) = a��1c(1� 2"2)=�) (22)

and obtain Z an1��n

an1��n�n

�n
n1��n

exp
�
�nt=n

1��n
�
EZ2j I(Zj > t)dt

� K ("2) an1��n exp
�
�n(1��n)�["2a�c]

�
:

Overall, then we conclude (rede�ning K ("2))

E exp
�
�nZj=n

1��n
�
I(Zj � an1��n)

= 1 +
K ("2)

n2(1��n)
+O

�
exp

�
�ec("2)n���

for some ec("2) > 0 independent of the selection of the "j�s, as long as D (�)
is selected as indicated above. We then there exists eK("2) such that
(E exp

�
�nZ0=n

1��n
�
I(Z0 � an1��n))

�
�
E exp

�
�nZ1=n

1��n
�
I(Z1 � an1��n)

�n
exp

�
��nan�n

�
:

� exp(K ("2)n2�n�1 + eK ("2)) exp ���an�n+n�
� exp(K ("2)n2�n�1 + eK ("2)) exp ���an�+�n(1���D)�
= exp(K ("2)n

2�n�1 + eK ("2)) exp ���an� exp("0 (1� �)) exp(�D"0)�
= exp(K ("2)n

2�n�1 + eK ("2)) exp(�a�n�c exp("0(1� �))(1� 2"2));
where in the last equality we used (22). We then obtain that

P (Z0 + Z1 + � � �+ Zn > an;\nj=0fZj � an1��ng)
� exp(K ("2)n2�n�1 + eK ("2)) exp(�a�n�c exp("0(1� �))(1� 2"2)): (23)
So, in summary, we have from (20)

lim inf
n!1

1

n�
logP (Z0 + Z1 + � � �+ Zn > an)

� lim inf
n!1

1

n�
logP (Z0 + Z1 + � � �+ Zn > an;[nj=0fZj > an1��ng)

� �c (a+ "1)� :

19



On the other hand, combining (19) and (23) we obtain

lim inf
n!1

1

n�
logP (Z0 + Z1 + � � �+ Zn > an)

� max(�ca� exp (��"0) ;�ca�n� exp("0(1� �))(1� 2"2)):
Since "0; "1 and "3 are arbitrary we conclude the result.

Proof of Proposition 2. Note that for any r 2 (0; 1)

P� (Y0 (p) > t) = P�(
1

t

Z T0

0

Q (bsc)p ds > 1)

= P�(

Z T0=tr

0

(Q
��
ut�
��
=t(1��)=p)pdu > 1):

Pick r = 1=(p + 1) so that r = (1 � r)=p. Let x = tr and recall that
� (k) = P (Q (1) = k) = �k(1� �), so we can write

P� (Y0 (p) > t) = P�(

Z T0=x

0

(Q (buxc) =x)pdu > 1)

=
1X
k=0

� (k)Pk(

Z T0=x

0

(Q (buxc) =x)pdu > 1)

= (1� �)
Z 1

0

�bscPbsc(

Z T0=x

0

(Q (buxc) =x)pdu > 1)ds

= (1� �)
Z 1

0

x�bxycPbxyc(

Z T0=x

0

(Q (buxc) =x)pdu > 1)dy:

Moreover, as mentioned earlier before we stated our current proposition,Z 1

0

x�bxycPbxyc(

Z T0=x

0

(Q (buxc) =x)pdu > 1)dy

=

Z 1

0

x�bxycPbxyc(

Z T =x

0

(R(buxc)=x)pdu > 1)dy :

By the (functional) Law of Large Numbers, we have that conditional on
R (0) = bxyc,Z T =x

0

(R(buxc)=x)pdu

�!
Z y=jEW (1)j

0

(�u jEW (1)j+ y)pdu =
Z y

0

spds =
yp+1

p+ 1
:
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So, if y > (p+ 1)1=(p+1) + " for any " > 0, we have that

lim
x!1

Pbxyc(

Z T =x

0

(R(buxc)=x)pdu > 1) = 1:

This implies that

lim
x!1

1

x
log

Z 1

(p+1)1=(p+1)
x�bxycPbxyc(

Z T =x

0

(R(buxc)=x)pdu > 1)dy

= �(p+ 1)1=(p+1) log (1=�) :

On the other hand, if y � (p + 1)1=(p+1) � " we can apply large deviations
theory. To do this let bRx ( � ) be the continuous piecewise linear approximation
to R(b �xc)=x such that x bRx (k=x) = R(k) for each integer k � 0. The
process bRx ( � ) is an exponentially good approximation to R(b �xc)=x, (see
[4]). So the rate function (10) given by Mogulskii�s theorem applies to bRx ( � ).
Now, given a continuous function � (�) let T� (�) = inffs > 0 : � (s) < 0g
and note that the mapping F ( � ) de�ned as

F (�) =

Z T�(�)

0

� (s)p ds

is a continuous mapping under the uniform topology on compact sets. So,
by the contraction principle it follows easily that

1

x
log

Z (p+1)1=(p+1)

0

x�bxycPbxyc(F ( bRx) > 1)dy ! �C (p) ; (24)

where C (p) is the solution of the variational problem stated in (11). Clearly,
T�( bRx) � T =x so we have that

Pbxyc(

Z T =x

0

(R(buxc)=x)pdu > 1) � Pbxyc(F ( bRx) > 1):
This implies that

limx!1
1

x
log

Z (p+1)1=(p+1)

0

x�bxycPbxyc(

Z T =x

0

(R(buxc)=x)pdu > 1)dy � �C (p) :

The lower bound is obtained simply by tracking a continuous path that is
arbitrarily close the solution of the calculus of variations problem.
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