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Abstract

This paper is concerned with computing large deviations asymptotics for the loss process in a
stylized queueing model that is fed by a Brownian input process. In addition, the dynamics of the
queue, conditional on such a large deviation in the loss, is calculated. Finally, the paper computes
the quasi-stationary distribution of the system and the corresponding dynamics, conditional on
no loss occurring.

1 Introduction

There is a large literature on the dynamics of infinite buffer queues conditioned on either large
customer delays or a large number-in-system; see, for example, [1,2,6,11]. This paper, on the other
hand, makes a contribution to the rare-event literature on finite buffer queues, conditioned on the
amount of loss. Our vehicle for studying this problem is two-sided reflected Brownian motion. It is
known that this process can be viewed as a heavy-traffic approximation to a finite-buffer system;
see, for example, [4]. In this heavy traffic setting, the loss process is then approximated by the local
time at the upper boundary b associated with a full buffer. In addition to the intrinsic interest in
this specific stylized queueing-type model, we expect the qualitative behavior to be representative
of the heavy-traffic rare-event behavior of more general single buffer systems.

To make our contribution more precise, let X = (X(¢) : ¢ > 0) be the Markov process defined
via the stochastic differential equation (SDE)

dX(t) = pdt + odB(t) + dL(t) — dU(t),

where B = (B(t) : t > 0) is a standard (one-dimensional) Brownian motion and L,U are the
minimal continuous non-decreasing processes satisfying L(0) = U(0) = 0 for which X (¢) € [0, b] for
t >0 and

/ [(X(t) > 0)dL(t) = 0
0:)
and
/ [(X(t) < b)dU(t) = 0.
0:50)

The processes L and U are then called the local time processes at the boundaries 0 and b, re-
spectively; our interest is in the process U. The random variable (rv) U(t) is then the Brownian
analog to the cumulative amount of loss over [0,¢] and it can be viewed as an approximation to the
cumulative loss in a single-server finite buffer queue in heavy traffic.
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In Section 2, we compute the typical behavior of U, recovering results due to [3,17]. Our
martingale approach leads to a single differential equation (plus an unknown constant) that is
the analog to the Poisson equation that arises in the analysis of additive functionals of the form
fg f(X(s))ds. In contrast, the previous calculations relied on regenerative ideas [17] and the Kella-
Whitt martingale [3].

Section 3 turns to the analysis of the rare-event behavior of X, conditioned on U(t) > ~t (where
v > r and r is the mean rate at which U increases) and U(t) < ~t (for v < r), when ¢ is large.
In other words, we consider the conditional behavior in both the case where the loss is unusually
large (U(t) > ~t, where v > r) or unusually small (U(t) < ¢, where 7 < r). Section 4 develops the
dynamics of X in the extreme setting where there is no loss at all. In particular, we compute the
quasi-stationary dynamics of X associated with conditioning on U(t) = 0 (so that 7, > t, where 7,
is the first hitting time of b by X) for ¢ large. The calculations of Section 3 and 4 rely on our ability
to explicitly compute the solutions to certain eigenvalue problems, and to apply Girsanov’s formula
as a mechanism for determining the modified drift under the conditioning. Section 5 collects the
proofs that involve non-trivial calculations related to explicit computation of the asymptotics and
dynamics considered in this paper.

2 The Typical Behavior of U

The typical behavior of U is captured through a central limit theorem (CLT) of the form
2 (U () —rt) = nN(0,1)

as t — oo, for appropriately chosen constants r and n? (where = denotes weak convergence and
N(0,1) is a normal random variable (rv) with mean 0 and unit variance). To compute r and n?,
we will apply the martingale CLT. To write U(t) — rt in terms of a martingale, note that because
L and U have no jumps, we can apply It0’s formula to establish that if h is twice differentiable on
[0, 0], then

dh(X(t)) = (Lh)(X (¢))dt + h'(0)dL(t) — K (b)dU (t) + W (X (t))odB(t), (2.1)
where 1 2 g2

Here, we used the fact that because L and U increase only when X takes on the values 0 and b
respectively, it follows that h/(X (¢))dL(t) = h'(0)dL(t) and A/ (X (¢))dU(t) = K/ (b)dU (t).

If we choose h so that (Lh)(z) = r on [0,b] subject to h'(0) = 0 and h’(b) = 1, then

t
U(t) —rt+ h(X(t)) — h(X(0)) = J/ h'(X(s))dB(s),
0
so that M (t) = U(t) —rt+h(X(t)) —h(X(0)) is a zero-mean square integrable martingale (adapted
to (F; : t > 0), where F; = (X (u) : 0 < u < t)). This differential equation and its associated
boundary conditions determine h only up to an additive constant. We can therefore make h unique
by requiring h(0) = 0. We are therefore led to the differential equation

(Lh)(z) =7, 0<z<b
s.t. h(0)=0

R'(0) =0

() =1

(2.2)



One now needs to solve (2.2) for h and r; (2.2) is the Poisson’s equation for the local time U
that is the analog to the Poisson’s equation for additive functionals of the form fg f(X(s))ds that
has appeared previously in the literature; see, for example, [9]. In any case, the solution (h,r) to
(2.2) is

1

— fu#0
_ — b’ 1 l’L
r— # e’ (2.3)
and
r+pe P —=1) .
1£em X if p#0
h(z) = 22
_ 2p

where p = 25.

To compute 1?, we exploit the martingale CLT; see p.338-340 of [8]. Note that M(-) is a
continuous path martingale for which
1 1 t b
Z[M](t) = ;/ o?h (X (s))?ds — 02/ W (z)?m(dz) & n?

0 0

a.s. as t — oo, where 7 is the stationary distribution of X. The distribution 7 is given by

ﬂdx if p=£0
a(dz) =¢ et —1 (2.4)
b~ tda, if =0

for & > 0; see p.90 of [12]. Upon noting that t_%(h(X(t)) — h(X(0))) — 0 as. ast — 0, the
martingale CLT yields the proposition below.

Proposition 1 The loss process U = (U(t) : t > 0) satisfies the CLT
3 (U(t) — rt) = nN(0, 1)
as t — oo, where r is given in (2.3) and

o2e?Pb (epb — 2pb — e*pb)

2 (erb —1)°
g
3 )

s fp#0

if u=0.

D D
It follows that for ¢ large, the rv U(t) can be approximated as U(t) ~ rt + nt%./\/((), 1), where ~
means “has approximately the same distribution as” (and carries no rigorous meaning per se).

As noted earlier, the above martingale argument recovers the CLT derived by [17] using more
complicated regenerative methods. In the next section, we study the “rare-event” large deviations
behavior of the loss process U.



3 Conditional Limits Based on Unusually Large and Small Amounts
of Loss

Not surprisingly, the conditional limit behavior of X, given U(t) > ~t, is linked to the compu-
tation of the large deviations probability for the event {U(t) > ~t} for ¢t large. The Gértner-Ellis
theorem (see, for example, [5]) provides one mechanism for computing such a large deviations
probability. In particular, the computation of

lim %logEexp(GU(t)) (3.1)

t—o0
plays a key role in the calculation. To this end, we attempt to construct a martingale of the form
M(t) = exp(OU (t) — ¥t + h(X(t))). (3.2)
Of course, 1 and h(-) clearly depend on the choice of §, but we choose (temporarily) to suppress

the dependence on € in order to simplify our notation.

Applications of 1t6’s formula and (2.1) establish that
dM(t) = M(@)[0dU(t) —pdt + dh(X(t))] + MT(t)[GdU(t) — opdt + dh(X (t))]?
= M()[0dU(t) — dt + K’ (0)dL(t) — b'(b)dU (t) + (Lh)(X (t))dt
M(t)
2

+R (X (t))odB(t)] + W (X (t))*0?dt

= M@)[(Lh)(X(t) -+ %Qh'(X(t))Q]dt + M(t)W' (0)dL(t)
FM(£)(6 — W (b))dU () + M ()W (X (£))odB(t). (3.3)

In order that M be a martingale, we should therefore choose h and v so that

0_2
(Lh)(@) + 5 (2)* = ¢, (3.4)

subject to h'(0) = 0 and h/(b) = 6. Since (3.4) determines h only up to an additive constant, we
may add on the boundary condition h(0) = 0 in order to uniquely specify h. As an alternative to
solving the non-linear differential equation (3.4), we may seek to instead compute v(x) = exp(h(x)).
With this change of variables, we find that v is a positive solution of the linear differential equation

(Lo)(z) = Yo(z) (3.5)

for 0 < z < b, subject to v'(0) = 0, v'(b) — 6v(b) = 0 and v(0) = 1. In other words, v(-) = v(6,-)
is the solution of an eigenvalue problem, and 1) = ¥(0) is the corresponding eigenvalue associated
with parameter 6.

Assuming that we can find a solution to the eigenvalue problem (3.5), note that the associated

h satisfies

dr(X(t)) = (Lh)(X(t)dt + K (0)dL(t) — K (b)AU(t) + K (X (t))odB(t)
= (- U;h’(X(t))z)dt —0dU (t) + B (X (t))odB(2),
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where we used (3.4) for the second equality. Hence,

h(X (1)) — h(X(0)) = vt — U (#) +/0 B (X (s))o dB(s) — %/0 B (X (5))202 ds

so that M(t) can then be written as
t 1 t
M) =exp ([ WX aBes) - 5 [ WCx()Potas).
0 0

It is then a standard fact that (M (¢) : ¢ > 0) is a local martingale adapted to (F; : ¢t > 0).
Furthermore, because the solution h to (3.4) necessarily has a continuous first derivative (since h”
is assumed to exist), which is therefore bounded on [0,b], it is evident that Novikov’s condition is
satisfied, so that (M (t) : ¢ > 0) is a (true) martingale. In view of the boundedness of h over [0, b],

1
m logEexp(8U(t)) — ¢
as t — oo. The eigenvalue ¢ = 1)(0) is therefore precisely the desired limit (3.1).

Given the clear importance of ¢ = ¥(f) and v(-) = v(0,-), we now present the solution to
(3.5). In preparation for starting our result, we define the following regions of the parameter space
involving 0, u, and b:

{(0,,b) : 6 > 0}

{(6,11,0) : 0 < 0, p(u + 60?) < 0}

={(0,11,b) : 0 < 0, u(p + 05°) > 0,bu(p + 00?) > —o*}
{0, 1,0) : 0 < 0, (1 + 05%) > 0,bu(p + 052) < —05}
{(0..5):0=0)
{0, 11,b) : 0 < 0, (4 002) > 0,bu(p + 05%) = -6}

Theorem 1 The solutions 1 = (0) and v(-) =v(0,-) to (3.5) are:

a.) For (0,u,b) € Z;(i = 1,3), ¥(0) = BOP -y 1

202
1 b
v(0,2) = ———¢e 2"

0= 35)

where B(0) is the unique root in .7 of the equation
L (BB tutbo?) 2
5 log 2y ) = 2
B B+u)(B-—p—002)) o
with S1 = (|u| V |+ 00%|,00) and S5 = (0, |p| A | + 002)).

b.) For (0,p,b) € Zi(i =2,4), ¥(0) = _EOPHE g and

202
v(0,z) =e o2 [cos( 3 > + £(0) sin | = ;
where £(0) is the unique root in ( ,%2 ) of the equation

f = arccos &+ plp + 007) (3.7)
o’ V(€ + pu(p+002))? + £26%07



c.) For (0,pu,b) € %1, v(0) =0 and v(0,z) = 1.

d.) For (0,1,b) € %, (0) = _% and

v(0,x) = e 02" (ﬁx + 1) .

o2

The proof of Theorem 1 can be found in Section 5. The Gartner-Ellis theorem then implies
the following result (in which we adopt the standard notation that P,(-) £ P(:|X(0) = z) and
E.(-) £ E(1X(0) = 2))..

Theorem 2 For -~y > r,
1
lim 7 log P, (U(t) > ~t) = —1(7)

t—o00

whereas for 0 <y <r,
o1
Jim ~log Po(U(t) <at) = —I(7),
where
I(y) = 0y — ¥(0,)
and ¥'(0) = .

Note that U is regenerative with respect to a cycle structure in which X = 0 at the regeneration
times but hits level b at some time within each cycle. More precisely, U is regenerative with respect
to (7, : n > 0), where 79 = 0 and

o =inf{t > 7,1 : X(t) =0, sup X(s)=0b}

Tn—1s<t

for n > 1. It is a well known fact that if X(0) = 0, then U(7y) is exponentially distributed with

mean 1_627;2% for p # 0 and b for p = 0; see, for example, [17]. A curious feature of Theorems 1

and 2 is that E; exp(0U(t)) < oo for ¢t > 0, while the moment generating function Egexp(8U (7))

of the loss over a typical cycle diverges for § > —2£ - if 1 # 0 and for § > b~ if 4 = 0. Evidently,

1—e—20b
the randomization of the time horizon associated with 7 induces heavier tails in the loss process.

To compute the conditional dynamics of X given {U(t) > ~vt}, we define P3(-) so that for each
t>0,

t 2 t
PY(A) =E, {I(A) exp (a/ B (6, X (s))dB(s) — %/ h’(@W,X(s))2d3>}
0 0
for A € F;. By Girsanov’s formula,

¢
B(t) 2 B(t) - a/ W (6, X (s)) ds
0
is a standard Brownian motion under P3, so that X satisfies the SDE
AdX (t) = (u+ o1 (85, X (t)))dt + odB(t) + dL(t) — dU(¢),

subject to X (0) = x, under P;. In other words, the law of X under P} is identical to that of the
process X, = (X, (t) : t > 0) satisfying the SDE

dX,(t) = (p+ o*HW (0, X, (t)))dt + od B(t) + dL.(t) — dU,(¢), (3.8)
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where L, () and U,(-) are defined analogously for X, as in Section 1. We will show that when ¢
is large, X, when conditioned on {U(t) > ~t}, follows the law of X.; a similar result holds when
conditioning on {U(t) < 4t} for v < r.

We start by noting that for each v > 0, X, is a positive recurrent Markov process. In particular,
note that if 7q is the first hitting time of the origin, the stochastic monotonicity of X, implies that

P;(TO S A) Z Pz(’]’o S A)
— By {I(r0 < A) exp (6,U(A) — (6,)A + h(6;, X (A)) — h(6,,b))}

> Py(ro < A)exp (—@Z)(HV)A + inf h(6,,2) = A, b))
> 0

so info<,<p P2(70 < A) > 0. Hence, for each v > 0, X, is uniformly recurrent and hence has a
unique stationary distribution 7 (-) to which X, converges exponentially fast (uniformly in x); see,
for example, [15].

A careful justification for the conditional dynamics described above observes that if f(X,(u) :
0 <u < s) is a bounded Fs-measurable rv, then

E,[f(X(w) : 0 < u < 8)|U(t) > ]

:Ezf(Xw(u) 10 <wu < s)exp[—0,(Uy(t) —t) + h(0y, X (1)) — (0, 2)[L(U;(t) > ~t) (3.9)
E, exp[—0, (U, (t) — vt) + h(0, X (t)) — h(0, )| I(U,(t) > ~t) '

Note that the denominator of (3.9) takes the same form as the numerator, with f = 1. The
numerator of (3.9) can be expressed as

/ e VE,F(X,(u) 1 0 <u < 8)I(0 < Uy(t) — 7t < y)exp(h(8y, X, (1) — h(8,,x)).  (3.10)
0
We claim that the integral (3.10) is asymptotic to

b
! E;f(Xy(u):0<u < 8)/ eh(ew’y)ﬂ'y(dy) . e~ h0y:) (3.11)

0.,/2m0" (0t 0

The proof of this claim follows an argument similar to that used by [13,14], and hence is omitted.
Note that the key to proving (3.10) is a suitable local CLT for U (t) — ~t. Such a local CLT takes
advantage of the fact that X, is a positive recurrent regenerative process (with regeneration times
given, for example, by the times at which X, visits 0 having visited b at some intermediate time).
Furthermore, if 7 is the associated regeneration time, U,(7) — y7 has a density, since it is the
convolution of two independent rv’s, one of which is —v times the first passage time from 0 to b of
X, (which has a density, since the first passage time of X from 0 to b is known to have a density).
As a consequence, U, (7) — y7 has the requisite non-lattice property needed for a local CLT.

By applying (3.10) and (3.11) first with with f = g and second with f = 1, we arrive at the
conclusion that

E.[g(X(u) : 0 <u <t)|U(t) > yt] ~ Ezg(Xy(u) : 0 <u <t)

as t — oco. We summarize our discussion with Theorem 3.
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H=-1,0=1,b=1y=0.1

1 L L L L -1.9
0

Figure 1: Drift function of X, when p1 = —1, 0 = 1, and v = 2 (Left) or v = 0.1 (Right)

p=1l,0=1,b=1y=2 p=1,0=1,b=1,y=0.1

24

221

Figure 2: Drift function of X, when =1, 0 =1 and v = 2 (Left) or v = 0.1 (Right).
Theorem 3 a.) For~y >r,

b
P{L‘(U(t) > ’Yt) ~ eh(G’Y?y)W,y(dy) . e—h(@»y,a:)

1
PV G0 /0

as t — oo, whereas for v <r,

b
P, (U(t) <At) ~ 'y)t)/ MO (dy) - e~hOr2)

1
0 Jamgria PO |

as t — oo.
b.) Conditional on {U(t) > vt} with v > r (or {U(t) < vt} with vy <r),
(X(u) :u>0)= (Xy(u):u>0)

in C[0,00) as t — oo, where X, satisfies the SDE (3.8).



4 The Quasi-stationary Distribution for Reflected Brownian Mo-
tion

In this section, we focus on the extreme case in which the system has experienced no loss over
the interval [0,¢]. Of course, the strong Markov property implies that if 7, < ¢, then U(t) > 0 a.s.,
so conditioning on no loss is equivalent to requiring that 7, > ¢. The problem of computing the
conditional behavior of X, conditioned on 7, > t for ¢ large, is exactly the problem of calculating
the associated quasi-stationary distribution for X. This quasi-stationary distribution is identical
to that associated with a one-sided reflected Brownian motion exhibiting reflection only at the
origin, conditioned on not exceeding level b over [0,¢]. From a queueing standpoint, we can view
this conditioning as one involving an infinite buffer Brownian queue in which the buffer context
process has not yet exceeded b by time t. Thus, this quasi-stationary distribution has two queueing
interpretations, one in terms of a finite buffer queue and the other in terms of an infinite buffer
queue.

To calculate the quasi-stationary behavior, we seek a positive martingale that lives on [0,b),
thereby inducing a change-of-measure for X that does not visit b; see, for example, [10]. In partic-
ular, we consider a martingale of the form

where v(+) is positive on [0,b) and v(b) = 0. Using It6’s formula as in Section 3, we find that the
pair (v, A) should satisfy the eigenvalue problem,

Lv = —)v, (4.1)

subject to v/(0) = 0 and v(b) = 0. Again, v is only determined up to a multiplicative constant, so
we further require that v(0) = 1. The spectrum associated with the above eigenvalue problem is
continuous (i.e. the set of \’s satisfying (4.1) is a continuum). One way to identify the appropriate
A is on the basis of the fact that we are seeking an associated positive eigenfunction v. However,
determining the eigenfunction/eigenvalue pair subject to such a positivity constraint is challenging.
We therefore proceed via an alternative (somewhat heuristic) route that we later rigorously verify
in Theorem 4.

Note that if (4.1) has a solution v that is positive on [0,b), (M(?) : t > 0) is a (true) martingale
adapted to (F; : ¢ > 0). As in Section 3, we can define the probability P, via

Po(A) = B I(A)M(t)
for A € F;. Applying the optional sampling theorem, we find that

f)

Py(mp >t)=E I(mp > t)M
=E,I(1, >t)M

for all ¢ > 0. Here the second equality follows from the fact that v(X (7)) = v(b) = 0 and the last
equality holds by the optional sampling theorem. Hence, 7, = 0o P-a.s. (as expected). So,

Po(m > t) = E,M(t) ! = e_mEzv(X(O))

(X)) (4.2)
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where ]:]x() is the expectation operator associated with P,. Assume, temporarily, that X has a
stationary distribution 7 under P, for which

AZO) (@) / o (y) 7(dy) (4.3)

as t — oo. In view of (4.2) and (4.3), we can therefore characterize A via
A =sup{f : E,e’™ < oo}. (4.4)

So, the correct choice of A (chosen from the spectrum of the eigenvalue problem (4.1)) should be
computable from u*(x) = Egexp(67,). The function v* = (u*(z) : 0 < x < b) must clearly be
positive and decreasing on [0, b] for positive §. Note that for any solution u to

Lu=—0u on [0,b], (4.5)
subject to u(b) = 1 and «/(0) = 0, the process
ATy (X (¢ A Ty))
is a martingale adapted to (.%; : t > 0). If, in addition, u is positive, then
EIGGTI’I(T[) <t) <u(x),

so that the Monotone Convergence Theorem implies that co > u(x) > E,ef™. So, A > )\ =
sup{f > 0 : (4.5) has a positive decreasing solution u satisfying u'(0) = 0
and u(b) = 1}. Let

2 =A{(,b) : p = 0}

Dy = {(u,b) : u < 0,bp + 0 > 0}

:{(u,b) ©<0,bp+a? <0}
= {(1,0) : p < 0,bp + 0% = 0}

Proposition 2 Suppose 8 > 0. The differential equation (4.5), subject to u'(0) = 0 and u(b) = 1,
has a positive decreasing solution if and only if 8 < \g, where

a.) For (u,b) € 2;(i =1,2), Ao = HE  here & is the unique root in (0, L;Q) of the equation

202

b§ 7

ﬁ -+ arccos (W) =7

b.) For (u,b) € I3, Ao = w Qﬁ’%, where By is the unique root in (0,—u) of the equation

llo <_M+6>:2—b
8o \=u=p) o

2

c.) For (u,b) € D4, \o = 4=

10



The above discussion suggests that we can identify the eigenvalue A for (4.1) corresponding to
a positive eigenfunction v as A = Ag. Theorem 4 proves that there does indeed exist a positive
eigenfunction for (4.1) corresponding to Ag, so that A = Ay (rigorously).

Theorem 4 a.) For (u,b) € 2,(i = 1,2), the solution v to (4.1) with A = Ao is

v(z) = e 527 [cos <%x) + S—’lisin (%x)] :

b.) For (u,b) € I3, the solution v to (4.1) with A = Xg is

1w, _Bx JE
frd o2 — o2 o2
v(x) 55.° [(ﬁ* ple o + (By + pe } :
c.) For (u,b) € 9y, the solution v to (4.1) with A = Ao is

v(z) = e 2" (%x + 1) :

In each case, the solution v is positive on [0, b].

_ Following the same argument as in Section 3, it can be shown that if X has the law of X under
P, X satisfies the SDE

. B V(X (1))
dX(t) = <N~+ U(X(t)) )
£ (X (t))dt + odB(t) + dL(1),

a2> dt + odB(t) + dL(t), (4.6)

subject to X (0) = z, where I~/() is the local time process at the origin associated with X. A related
calculation in which the spectral representation of the transition density for reflected Brownian
motion with one reflecting and one absorbing barrier is derived, using a purely analytical separation-
of-variables argument, can be found in [16].

We turn next to the equilibrium behavior of X. Let £ be the second order differential operator
given by
~ d o? d?
L=jzx)—+———.
@) dx * 2 dx?

For any function f that is twice differentiable on [0,b], It6’s formula establishes that

t
FEO) - [(ENEE)as = FOLO
is a (true) martingale. It follows that if 7 is a stationary distribution of X, then

| #anZn@ —o (4.7)

[0,0)

for all such functions f satisfying f'(0) = 0; conversely, if a probability 7 satisfies (4.7), 7 is
stationary for X (see [7]). If 7 has a twice continuously differentiable density p, integration-by-

parts guarantees that
o d? _ d .
7@?@) - @(M(@P(x)) =0, (4.8)

11



subject to the boundary condition
—p'(0) = 0. (4.9)

The equations (4.8) and (4.9) can be solved explicitly and the result can be found in Theorem
5 below; we omit the details. One can then verify directly that 7(dz) = p(x)dx satisfies (4.7), from
which it follows that Ef(X(t)) = Ef(X(0)), provided that f is twice differentiable on [0,b] with
f'(0) = 0 and X (0) has distribution 7. Since one can uniformly approximate indicator functions of
the form I(z > ¢) for 0 < ¢ < b by such functions f, this establishes that 7 is indeed a stationary

distribution for X.

Theorem 5 The process X has a stationary distribution given by

7(dz) =

for 0 <x <b.

The distribution 7 is the so-called quasi-stationary distribution associated with conditioning X
on not hitting b. Since X is positive recurrent and admits coupling (in particular, a P -version
couples with a Pz-version when the “upper process” hits the origin), (4.3) follows. Hence,

Py (ny > t) ~ e No(z) / o () 7(dy)
[0,b)

as t — oo, proving that A can be characterized via (4.4).

5 Proofs
Lemma 1 a.) If (0,u,b) € Z; (i =1,3), (5.6) has a unique root in .%;.
b.) If (0, u,b) € Z; (i =2,4), (3.7) has a unique root in (0, &;2)

For part a.), consider first the region %;. Let

(2 — u)(2+u+002))
(z+w)(z—p—002))

£(2) = Llog (

Then, f'(z) = h(z)/2?, where

422
== 1P — (i + 202
and k(2) = 002[(22 + u(p + 002))? — p(p + 002)(2u + 00%)2). If u > 0, k is increasing on .#; so

k(z) > k(u + 00%) > 0 there. Because h(co) = 0, it follows that h(z) < 0 on .#, so that f is
decreasing on that interval. But

h'(z) = k(z)

zul}féa? f(z) =00 and llTro% f(z)=0.
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Hence, f has a unique root 3 € .#; satisfying f(8) = 2.

g

Similar arguments establish that if y < 0 and 6 € (0, — %), then f(8) = 3—2 has a unique root
B € (—p,00), whereas if y < 0 and 6 > —%;, then (3.6) has a unique root in ..

We turn next to the region #5. By a similar argument as that for for %, it can be seen that
f is increasing on (0, —p) when 6 < 0 and p < 0. Since f(oo) = 0 and

2002
lm f(z) = —————
g /%) p(p+ 0o?)

evidently (3.6) has a unique root in (0, —p) when lim,|o f(2) < 3—2 (ie. bu(p+ 00%) > —fot).
On the other hand, if 4 > 0 and 6 € (—%,0), (3.6) has a unique root on (0, + 0?) whenever
bu(p + 00?) > —0ot.

For part b.), we let

bz 22 + p? + pho?
g(2) = —; — arccos .
o V(22 + p? 4 pho?)? + 226204
Then, ¢'(z) = 02[(22_’_“2_‘_;(;0)2)2_’_229204}7 where

I(2) = 2% + 2%[2bu(p + 05°) + b0t — 0] + pu(p + 05°)[bp(p + 00?) 4 5?].

Consider first the region %, in which u(u + 00?) < 0. Then I(z) > 0 for z > 0, so g(z) is
increasing on (0,00). But lim,_,, g(z) = oo and
. =, ifp(p+00?) <0
lzlflolg(z) a { —Z, ifu(p+002) =0
Hence, g has a unique root £ > 0 satisfying g(¢) = 0.

We turn next to the region %4. Then clearly [(z) is increasing on (0,00) (for the coefficients of
z* and 2% are both positive). Note that

liﬁ)ll(z) = p(p + 00 [bu(p + 002) + 05 < 0.

So there exists a unique € > 0 such that [(§) = 0 and that g(z) is decreasing on (0,€) and is
increasing on (£, 00). But
limg(z) =0 and lim g(z) = co.

zl0 2Z—00
Hence, (3.7) has a unique positive root.

Finally, note that the arccos(-) term of g is in (0, 7), from which it follows that % < m and thus
§€ (0,75, O

Proof of Theorem 1

The equation (3.5) is a linear differential equation with constant coefficients, so we seek a
solution of the form v(x) = Ae"® + Be?*. The quantities 1, 72 arise as roots of the quadratic
equation

2p
v+ 5y- = =0 (5.1)
g g

The discriminant of the quadratic is A = M. The form of the solution to (3.5) depends
critically on the sign of A.

13



Case 1: A > 0.

In this case, (5.1) has two distinct real roots vy; = —”:—25 and vy = —‘?—Qﬁ, where 8 =

V2 +2¢9c? > 0. The boundary conditions v'(0) = 0 and v(0) = 1 identify A and B as
A=(y2 —v) !t and B = —v1(y2 — 1)~ !. The third boundary condition v/(b) = fuv(b) leads to

e(12—71)b _ M
Y(v2 —0)

or, equivalently, (3.6). Lemma 1 establishes that when (0, u,b) € %1, (3.6) has a unique root 8 on
1 for which ¢ = 622_2”2. It follows that (y2 — v )v'(z) = Y1y2(eM* — e72%) = i—f(e“z —e”?) <0

a

with v(b) = e”ﬂbﬁ[j;‘ie > 0, and hence v is positive on [0, ].

When (0, u,b) € %3, Lemma 1 proves that (3.6) has a unique root § on .#3. In this region,
1 < 0so v (x) >0 for x € [0,b]. Since v(0) = 1, v is therefore positive on [0, b].

Case 2: A <O0.

In this case, (5.1) has two distinct complex roots and v can be written in the form

v(z) = e 777 [Acos (%) + Bsin (i—ﬁ)} , (5.2)

where & = \/—(u? + 21p5?) > 0. The boundary conditions v(0) = 1 and v/(0) = 0 ensure that
A=1and B = % The third boundary condition v'(b) = fuv(b) yields the equality

0= (&% + p® + pho?) sin (§—Z> + €002 cos <£—2> ,
o o

from which it follows that (3.7) holds. Lemma 1 establishes that there exists a unique root lying on
(0, 7%2) to (3.7) when (6, u1,b) lies in either %5 or Z4. Recalling that sin(w + v) = cos(w) sin(v) +
sin(w) cos(v) for w,v € R, we can rewrite (5.2) as

. M 2 . §x
v(r) =€ o2 1+(E> sin (;ﬂ—a),

where a = arccos(u(£2 + /ﬂ)_%) € (0,7). The function v is therefore positive provided that
g—’; +a < m. Given that 0 < j—’;, o < 7, it is sufficient to prove the inequality sin (j—’; + a) > 0. But
this is clear, given that

sin (i—g + a) = cos (%) sin(a) + sin (%) cos(a)

_ ¢ + p? + pho? ¢
\/(52 + M2 + /.1,00'2)2 + 52020-4 \/52 + :U’2
£a® f

VE T 12+ p1002)? + £26%57 ' Vet 2
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Case 3: A=0.

In this case, ¢ = —2 =, and v takes the form v(x) = e~ 72 (A + Bz). In view of the fact that
v'(0) =0 and v(0) =1, A =1 and B = %;. Because v'(b) = 0v(b), we conclude that

v(r) =€ o2 <1+—)

which is clearly positive on [0, b]. O

Proof of Theorem 2

Given the Gértner-Ellis theorem and the smoothness of v, it remains only to prove that there
exists a unique root 6, for each v > 0. It is straightforward to verify that 3(6) ~ o6 as 6 — oo, so
that 0~ (0) = 0~ 1(x(0) — ¥ (0)) — oo as § — co. The mean value theorem implies the existence
of € [0,6] such that ¢/(9) = 6~'4(#) and hence limgy_,, 1'(f) = co. On the other hand, it is
easily seen that ¢(6) is bounded below as § — —oo, so that lim, , /() = 0. Since ¢/ is strictly
increasing and continuous, this guarantees existence of a unique solution to ¢'(6,) = v for each
v > 0. ]

Lemma 2 Suppose u < 0. Let f(z) = z~1 log( M+z>
a.) f is increasing on (0, —p).
b.) For (pu,b) € ; (i =2,4), f(z) > g—’; for z > 0.

c.) For (p,b) € P, there exists a unique root B, in (0, —p) satisfying f(B.) = 2.

o2

Note that f/(z) = 272h(z), where h(z) = — ( 3“22 —i—log( “Jrz)). So h(0) = 0 and h/(z) =

2uz?
T

> 0. Hence, f is increasing on (0, —u). But

2
lim —— and lim f(z) = co.
i /() =~ and lim /(2

Hence, for (u,b) € Z; (i = 2,4), f( ) > —% > 3—’; whereas for (u,b) € 25, there exists a unique
positive 5, root such that f(8) = —. O

_b
Lemma 3 Let g(z) = 2 + arccos <\/ﬁ>

a.) For (u,b) € 2; (i = 1,2), there exists a unique root & in (0, mo? satisfying g(&) = 7
b
Moreover, g(z) <7 for z € (0,&) and g(z) > 7 for z € (&, 00).

b.) For (u,b) € Z; (i =3,4), g(z) > m for z> 0.

For part a.), consider first the region 2;. Note that ¢'(z) = % + ot U p >0, ¢'(2) >0 for

o2 T op
z > 0. But .
{ 0. ifp>0 and  lim g(z) = oc.

hmg( ) %, if m = 0 Z—00

2,0
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Hence, g has a unique positive root &, such that g(&,) = 7.

If 41 <0, lim,)p g(z) = m and clearly ¢/(z) is increasing on (0, 00). Note that

-2, 1 R S
I;irolg() bo "+ and Zhﬁngog(z)—ba > 0.

Hence, for (p1,b) € Py, there exists a unique & > 0 such that ¢/(£) = 0 for which g(z) is decreasing
on (0, f) and increasing on (f, ). So there exists a unique &, > 0 such that g(§x) = 7 for which
g(z) <7 for z € (0,&) and g(z) > 7 for z € (&, 00). Since the arccos(:) term of ¢ is in (0,7), we
conclude that &, € (0, #)

For part b.), if (u,b) € 53U Zy, ¢'(2) > ¢'(0+) = bo 2+ u~1 > 0 for > 0 and thus g(z) > 7
for z > 0. O

Proof of Proposition 2

Since a solution wu satisfies the boundary condition u(b) = 1, the positivity of u is implied by
the decreasing monotonicity. So we need to prove that there exists a decreasing solution to (4.5) if
and only if 6 € (0, \).

As in Theorem 1, the solution to the linear differential equation depends critically on the sign
2 2
of A = %, the discriminant of the quadratic equation

20 20
Y+ Sy+ 5 =0. (5.3)
g (o

If A #0, (5.3) has two distinct (possibly complex) roots 7 and v2 and u(x) = AeM* 4+ Be?2*.

For part a.), note that if 6 € (0, 202) "= ”+5 and v =
Given the boundary conditions,

w? — 2002 > 0.

NnT _ o722
o (z) = %’Vz(eb e b)_ (5.4)
’)/2671 — ’)/1672

Clearly, v/(z) < 0 on [0,b] if and only if the denominator is positive. But this is trivial for (u,b) € 2;
(since y1 < 72 < 0). For (1, b) € P, note that 5 € (0,—p), from which it follows from Lemma 2
that 5~ ! log(= ’:L +g) > 0—2 (which is equivalent to the positivity of the denominator since 0 < ;1 < 72

for (u,b) € ). If 6 = ;7,
L5 (b—2) 2
eo? uex
W@ =S (——2> , (5.5)

ub+o o
so that u/(x) < 0 on [0,b] in view of the positivity of ub + o2 for (u,b) € 21 U %,. Finally, for
0 € (2 27)‘0)
L (b—=) 24 2
o (z) = c ; (—5 +2,u > sin <£—§> , (5.6)
Ecos(Z) + psn(B) \ @ o

= /200% — 2 € (0,&). Lemma 3 establishes that 0 < gb + ¢ < m, where ¢ =

arccos(—L—). Hence, 5008(5 )—i—usm(gb) = /& + p? sm(é + ¢) > 0, so that u/(z) < 0
e v

for z € [0, b).

where &

It remains to show that u is not decreasmg when 6 > X\g. Here, A < 0 and « is given by
2
(5.6), where § € [€4,00). If £ > 5=, then v’ has mixed sign on [0,b], whereas if £ € [£,, T3~], then
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|m
N S

|m
N S

£b + ¢ < 2m, so that Lemma 3 implies that £ cos(>
on [0,0].

For part b.), if 6 € (0,\g), v’ is given by (5.4), where 8 € (Bs, —p). It follows from Lemma 2
that 8! log( “Jrﬁ) > 3—2 for (u,b) € Z3, so that v/(x) < 0 for z € [0, b].

) + psin(: ) < 0, so that u is non-decreasing

2
For the converse, we now show that u is not decreasing when 6 > X\g. If 6 € [\, 2"7), u' is given

by (5.4), where 3 € (0, 8]. Lemma 2 implies that 371 log(fl’frg)

< 3—2 for (p1,b) € Z5. Hence, y2e71? < 41¢72%, so that u is non-decreasing on [0, b]. If 0=

;-
202,u is

given by (5.5). But clearly ub —|— 02 < 0, so that u is increasing on [0,b]. If 6 > 02, u is given by
(5.6). Lemma 3 implies that <& + ¢ > 7 for (i,b) € Z5. With a similar argument as for part a.),

we conclude that v is not decreasmg.

For part c.), if 0 < 2”22, v’ is given by (5.4),where f € (0,—p). Lemma 2 implies that
Bt log(= ZJFg) > 2 for (u,b) € Z4. Hence, u'(z) < 0 for z € [0, ).

0-2’
o 22, u’ is given by (5.5). For
(11,0) € Py, b+ 0* = 0. So w is not decreasing. If § > 455, « is given by (5.6). Lemma 3 implies

It remains to show that u is not decreasing when 6 > )\0 Ifo=

that j—;’ + ¢ > m for (u,b) € Z4. With a similar argument as for part a.), we conclude that u is not
decreasing. O

Proof of Theorem 4

With the definitions of A\, B« and &, one can easily verify the given formula v(z) does satisfy
(4.1) with the boundary condition v(0) = 1, v/(0) = 0, and v(b) = 0. So we only check the positivity
of v(z) on [0,b) in the following proof.

For part a.), since &, € (0, LZQ)’

For part b.), since S, € (0, —p),

For part c.),

Therefore, v(z) > v(b) = 0 for = € [0, ). O
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