On the Dynamics of a Finite Buffer Queue Conditioned on the Amount of Loss

Xiaowei Zhang Peter W. Glynn

Abstract

This paper is concerned with computing large deviations asymptotics for the loss process in a stylized queueing model that is fed by a Brownian input process. In addition, the dynamics of the queue, conditional on such a large deviation in the loss, is calculated. Finally, the paper computes the quasi-stationary distribution of the system and the corresponding dynamics, conditional on no loss occurring.

1 Introduction

There is a large literature on the dynamics of infinite buffer queues conditioned on either large customer delays or a large number-in-system; see, for example, $[1,2,6,11]$. This paper, on the other hand, makes a contribution to the rare-event literature on finite buffer queues, conditioned on the amount of loss. Our vehicle for studying this problem is two-sided reflected Brownian motion. It is known that this process can be viewed as a heavy-traffic approximation to a finite-buffer system; see, for example, [4]. In this heavy traffic setting, the loss process is then approximated by the local time at the upper boundary b associated with a full buffer. In addition to the intrinsic interest in this specific stylized queueing-type model, we expect the qualitative behavior to be representative of the heavy-traffic rare-event behavior of more general single buffer systems.

To make our contribution more precise, let $X=(X(t): t \geq 0)$ be the Markov process defined via the stochastic differential equation (SDE)

$$
\mathrm{d} X(t)=\mu \mathrm{d} t+\sigma \mathrm{d} B(t)+\mathrm{d} L(t)-\mathrm{d} U(t),
$$

where $B=(B(t): t \geq 0)$ is a standard (one-dimensional) Brownian motion and L, U are the minimal continuous non-decreasing processes satisfying $L(0)=U(0)=0$ for which $X(t) \in[0, b]$ for $t \geq 0$ and

$$
\int_{[0, \infty)} I(X(t)>0) \mathrm{d} L(t)=0
$$

and

$$
\int_{[0, \infty)} I(X(t)<b) \mathrm{d} U(t)=0 .
$$

The processes L and U are then called the local time processes at the boundaries 0 and b, respectively; our interest is in the process U. The random variable (rv) $U(t)$ is then the Brownian analog to the cumulative amount of loss over $[0, t]$ and it can be viewed as an approximation to the cumulative loss in a single-server finite buffer queue in heavy traffic.

In Section 2, we compute the typical behavior of U, recovering results due to $[3,17]$. Our martingale approach leads to a single differential equation (plus an unknown constant) that is the analog to the Poisson equation that arises in the analysis of additive functionals of the form $\int_{0}^{t} f(X(s)) \mathrm{d} s$. In contrast, the previous calculations relied on regenerative ideas [17] and the KellaWhitt martingale [3].

Section 3 turns to the analysis of the rare-event behavior of X, conditioned on $U(t)>\gamma t$ (where $\gamma>r$ and r is the mean rate at which U increases) and $U(t)<\gamma t$ (for $\gamma<r$), when t is large. In other words, we consider the conditional behavior in both the case where the loss is unusually large $(U(t)>\gamma t$, where $\gamma>r)$ or unusually small $(U(t)<\gamma t$, where $\gamma<r)$. Section 4 develops the dynamics of X in the extreme setting where there is no loss at all. In particular, we compute the quasi-stationary dynamics of X associated with conditioning on $U(t)=0$ (so that $\tau_{b}>t$, where τ_{b} is the first hitting time of b by X) for t large. The calculations of Section 3 and 4 rely on our ability to explicitly compute the solutions to certain eigenvalue problems, and to apply Girsanov's formula as a mechanism for determining the modified drift under the conditioning. Section 5 collects the proofs that involve non-trivial calculations related to explicit computation of the asymptotics and dynamics considered in this paper.

2 The Typical Behavior of U

The typical behavior of U is captured through a central limit theorem (CLT) of the form

$$
t^{-\frac{1}{2}}(U(t)-r t) \Rightarrow \eta \mathcal{N}(0,1)
$$

as $t \rightarrow \infty$, for appropriately chosen constants r and η^{2} (where \Rightarrow denotes weak convergence and $\mathcal{N}(0,1)$ is a normal random variable (rv) with mean 0 and unit variance). To compute r and η^{2}, we will apply the martingale CLT. To write $U(t)-r t$ in terms of a martingale, note that because L and U have no jumps, we can apply Itô's formula to establish that if h is twice differentiable on $[0, b]$, then

$$
\begin{equation*}
\mathrm{d} h(X(t))=(\mathcal{L} h)(X(t)) \mathrm{d} t+h^{\prime}(0) \mathrm{d} L(t)-h^{\prime}(b) \mathrm{d} U(t)+h^{\prime}(X(t)) \sigma \mathrm{d} B(t) \tag{2.1}
\end{equation*}
$$

where

$$
\mathcal{L}=\mu \frac{\mathrm{d}}{\mathrm{~d} x}+\frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
$$

Here, we used the fact that because L and U increase only when X takes on the values 0 and b respectively, it follows that $h^{\prime}(X(t)) \mathrm{d} L(t)=h^{\prime}(0) \mathrm{d} L(t)$ and $h^{\prime}(X(t)) \mathrm{d} U(t)=h^{\prime}(b) \mathrm{d} U(t)$.

If we choose h so that $(\mathcal{L} h)(x)=r$ on $[0, b]$ subject to $h^{\prime}(0)=0$ and $h^{\prime}(b)=1$, then

$$
U(t)-r t+h(X(t))-h(X(0))=\sigma \int_{0}^{t} h^{\prime}(X(s)) \mathrm{d} B(s)
$$

so that $M(t)=U(t)-r t+h(X(t))-h(X(0))$ is a zero-mean square integrable martingale (adapted to $\left(\mathcal{F}_{t}: t \geq 0\right)$, where $\left.\mathcal{F}_{t}=\sigma(X(u): 0 \leq u \leq t)\right)$. This differential equation and its associated boundary conditions determine h only up to an additive constant. We can therefore make h unique by requiring $h(0)=0$. We are therefore led to the differential equation

$$
\begin{array}{ll}
& (\mathcal{L} h)(x)=r, \quad 0 \leq x \leq b \\
\text { s.t. } & h(0)=0 \\
& h^{\prime}(0)=0 \tag{2.2}\\
& h^{\prime}(b)=1
\end{array}
$$

One now needs to solve (2.2) for h and r; (2.2) is the Poisson's equation for the local time U that is the analog to the Poisson's equation for additive functionals of the form $\int_{0}^{t} f(X(s)) \mathrm{d} s$ that has appeared previously in the literature; see, for example, [9]. In any case, the solution (h, r) to (2.2) is

$$
r= \begin{cases}\frac{\mu}{1-e^{-\rho b}}, & \text { if } \mu \neq 0 \tag{2.3}\\ \frac{\sigma^{2}}{2 b}, & \text { if } \mu=0\end{cases}
$$

and

$$
h(x)= \begin{cases}\frac{x+\rho\left(e^{-\rho x}-1\right)}{1-e^{-\rho b}}, & \text { if } \mu \neq 0 \\ \frac{x^{2}}{2 b}, & \text { if } \mu=0\end{cases}
$$

where $\rho=\frac{2 \mu}{\sigma^{2}}$.
To compute η^{2}, we exploit the martingale CLT; see p.338-340 of [8]. Note that $M(\cdot)$ is a continuous path martingale for which

$$
\frac{1}{t}[M](t)=\frac{1}{t} \int_{0}^{t} \sigma^{2} h^{\prime}(X(s))^{2} \mathrm{~d} s \rightarrow \sigma^{2} \int_{0}^{b} h^{\prime}(x)^{2} \pi(\mathrm{~d} x) \triangleq \eta^{2}
$$

a.s. as $t \rightarrow \infty$, where π is the stationary distribution of X. The distribution π is given by

$$
\pi(\mathrm{d} x)= \begin{cases}\frac{\rho e^{\rho x}}{e^{\rho b}-1} \mathrm{~d} x, & \text { if } \mu \neq 0 \tag{2.4}\\ b^{-1} \mathrm{~d} x, & \text { if } \mu=0\end{cases}
$$

for $x \geq 0$; see p. 90 of [12]. Upon noting that $t^{-\frac{1}{2}}(h(X(t))-h(X(0))) \rightarrow 0$ a.s. as $t \rightarrow 0$, the martingale CLT yields the proposition below.

Proposition 1 The loss process $U=(U(t): t \geq 0)$ satisfies the CLT

$$
t^{-\frac{1}{2}}(U(t)-r t) \Rightarrow \eta \mathcal{N}(0,1)
$$

as $t \rightarrow \infty$, where r is given in (2.3) and

$$
\eta^{2}= \begin{cases}\frac{\sigma^{2} e^{2 \rho b}\left(e^{\rho b}-2 \rho b-e^{-\rho b}\right)}{\left(e^{\rho b}-1\right)^{3}}, & \text { if } \mu \neq 0 \\ \frac{\sigma^{2}}{3}, & \text { if } \mu=0 .\end{cases}
$$

It follows that for t large, the rv $U(t)$ can be approximated as $U(t) \stackrel{\mathcal{D}}{\approx} r t+\eta t^{\frac{1}{2}} \mathcal{N}(0,1)$, where $\underset{\sim}{\mathcal{D}}$ means "has approximately the same distribution as" (and carries no rigorous meaning per se).

As noted earlier, the above martingale argument recovers the CLT derived by [17] using more complicated regenerative methods. In the next section, we study the "rare-event" large deviations behavior of the loss process U.

3 Conditional Limits Based on Unusually Large and Small Amounts of Loss

Not surprisingly, the conditional limit behavior of X, given $U(t)>\gamma t$, is linked to the computation of the large deviations probability for the event $\{U(t)>\gamma t\}$ for t large. The Gärtner-Ellis theorem (see, for example, [5]) provides one mechanism for computing such a large deviations probability. In particular, the computation of

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathrm{E} \exp (\theta U(t)) \tag{3.1}
\end{equation*}
$$

plays a key role in the calculation. To this end, we attempt to construct a martingale of the form

$$
\begin{equation*}
M(t)=\exp (\theta U(t)-\psi t+h(X(t))) \tag{3.2}
\end{equation*}
$$

Of course, ψ and $h(\cdot)$ clearly depend on the choice of θ, but we choose (temporarily) to suppress the dependence on θ in order to simplify our notation.

Applications of Itô's formula and (2.1) establish that

$$
\begin{align*}
\mathrm{d} M(t)= & M(t)[\theta \mathrm{d} U(t)-\psi \mathrm{d} t+\mathrm{d} h(X(t))]+\frac{M(t)}{2}[\theta \mathrm{~d} U(t)-\psi \mathrm{d} t+\mathrm{d} h(X(t))]^{2} \\
= & M(t)\left[\theta \mathrm{d} U(t)-\psi \mathrm{d} t+h^{\prime}(0) \mathrm{d} L(t)-h^{\prime}(b) \mathrm{d} U(t)+(\mathcal{L} h)(X(t)) \mathrm{d} t\right. \\
& \left.+h^{\prime}(X(t)) \sigma \mathrm{d} B(t)\right]+\frac{M(t)}{2} h^{\prime}(X(t))^{2} \sigma^{2} \mathrm{~d} t \\
= & M(t)\left[(\mathcal{L} h)(X(t))-\psi+\frac{\sigma^{2}}{2} h^{\prime}(X(t))^{2}\right] \mathrm{d} t+M(t) h^{\prime}(0) \mathrm{d} L(t) \\
& +M(t)\left(\theta-h^{\prime}(b)\right) \mathrm{d} U(t)+M(t) h^{\prime}(X(t)) \sigma \mathrm{d} B(t) \tag{3.3}
\end{align*}
$$

In order that M be a martingale, we should therefore choose h and ψ so that

$$
\begin{equation*}
(\mathcal{L} h)(x)+\frac{\sigma^{2}}{2} h^{\prime}(x)^{2}=\psi \tag{3.4}
\end{equation*}
$$

subject to $h^{\prime}(0)=0$ and $h^{\prime}(b)=\theta$. Since (3.4) determines h only up to an additive constant, we may add on the boundary condition $h(0)=0$ in order to uniquely specify h. As an alternative to solving the non-linear differential equation (3.4), we may seek to instead compute $v(x)=\exp (h(x))$. With this change of variables, we find that v is a positive solution of the linear differential equation

$$
\begin{equation*}
(\mathcal{L} v)(x)=\psi v(x) \tag{3.5}
\end{equation*}
$$

for $0 \leq x \leq b$, subject to $v^{\prime}(0)=0, v^{\prime}(b)-\theta v(b)=0$ and $v(0)=1$. In other words, $v(\cdot)=v(\theta, \cdot)$ is the solution of an eigenvalue problem, and $\psi=\psi(\theta)$ is the corresponding eigenvalue associated with parameter θ.

Assuming that we can find a solution to the eigenvalue problem (3.5), note that the associated h satisfies

$$
\begin{aligned}
\mathrm{d} h(X(t)) & =(\mathcal{L} h)(X(t)) \mathrm{d} t+h^{\prime}(0) \mathrm{d} L(t)-h^{\prime}(b) \mathrm{d} U(t)+h^{\prime}(X(t)) \sigma \mathrm{d} B(t) \\
& =\left(\psi-\frac{\sigma^{2}}{2} h^{\prime}(X(t))^{2}\right) \mathrm{d} t-\theta \mathrm{d} U(t)+h^{\prime}(X(t)) \sigma \mathrm{d} B(t),
\end{aligned}
$$

where we used (3.4) for the second equality. Hence,

$$
h(X(t))-h(X(0))=\psi t-\theta U(t)+\int_{0}^{t} h^{\prime}(X(s)) \sigma \mathrm{d} B(s)-\frac{1}{2} \int_{0}^{t} h^{\prime}(X(s))^{2} \sigma^{2} \mathrm{~d} s
$$

so that $M(t)$ can then be written as

$$
M(t)=\exp \left(\int_{0}^{t} h^{\prime}(X(s)) \sigma \mathrm{d} B(s)-\frac{1}{2} \int_{0}^{t} h^{\prime}(X(s))^{2} \sigma^{2} \mathrm{~d} s\right)
$$

It is then a standard fact that $(M(t): t \geq 0)$ is a local martingale adapted to $\left(\mathcal{F}_{t}: t \geq 0\right)$. Furthermore, because the solution h to (3.4) necessarily has a continuous first derivative (since $h^{\prime \prime}$ is assumed to exist), which is therefore bounded on $[0, b]$, it is evident that Novikov's condition is satisfied, so that $(M(t): t \geq 0)$ is a (true) martingale. In view of the boundedness of h over $[0, b]$,

$$
\frac{1}{t} \log \mathrm{E} \exp (\theta U(t)) \rightarrow \psi
$$

as $t \rightarrow \infty$. The eigenvalue $\psi=\psi(\theta)$ is therefore precisely the desired limit (3.1).
Given the clear importance of $\psi=\psi(\theta)$ and $v(\cdot)=v(\theta, \cdot)$, we now present the solution to (3.5). In preparation for starting our result, we define the following regions of the parameter space involving θ, μ, and b :

$$
\begin{aligned}
\mathscr{R}_{1} & =\{(\theta, \mu, b): \theta>0\} \\
\mathscr{R}_{2} & =\left\{(\theta, \mu, b): \theta<0, \mu\left(\mu+\theta \sigma^{2}\right) \leq 0\right\} \\
\mathscr{R}_{3} & =\left\{(\theta, \mu, b): \theta<0, \mu\left(\mu+\theta \sigma^{2}\right)>0, b \mu\left(\mu+\theta \sigma^{2}\right)>-\theta \sigma^{4}\right\} \\
\mathscr{R}_{4} & =\left\{(\theta, \mu, b): \theta<0, \mu\left(\mu+\theta \sigma^{2}\right)>0, b \mu\left(\mu+\theta \sigma^{2}\right)<-\theta \sigma^{4}\right\} \\
\mathscr{B}_{1} & =\{(\theta, \mu, b): \theta=0\} \\
\mathscr{B}_{2} & =\left\{(\theta, \mu, b): \theta<0, \mu\left(\mu+\theta \sigma^{2}\right)>0, b \mu\left(\mu+\theta \sigma^{2}\right)=-\theta \sigma^{4}\right\}
\end{aligned}
$$

Theorem 1 The solutions $\psi=\psi(\theta)$ and $v(\cdot)=v(\theta, \cdot)$ to (3.5) are:
a.) For $(\theta, \mu, b) \in \mathscr{R}_{i}(i=1,3), \psi(\theta)=\frac{\beta(\theta)^{2}-\mu^{2}}{2 \sigma^{2}}$ and

$$
v(\theta, x)=\frac{1}{2 \beta(\theta)} e^{-\frac{\mu}{\sigma^{2}} x}\left[(\beta(\theta)-\mu) e^{-\frac{\beta(\theta)}{\sigma^{2}} x}+(\beta(\theta)+\mu) e^{\frac{\beta(\theta)}{\sigma^{2}} x}\right]
$$

where $\beta(\theta)$ is the unique root in \mathscr{I}_{i} of the equation

$$
\begin{equation*}
\frac{1}{\beta} \log \left(\frac{(\beta-\mu)\left(\beta+\mu+\theta \sigma^{2}\right)}{(\beta+\mu)\left(\beta-\mu-\theta \sigma^{2}\right)}\right)=\frac{2 b}{\sigma^{2}} \tag{3.6}
\end{equation*}
$$

with $\mathscr{I}_{1}=\left(|\mu| \vee\left|\mu+\theta \sigma^{2}\right|, \infty\right)$ and $\mathscr{I}_{3}=\left(0,|\mu| \wedge\left|\mu+\theta \sigma^{2}\right|\right)$.
b.) For $(\theta, \mu, b) \in \mathscr{R}_{i}(i=2,4), \psi(\theta)=-\frac{\xi(\theta)^{2}+\mu^{2}}{2 \sigma^{2}}$ and and

$$
v(\theta, x)=e^{-\frac{\mu}{\sigma^{2}} x}\left[\cos \left(\frac{\xi(\theta) x}{\sigma^{2}}\right)+\frac{\mu}{\xi(\theta)} \sin \left(\frac{\xi(\theta) x}{\sigma^{2}}\right)\right]
$$

where $\xi(\theta)$ is the unique root in $\left(0, \frac{\pi \sigma^{2}}{b}\right)$ of the equation

$$
\begin{equation*}
\frac{b}{\sigma^{2}} \xi=\arccos \left(\frac{\xi^{2}+\mu\left(\mu+\theta \sigma^{2}\right)}{\sqrt{\left(\xi^{2}+\mu\left(\mu+\theta \sigma^{2}\right)\right)^{2}+\xi^{2} \theta^{2} \sigma^{4}}}\right) \tag{3.7}
\end{equation*}
$$

c.) For $(\theta, \mu, b) \in \mathscr{B}_{1}, \psi(\theta)=0$ and $v(\theta, x) \equiv 1$.
d.) For $(\theta, \mu, b) \in \mathscr{B}_{2}, \psi(\theta)=-\frac{\mu^{2}}{2 \sigma^{2}}$ and

$$
v(\theta, x)=e^{-\frac{\mu}{\sigma^{2}} x}\left(\frac{\mu}{\sigma^{2}} x+1\right) .
$$

The proof of Theorem 1 can be found in Section 5. The Gärtner-Ellis theorem then implies the following result (in which we adopt the standard notation that $\mathrm{P}_{x}(\cdot) \triangleq \mathrm{P}(\cdot \mid X(0)=x)$ and $\left.\mathrm{E}_{x}(\cdot) \triangleq \mathrm{E}(\cdot \mid X(0)=x)\right) .$.

Theorem 2 For $\gamma>r$,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathrm{P}_{x}(U(t)>\gamma t)=-I(\gamma)
$$

whereas for $0<\gamma<r$,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathrm{P}_{x}(U(t)<\gamma t)=-I(\gamma)
$$

where

$$
I(\gamma)=\theta_{\gamma} \gamma-\psi\left(\theta_{\gamma}\right)
$$

and $\psi^{\prime}\left(\theta_{\gamma}\right)=\gamma$.
Note that U is regenerative with respect to a cycle structure in which $X=0$ at the regeneration times but hits level b at some time within each cycle. More precisely, U is regenerative with respect to ($\tau_{n}: n \geq 0$), where $\tau_{0}=0$ and

$$
\tau_{n}=\inf \left\{t>\tau_{n-1}: X(t)=0, \sup _{\tau_{n-1} \leq s<t} X(s)=b\right\}
$$

for $n \geq 1$. It is a well known fact that if $X(0)=0$, then $U\left(\tau_{1}\right)$ is exponentially distributed with mean $\frac{1-e^{-2 \mu b}}{2 \mu}$ for $\mu \neq 0$ and b for $\mu=0$; see, for example, [17]. A curious feature of Theorems 1 and 2 is that $\mathrm{E}_{x} \exp (\theta U(t))<\infty$ for $t \geq 0$, while the moment generating function $\mathrm{E}_{0} \exp \left(\theta U\left(\tau_{1}\right)\right)$ of the loss over a typical cycle diverges for $\theta \geq \frac{2 \mu}{1-e^{-2 \mu b}}$ if $\mu \neq 0$ and for $\theta \geq b^{-1}$ if $\mu=0$. Evidently, the randomization of the time horizon associated with τ_{1} induces heavier tails in the loss process.

To compute the conditional dynamics of X given $\{U(t)>\gamma t\}$, we define $\mathrm{P}_{x}^{\gamma}(\cdot)$ so that for each $t \geq 0$,

$$
\mathrm{P}_{x}^{\gamma}(A)=\mathrm{E}_{x}\left\{I(A) \exp \left(\sigma \int_{0}^{t} h^{\prime}\left(\theta_{\gamma}, X(s)\right) \mathrm{d} B(s)-\frac{\sigma^{2}}{2} \int_{0}^{t} h^{\prime}\left(\theta_{\gamma}, X(s)\right)^{2} \mathrm{~d} s\right)\right\}
$$

for $A \in \mathcal{F}_{t}$. By Girsanov's formula,

$$
\tilde{B}(t) \triangleq B(t)-\sigma \int_{0}^{t} h^{\prime}\left(\theta_{\gamma}, X(s)\right) \mathrm{d} s
$$

is a standard Brownian motion under P_{x}^{γ}, so that X satisfies the SDE

$$
\mathrm{d} X(t)=\left(\mu+\sigma^{2} h^{\prime}\left(\theta_{\gamma}, X(t)\right)\right) \mathrm{d} t+\sigma \mathrm{d} \tilde{B}(t)+\mathrm{d} L(t)-\mathrm{d} U(t),
$$

subject to $X(0)=x$, under P_{x}^{γ}. In other words, the law of X under P_{x}^{γ} is identical to that of the process $X_{\gamma}=\left(X_{\gamma}(t): t \geq 0\right)$ satisfying the SDE

$$
\begin{equation*}
\mathrm{d} X_{\gamma}(t)=\left(\mu+\sigma^{2} h^{\prime}\left(\theta_{\gamma}, X_{\gamma}(t)\right)\right) \mathrm{d} t+\sigma \mathrm{d} B(t)+\mathrm{d} L_{\gamma}(t)-\mathrm{d} U_{\gamma}(t), \tag{3.8}
\end{equation*}
$$

where $L_{\gamma}(\cdot)$ and $U_{\gamma}(\cdot)$ are defined analogously for X_{γ} as in Section 1. We will show that when t is large, X, when conditioned on $\{U(t)>\gamma t\}$, follows the law of X_{γ}; a similar result holds when conditioning on $\{U(t)<\gamma t\}$ for $\gamma<r$.

We start by noting that for each $\gamma>0, X_{\gamma}$ is a positive recurrent Markov process. In particular, note that if τ_{0} is the first hitting time of the origin, the stochastic monotonicity of X_{γ} implies that

$$
\begin{aligned}
\mathrm{P}_{x}^{\gamma}\left(\tau_{0} \leq \Delta\right) & \geq \mathrm{P}_{b}^{\gamma}\left(\tau_{0} \leq \Delta\right) \\
& =\mathrm{E}_{b}\left\{I\left(\tau_{0} \leq \Delta\right) \exp \left(\theta_{\gamma} U(\Delta)-\psi\left(\theta_{\gamma}\right) \Delta+h\left(\theta_{\gamma}, X(\Delta)\right)-h\left(\theta_{\gamma}, b\right)\right)\right\} \\
& \geq \mathrm{P}_{b}\left(\tau_{0} \leq \Delta\right) \exp \left(-\psi\left(\theta_{\gamma}\right) \Delta+\inf _{0 \leq x \leq b} h\left(\theta_{\gamma}, x\right)-h\left(\theta_{\gamma}, b\right)\right) \\
& >0
\end{aligned}
$$

so $\inf _{0 \leq x \leq b} \mathrm{P}_{x}^{\gamma}\left(\tau_{0} \leq \Delta\right)>0$. Hence, for each $\gamma>0, X_{\gamma}$ is uniformly recurrent and hence has a unique stationary distribution $\pi_{\gamma}(\cdot)$ to which X_{γ} converges exponentially fast (uniformly in x); see, for example, [15].

A careful justification for the conditional dynamics described above observes that if $f\left(X_{\gamma}(u)\right.$: $0 \leq u \leq s)$ is a bounded \mathcal{F}_{s}-measurable rv, then

$$
\begin{align*}
& \mathrm{E}_{x}[f(X(u): 0 \leq u \leq s) \mid U(t)>\gamma t] \\
= & \frac{\mathrm{E}_{x} f\left(X_{\gamma}(u): 0 \leq u \leq s\right) \exp \left[-\theta_{\gamma}\left(U_{\gamma}(t)-\gamma t\right)+h\left(\theta_{\gamma}, X(t)\right)-h\left(\theta_{\gamma}, x\right)\right] I\left(U_{\gamma}(t)>\gamma t\right)}{\mathrm{E}_{x} \exp \left[-\theta_{\gamma}\left(U_{\gamma}(t)-\gamma t\right)+h\left(\theta_{\gamma}, X(t)\right)-h\left(\theta_{\gamma}, x\right)\right] I\left(U_{\gamma}(t)>\gamma t\right)} \tag{3.9}
\end{align*}
$$

Note that the denominator of (3.9) takes the same form as the numerator, with $f \equiv 1$. The numerator of (3.9) can be expressed as

$$
\begin{equation*}
\int_{0}^{\infty} \theta_{\gamma} e^{-\theta_{\gamma} y} \mathrm{E}_{x} f\left(X_{\gamma}(u): 0 \leq u \leq s\right) I\left(0<U_{\gamma}(t)-\gamma t<y\right) \exp \left(h\left(\theta_{\gamma}, X_{\gamma}(t)\right)-h\left(\theta_{\gamma}, x\right)\right) \tag{3.10}
\end{equation*}
$$

We claim that the integral (3.10) is asymptotic to

$$
\begin{equation*}
\frac{1}{\theta_{\gamma} \sqrt{2 \pi \psi^{\prime \prime}\left(\theta_{\gamma}\right) t}} \mathrm{E}_{x} f\left(X_{\gamma}(u): 0 \leq u \leq s\right) \int_{0}^{b} e^{h\left(\theta_{\gamma}, y\right)} \pi_{\gamma}(\mathrm{d} y) \cdot e^{-h\left(\theta_{\gamma}, x\right)} \tag{3.11}
\end{equation*}
$$

The proof of this claim follows an argument similar to that used by [13,14], and hence is omitted. Note that the key to proving (3.10) is a suitable local CLT for $U_{\gamma}(t)-\gamma t$. Such a local CLT takes advantage of the fact that X_{γ} is a positive recurrent regenerative process (with regeneration times given, for example, by the times at which X_{γ} visits 0 having visited b at some intermediate time). Furthermore, if τ is the associated regeneration time, $U_{\gamma}(\tau)-\gamma \tau$ has a density, since it is the convolution of two independent rv's, one of which is $-\gamma$ times the first passage time from 0 to b of X_{γ} (which has a density, since the first passage time of X from 0 to b is known to have a density). As a consequence, $U_{\gamma}(\tau)-\gamma \tau$ has the requisite non-lattice property needed for a local CLT.

By applying (3.10) and (3.11) first with with $f \equiv g$ and second with $f \equiv 1$, we arrive at the conclusion that

$$
\mathrm{E}_{x}[g(X(u): 0 \leq u \leq t) \mid U(t)>\gamma t] \sim \mathrm{E}_{x} g\left(X_{\gamma}(u): 0 \leq u \leq t\right)
$$

as $t \rightarrow \infty$. We summarize our discussion with Theorem 3 .

Figure 1: Drift function of X_{γ} when $\mu=-1, \sigma=1$, and $\gamma=2$ (Left) or $\gamma=0.1$ (Right)

Figure 2: Drift function of X_{γ} when $\mu=1, \sigma=1$ and $\gamma=2$ (Left) or $\gamma=0.1$ (Right).

Theorem 3 a.) For $\gamma>r$,

$$
\mathrm{P}_{x}(U(t)>\gamma t) \sim \frac{1}{\theta_{\gamma} \sqrt{2 \pi \psi^{\prime \prime}\left(\theta_{\gamma}\right) t}} \exp (-I(\gamma) t) \int_{0}^{b} e^{h\left(\theta_{\gamma}, y\right)} \pi_{\gamma}(\mathrm{d} y) \cdot e^{-h\left(\theta_{\gamma}, x\right)}
$$

as $t \rightarrow \infty$, whereas for $\gamma<r$,

$$
\mathrm{P}_{x}(U(t)<\gamma t) \sim \frac{1}{\theta_{\gamma} \sqrt{2 \pi \psi^{\prime \prime}\left(\theta_{\gamma}\right) t}} \exp (-I(\gamma) t) \int_{0}^{b} e^{h\left(\theta_{\gamma}, y\right)} \pi_{\gamma}(\mathrm{d} y) \cdot e^{-h\left(\theta_{\gamma}, x\right)}
$$

as $t \rightarrow \infty$.
b.) Conditional on $\{U(t)>\gamma t\}$ with $\gamma>r$ (or $\{U(t)<\gamma t\}$ with $\gamma<r)$,

$$
(X(u): u \geq 0) \Rightarrow\left(X_{\gamma}(u): u \geq 0\right)
$$

in $C[0, \infty)$ as $t \rightarrow \infty$, where X_{γ} satisfies the $S D E$ (3.8).

4 The Quasi-stationary Distribution for Reflected Brownian Motion

In this section, we focus on the extreme case in which the system has experienced no loss over the interval $[0, t]$. Of course, the strong Markov property implies that if $\tau_{b}<t$, then $U(t)>0$ a.s., so conditioning on no loss is equivalent to requiring that $\tau_{b}>t$. The problem of computing the conditional behavior of X, conditioned on $\tau_{b}>t$ for t large, is exactly the problem of calculating the associated quasi-stationary distribution for X. This quasi-stationary distribution is identical to that associated with a one-sided reflected Brownian motion exhibiting reflection only at the origin, conditioned on not exceeding level b over $[0, t]$. From a queueing standpoint, we can view this conditioning as one involving an infinite buffer Brownian queue in which the buffer context process has not yet exceeded b by time t. Thus, this quasi-stationary distribution has two queueing interpretations, one in terms of a finite buffer queue and the other in terms of an infinite buffer queue.

To calculate the quasi-stationary behavior, we seek a positive martingale that lives on $[0, b)$, thereby inducing a change-of-measure for X that does not visit b; see, for example, [10]. In particular, we consider a martingale of the form

$$
M(t)=\frac{e^{\lambda t} v(X(t))}{v(X(0))}
$$

where $v(\cdot)$ is positive on $[0, b)$ and $v(b)=0$. Using Itô's formula as in Section 3, we find that the pair (v, λ) should satisfy the eigenvalue problem,

$$
\begin{equation*}
\mathcal{L} v=-\lambda v \tag{4.1}
\end{equation*}
$$

subject to $v^{\prime}(0)=0$ and $v(b)=0$. Again, v is only determined up to a multiplicative constant, so we further require that $v(0)=1$. The spectrum associated with the above eigenvalue problem is continuous (i.e. the set of λ 's satisfying (4.1) is a continuum). One way to identify the appropriate λ is on the basis of the fact that we are seeking an associated positive eigenfunction v. However, determining the eigenfunction/eigenvalue pair subject to such a positivity constraint is challenging. We therefore proceed via an alternative (somewhat heuristic) route that we later rigorously verify in Theorem 4.

Note that if (4.1) has a solution v that is positive on $[0, b),(M(t): t \geq 0)$ is a (true) martingale adapted to $\left(\mathcal{F}_{t}: t \geq 0\right)$. As in Section 3, we can define the probability $\tilde{\mathrm{P}}_{x}$ via

$$
\tilde{\mathrm{P}}_{x}(A)=\mathrm{E}_{x} I(A) M(t)
$$

for $A \in \mathcal{F}_{t}$. Applying the optional sampling theorem, we find that

$$
\begin{aligned}
\tilde{\mathrm{P}}_{x}\left(\tau_{b}>t\right) & =\mathrm{E}_{x} I\left(\tau_{b}>t\right) M(t) \\
& =\mathrm{E}_{x} I\left(\tau_{b}>t\right) M(t)+\mathrm{E}_{x} I\left(\tau_{b} \leq t\right) M\left(\tau_{b}\right) \\
& =\mathrm{E}_{x} M\left(t \wedge \tau_{b}\right)=1
\end{aligned}
$$

for all $t>0$. Here the second equality follows from the fact that $v\left(X\left(\tau_{b}\right)\right)=v(b)=0$ and the last equality holds by the optional sampling theorem. Hence, $\tau_{b}=\infty \tilde{\mathrm{P}}_{x}$-a.s. (as expected). So,

$$
\begin{equation*}
\mathrm{P}_{x}\left(\tau_{b}>t\right)=\tilde{\mathrm{E}}_{x} M(t)^{-1}=e^{-\lambda t} \tilde{\mathrm{E}}_{x} \frac{v(X(0))}{v(X(t))} \tag{4.2}
\end{equation*}
$$

where $\tilde{\mathrm{E}}_{x}(\cdot)$ is the expectation operator associated with $\tilde{\mathrm{P}}_{x}$. Assume, temporarily, that X has a stationary distribution $\tilde{\pi}$ under $\tilde{\mathrm{P}}_{x}$ for which

$$
\begin{equation*}
\tilde{\mathrm{E}}_{x} \frac{v(X(0))}{v(X(t))} \rightarrow v(x) \int_{[0, b)} v^{-1}(y) \tilde{\pi}(\mathrm{d} y) \tag{4.3}
\end{equation*}
$$

as $t \rightarrow \infty$. In view of (4.2) and (4.3), we can therefore characterize λ via

$$
\begin{equation*}
\lambda=\sup \left\{\theta: \mathrm{E}_{x} e^{\theta \tau_{b}}<\infty\right\} \tag{4.4}
\end{equation*}
$$

So, the correct choice of λ (chosen from the spectrum of the eigenvalue problem (4.1)) should be computable from $u^{*}(x)=\mathrm{E}_{x} \exp \left(\theta \tau_{b}\right)$. The function $u^{*}=\left(u^{*}(x): 0 \leq x \leq b\right)$ must clearly be positive and decreasing on $[0, b]$ for positive θ. Note that for any solution u to

$$
\begin{equation*}
\mathcal{L} u=-\theta u \quad \text { on }[0, b] \tag{4.5}
\end{equation*}
$$

subject to $u(b)=1$ and $u^{\prime}(0)=0$, the process

$$
e^{\theta\left(t \wedge \tau_{b}\right)} u\left(X\left(t \wedge \tau_{b}\right)\right)
$$

is a martingale adapted to $\left(\mathscr{F}_{t}: t \geq 0\right)$. If, in addition, u is positive, then

$$
\mathrm{E}_{x} e^{\theta \tau_{b}} I\left(\tau_{b} \leq t\right) \leq u(x)
$$

so that the Monotone Convergence Theorem implies that $\infty>u(x) \geq \mathrm{E}_{x} e^{\theta \tau_{b}}$. So, $\lambda \geq \lambda_{0}=$ $\sup \left\{\theta>0:(4.5)\right.$ has a positive decreasing solution u satisfying $u^{\prime}(0)=0$
and $u(b)=1\}$. Let

$$
\begin{aligned}
& \mathscr{D}_{1}=\{(\mu, b): \mu \geq 0\} \\
& \mathscr{D}_{2}=\left\{(\mu, b): \mu<0, b \mu+\sigma^{2}>0\right\} \\
& \mathscr{D}_{3}=\left\{(\mu, b): \mu<0, b \mu+\sigma^{2}<0\right\} \\
& \mathscr{D}_{4}=\left\{(\mu, b): \mu<0, b \mu+\sigma^{2}=0\right\}
\end{aligned}
$$

Proposition 2 Suppose $\theta>0$. The differential equation (4.5), subject to $u^{\prime}(0)=0$ and $u(b)=1$, has a positive decreasing solution if and only if $\theta<\lambda_{0}$, where
a.) For $(\mu, b) \in \mathscr{D}_{i}(i=1,2), \lambda_{0}=\frac{\mu^{2}+\xi_{*}^{2}}{2 \sigma^{2}}$, where ξ_{*} is the unique root in $\left(0, \frac{\pi \sigma^{2}}{b}\right)$ of the equation

$$
\frac{b \xi}{\sigma^{2}}+\arccos \left(\frac{\mu}{\sqrt{\mu^{2}+\xi^{2}}}\right)=\pi
$$

b.) For $(\mu, b) \in \mathscr{D}_{3}, \lambda_{0}=\frac{\mu^{2}-\beta_{*}^{2}}{2 \sigma^{2}}$, where β_{*} is the unique root in $(0,-\mu)$ of the equation

$$
\frac{1}{\beta} \log \left(\frac{-\mu+\beta}{-\mu-\beta}\right)=\frac{2 b}{\sigma^{2}}
$$

c.) $\operatorname{For}(\mu, b) \in \mathscr{D}_{4}, \lambda_{0}=\frac{\mu^{2}}{2 \sigma^{2}}$.

The above discussion suggests that we can identify the eigenvalue λ for (4.1) corresponding to a positive eigenfunction v as $\lambda=\lambda_{0}$. Theorem 4 proves that there does indeed exist a positive eigenfunction for (4.1) corresponding to λ_{0}, so that $\lambda=\lambda_{0}$ (rigorously).

Theorem 4 a.) For $(\mu, b) \in \mathscr{D}_{i}(i=1,2)$, the solution v to (4.1) with $\lambda=\lambda_{0}$ is

$$
v(x)=e^{-\frac{\mu}{\sigma^{2}} x}\left[\cos \left(\frac{\xi_{*}}{\sigma^{2}} x\right)+\frac{\mu}{\xi_{*}} \sin \left(\frac{\xi_{*}}{\sigma^{2}} x\right)\right] .
$$

b.) For $(\mu, b) \in \mathscr{D}_{3}$, the solution v to (4.1) with $\lambda=\lambda_{0}$ is

$$
v(x)=\frac{1}{2 \beta_{*}} e^{-\frac{\mu}{\sigma^{2}} x}\left[\left(\beta_{*}-\mu\right) e^{-\frac{\beta_{*}}{\sigma^{2}} x}+\left(\beta_{*}+\mu\right) e^{\frac{\beta_{*}}{\sigma^{2}} x}\right] .
$$

c.) For $(\mu, b) \in \mathscr{D}_{4}$, the solution v to (4.1) with $\lambda=\lambda_{0}$ is

$$
v(x)=e^{-\frac{\mu}{\sigma^{2}} x}\left(\frac{\mu}{\sigma^{2}} x+1\right) .
$$

In each case, the solution v is positive on $[0, b]$.
Following the same argument as in Section 3, it can be shown that if \tilde{X} has the law of X under $\tilde{\mathrm{P}}_{x}, \tilde{X}$ satisfies the SDE

$$
\begin{align*}
\mathrm{d} \tilde{X}(t) & =\left(\mu+\frac{v^{\prime}(\tilde{X}(t))}{v(\tilde{X}(t))} \sigma^{2}\right) \mathrm{d} t+\sigma \mathrm{d} B(t)+\mathrm{d} \tilde{L}(t), \tag{4.6}\\
& \triangleq \tilde{\mu}(\tilde{X}(t)) \mathrm{d} t+\sigma \mathrm{d} B(t)+\mathrm{d} \tilde{L}(t),
\end{align*}
$$

subject to $\tilde{X}(0)=x$, where $\tilde{L}(\cdot)$ is the local time process at the origin associated with \tilde{X}. A related calculation in which the spectral representation of the transition density for reflected Brownian motion with one reflecting and one absorbing barrier is derived, using a purely analytical separation-of-variables argument, can be found in [16].

We turn next to the equilibrium behavior of \tilde{X}. Let $\tilde{\mathcal{L}}$ be the second order differential operator given by

$$
\tilde{\mathcal{L}}=\tilde{\mu}(x) \frac{\mathrm{d}}{\mathrm{~d} x}+\frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} .
$$

For any function f that is twice differentiable on $[0, b]$, Itô's formula establishes that

$$
f(\tilde{X}(t))-\int_{0}^{t}(\tilde{\mathcal{L}} f)(\tilde{X}(s)) \mathrm{d} s-f^{\prime}(0) \tilde{L}(t)
$$

is a (true) martingale. It follows that if $\tilde{\pi}$ is a stationary distribution of \tilde{X}, then

$$
\begin{equation*}
\int_{[0, b)} \tilde{\pi}(\mathrm{d} x)(\tilde{\mathcal{L}} f)(x)=0 \tag{4.7}
\end{equation*}
$$

for all such functions f satisfying $f^{\prime}(0)=0$; conversely, if a probability $\tilde{\pi}$ satisfies (4.7), $\tilde{\pi}$ is stationary for \tilde{X} (see [7]). If $\tilde{\pi}$ has a twice continuously differentiable density \tilde{p}, integration-byparts guarantees that

$$
\begin{equation*}
\frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \tilde{p}(x)-\frac{\mathrm{d}}{\mathrm{~d} x}(\tilde{\mu}(x) p(x))=0 \tag{4.8}
\end{equation*}
$$

subject to the boundary condition

$$
\begin{equation*}
\tilde{\mu}(0) \tilde{p}(0)-\frac{\sigma^{2}}{2} \tilde{p}^{\prime}(0)=0 . \tag{4.9}
\end{equation*}
$$

The equations (4.8) and (4.9) can be solved explicitly and the result can be found in Theorem 5 below; we omit the details. One can then verify directly that $\tilde{\pi}(\mathrm{d} x)=\tilde{p}(x) \mathrm{d} x$ satisfies (4.7), from which it follows that $\mathrm{E} f(\tilde{X}(t))=\mathrm{E} f(\tilde{X}(0))$, provided that f is twice differentiable on $[0, b]$ with $f^{\prime}(0)=0$ and $\tilde{X}(0)$ has distribution $\tilde{\pi}$. Since one can uniformly approximate indicator functions of the form $I(x \geq c)$ for $0<c \leq b$ by such functions f, this establishes that $\tilde{\pi}$ is indeed a stationary distribution for \tilde{X}.

Theorem 5 The process \tilde{X} has a stationary distribution given by

$$
\tilde{\pi}(\mathrm{d} x)=\frac{e^{\frac{2 \mu}{\sigma^{2}} x} v^{2}(x) \mathrm{d} x}{\int_{[0, b)} e^{\frac{2 \mu}{\sigma^{2}} y} v^{2}(y) \mathrm{d} x}
$$

for $0 \leq x<b$.
The distribution $\tilde{\pi}$ is the so-called quasi-stationary distribution associated with conditioning X on not hitting b. Since \tilde{X} is positive recurrent and admits coupling (in particular, a $\tilde{\mathrm{P}}_{x}$-version couples with a $\tilde{\mathrm{P}}_{\tilde{\pi}}$-version when the "upper process" hits the origin), (4.3) follows. Hence,

$$
\mathrm{P}_{x}\left(\tau_{b}>t\right) \sim e^{-\lambda t} v(x) \int_{[0, b)} v^{-1}(y) \tilde{\pi}(\mathrm{d} y)
$$

as $t \rightarrow \infty$, proving that λ can be characterized via (4.4).

5 Proofs

Lemma 1 a.) If $(\theta, \mu, b) \in \mathscr{R}_{i}(i=1,3)$, (3.6) has a unique root in $\mathscr{\mathscr { F }}_{i}$.
b.) If $(\theta, \mu, b) \in \mathscr{R}_{i}(i=2,4),(3.7)$ has a unique root in $\left(0, \frac{\pi \sigma^{2}}{b}\right)$.

For part a.), consider first the region \mathscr{R}_{1}. Let

$$
f(z)=\frac{1}{z} \log \left(\frac{(z-\mu)\left(z+\mu+\theta \sigma^{2}\right)}{(z+\mu)\left(z-\mu-\theta \sigma^{2}\right)}\right) .
$$

Then, $f^{\prime}(z)=h(z) / z^{2}$, where

$$
h^{\prime}(z)=\frac{4 z^{2}}{\left(z^{2}-\mu^{2}\right)^{2}\left(z^{2}-\left(\mu+z \sigma^{2}\right)^{2}\right)^{2}} k(z)
$$

and $k(z)=\theta \sigma^{2}\left[\left(z^{2}+\mu\left(\mu+\theta \sigma^{2}\right)\right)^{2}-\mu\left(\mu+\theta \sigma^{2}\right)\left(2 \mu+\theta \sigma^{2}\right)^{2}\right]$. If $\mu \geq 0, k$ is increasing on \mathscr{I}_{1} so $k(z) \geq k\left(\mu+\theta \sigma^{2}\right)>0$ there. Because $h(\infty)=0$, it follows that $h(z)<0$ on \mathscr{I}_{1}, so that f is decreasing on that interval. But

$$
\lim _{z \downarrow \mu+\theta \sigma^{2}} f(z)=\infty \quad \text { and } \quad \lim _{z \uparrow \infty} f(z)=0 .
$$

Hence, f has a unique root $\beta \in \mathscr{I}_{1}$ satisfying $f(\beta)=\frac{2 b}{\sigma^{2}}$.
Similar arguments establish that if $\mu<0$ and $\theta \in\left(0,-\frac{\mu}{\sigma^{2}}\right)$, then $f(\beta)=\frac{2 b}{\sigma^{2}}$ has a unique root $\beta \in(-\mu, \infty)$, whereas if $\mu<0$ and $\theta \geq-\frac{\mu}{\sigma^{2}}$, then (3.6) has a unique root in \mathscr{I}_{1}.

We turn next to the region \mathscr{R}_{3}. By a similar argument as that for for \mathscr{R}_{1}, it can be seen that f is increasing on $(0,-\mu)$ when $\theta<0$ and $\mu<0$. Since $f(\infty)=0$ and

$$
\lim _{z \downarrow 0} f(z)=-\frac{2 \theta \sigma^{2}}{\mu\left(\mu+\theta \sigma^{2}\right)}
$$

evidently (3.6) has a unique root in $(0,-\mu)$ when $\lim _{z \downarrow 0} f(z)<\frac{2 b}{\sigma^{2}}$ (i.e. $\left.b \mu\left(\mu+\theta \sigma^{2}\right)>-\theta \sigma^{4}\right)$. On the other hand, if $\mu>0$ and $\theta \in\left(-\frac{\mu}{\sigma^{2}}, 0\right)$, (3.6) has a unique root on $\left(0, \mu+\theta \sigma^{2}\right)$ whenever $b \mu\left(\mu+\theta \sigma^{2}\right)>-\theta \sigma^{4}$.

For part b.), we let

$$
g(z)=\frac{b z}{\sigma^{2}}-\arccos \left(\frac{z^{2}+\mu^{2}+\mu \theta \sigma^{2}}{\sqrt{\left(z^{2}+\mu^{2}+\mu \theta \sigma^{2}\right)^{2}+z^{2} \theta^{2} \sigma^{4}}}\right)
$$

Then, $g^{\prime}(z)=\frac{l(z)}{\sigma^{2}\left[\left(z^{2}+\mu^{2}+\mu \theta \sigma^{2}\right)^{2}+z^{2} \theta^{2} \sigma^{4}\right]}$, where

$$
l(z)=z^{4} b+z^{2}\left[2 b \mu\left(\mu+\theta \sigma^{2}\right)+b \theta^{2} \sigma^{4}-\theta \sigma^{4}\right]+\mu\left(\mu+\theta \sigma^{2}\right)\left[b \mu\left(\mu+\theta \sigma^{2}\right)+\theta \sigma^{4}\right]
$$

Consider first the region \mathscr{R}_{2} in which $\mu\left(\mu+\theta \sigma^{2}\right) \leq 0$. Then $l(z)>0$ for $z>0$, so $g(z)$ is increasing on $(0, \infty)$. But $\lim _{z \rightarrow \infty} g(z)=\infty$ and

$$
\lim _{z \downarrow 0} g(z)= \begin{cases}-\pi, & \text { if } \mu\left(\mu+\theta \sigma^{2}\right)<0 \\ -\frac{\pi}{2}, & \text { if } \mu\left(\mu+\theta \sigma^{2}\right)=0\end{cases}
$$

Hence, g has a unique root $\xi>0$ satisfying $g(\xi)=0$.
We turn next to the region \mathscr{R}_{4}. Then clearly $l(z)$ is increasing on $(0, \infty)$ (for the coefficients of z^{4} and z^{2} are both positive). Note that

$$
\lim _{z \downarrow 0} l(z)=\mu\left(\mu+\theta \sigma^{2}\right)\left[b \mu\left(\mu+\theta \sigma^{2}\right)+\theta \sigma^{4}\right]<0
$$

So there exists a unique $\tilde{\xi}>0$ such that $l(\tilde{\xi})=0$ and that $g(z)$ is decreasing on $(0, \tilde{\xi})$ and is increasing on $(\tilde{\xi}, \infty)$. But

$$
\lim _{z \downarrow 0} g(z)=0 \quad \text { and } \quad \lim _{z \rightarrow \infty} g(z)=\infty
$$

Hence, (3.7) has a unique positive root.
Finally, note that the $\arccos (\cdot)$ term of g is in $(0, \pi)$, from which it follows that $\frac{b \xi}{\sigma^{2}}<\pi$ and thus $\xi \in\left(0, \frac{\pi \sigma^{2}}{b}\right)$.

Proof of Theorem 1

The equation (3.5) is a linear differential equation with constant coefficients, so we seek a solution of the form $v(x)=A e^{\gamma_{1} x}+B e^{\gamma_{2} x}$. The quantities γ_{1}, γ_{2} arise as roots of the quadratic equation

$$
\begin{equation*}
\gamma^{2}+\frac{2 \mu}{\sigma^{2}} \gamma-\frac{2 \psi}{\sigma^{2}}=0 \tag{5.1}
\end{equation*}
$$

The discriminant of the quadratic is $\Delta=\frac{4\left(\mu^{2}+2 \psi \sigma^{2}\right)}{\sigma^{4}}$. The form of the solution to (3.5) depends critically on the sign of Δ.

Case 1: $\Delta>0$.
In this case, (5.1) has two distinct real roots $\gamma_{1}=-\frac{\mu+\beta}{\sigma^{2}}$ and $\gamma_{2}=-\frac{\mu-\beta}{\sigma^{2}}$, where $\beta=$ $\sqrt{\mu^{2}+2 \psi \sigma^{2}}>0$. The boundary conditions $v^{\prime}(0)=0$ and $v(0)=1$ identify A and B as $A=\gamma_{2}\left(\gamma_{2}-\gamma_{1}\right)^{-1}$ and $B=-\gamma_{1}\left(\gamma_{2}-\gamma_{1}\right)^{-1}$. The third boundary condition $v^{\prime}(b)=\theta v(b)$ leads to

$$
e^{\left(\gamma_{2}-\gamma_{1}\right) b}=\frac{\gamma_{2}\left(\gamma_{1}-\theta\right)}{\gamma_{1}\left(\gamma_{2}-\theta\right)}
$$

or, equivalently, (3.6). Lemma 1 establishes that when $(\theta, \mu, b) \in \mathscr{R}_{1},(3.6)$ has a unique root β on \mathscr{I}_{1} for which $\psi=\frac{\beta^{2}-\mu^{2}}{2 \sigma^{2}}$. It follows that $\left(\gamma_{2}-\gamma_{1}\right) v^{\prime}(x)=\gamma_{1} \gamma_{2}\left(e^{\gamma_{1} x}-e^{\gamma_{2} x}\right)=\frac{2 \psi}{\sigma^{2}}\left(e^{\gamma_{1} x}-e^{\gamma_{2} x}\right)<0$ with $v(b)=e^{\gamma_{1} b} \frac{\beta-\mu}{\beta-\mu-\theta}>0$, and hence v is positive on $[0, b]$.

When $(\theta, \mu, b) \in \mathscr{R}_{3}$, Lemma 1 proves that (3.6) has a unique root β on \mathscr{I}_{3}. In this region, $\psi \leq 0$ so $v^{\prime}(x) \geq 0$ for $x \in[0, b]$. Since $v(0)=1, v$ is therefore positive on $[0, b]$.

Case 2: $\quad \Delta<0$.
In this case, (5.1) has two distinct complex roots and v can be written in the form

$$
\begin{equation*}
v(x)=e^{-\frac{\mu}{\sigma^{2}} x}\left[A \cos \left(\frac{\xi x}{\sigma^{2}}\right)+B \sin \left(\frac{\xi x}{\sigma^{2}}\right)\right] \tag{5.2}
\end{equation*}
$$

where $\xi=\sqrt{-\left(\mu^{2}+2 \psi \sigma^{2}\right)}>0$. The boundary conditions $v(0)=1$ and $v^{\prime}(0)=0$ ensure that $A=1$ and $B=\frac{\mu}{\xi}$. The third boundary condition $v^{\prime}(b)=\theta v(b)$ yields the equality

$$
0=\left(\xi^{2}+\mu^{2}+\mu \theta \sigma^{2}\right) \sin \left(\frac{\xi b}{\sigma^{2}}\right)+\xi \theta \sigma^{2} \cos \left(\frac{\xi b}{\sigma^{2}}\right)
$$

from which it follows that (3.7) holds. Lemma 1 establishes that there exists a unique root lying on $\left(0, \frac{\pi \sigma^{2}}{b}\right)$ to (3.7) when (θ, μ, b) lies in either \mathscr{R}_{2} or \mathscr{R}_{4}. Recalling that $\sin (w+v)=\cos (w) \sin (v)+$ $\sin (w) \cos (v)$ for $w, v \in \mathbb{R}$, we can rewrite (5.2) as

$$
v(x)=e^{-\frac{\mu}{\sigma^{2}} x} \sqrt{1+\left(\frac{\mu}{\xi}\right)^{2}} \sin \left(\frac{\xi x}{\sigma^{2}}+\alpha\right)
$$

where $\alpha=\arccos \left(\mu\left(\xi^{2}+\mu^{2}\right)^{-\frac{1}{2}}\right) \in(0, \pi)$. The function v is therefore positive provided that $\frac{\xi b}{\sigma^{2}}+\alpha<\pi$. Given that $0<\frac{\xi b}{\sigma^{2}}, \alpha<\pi$, it is sufficient to prove the inequality $\sin \left(\frac{\xi b}{\sigma^{2}}+\alpha\right)>0$. But this is clear, given that

$$
\begin{aligned}
\sin \left(\frac{\xi b}{\sigma^{2}}+\alpha\right)= & \cos \left(\frac{\xi b}{\sigma^{2}}\right) \sin (\alpha)+\sin \left(\frac{\xi b}{\sigma^{2}}\right) \cos (\alpha) \\
= & \frac{\xi^{2}+\mu^{2}+\mu \theta \sigma^{2}}{\sqrt{\left(\xi^{2}+\mu^{2}+\mu \theta \sigma^{2}\right)^{2}+\xi^{2} \theta^{2} \sigma^{4}}} \cdot \frac{\xi}{\sqrt{\xi^{2}+\mu^{2}}} \\
& -\frac{\xi \sigma^{2}}{\sqrt{\left(\xi^{2}+\mu^{2}+\mu \theta \sigma^{2}\right)^{2}+\xi^{2} \theta^{2} \sigma^{4}}} \cdot \frac{\mu}{\sqrt{\xi^{2}+\mu^{2}}}
\end{aligned}
$$

Case 3: $\quad \Delta=0$.
In this case, $\psi=-\frac{\mu^{2}}{2 \sigma^{2}}$, and v takes the form $v(x)=e^{-\frac{\mu}{\sigma^{2}} x}(A+B x)$. In view of the fact that $v^{\prime}(0)=0$ and $v(0)=1, A=1$ and $B=\frac{\mu}{\sigma^{2}}$. Because $v^{\prime}(b)=\theta v(b)$, we conclude that

$$
v(x)=e^{-\frac{\mu}{\sigma^{2}} x}\left(1+\frac{\mu x}{\sigma^{2}}\right),
$$

which is clearly positive on $[0, b]$.

Proof of Theorem 2

Given the Gärtner-Ellis theorem and the smoothness of ψ, it remains only to prove that there exists a unique root θ_{γ} for each $\gamma>0$. It is straightforward to verify that $\beta(\theta) \sim \sigma^{2} \theta$ as $\theta \rightarrow \infty$, so that $\theta^{-1} \psi(\theta)=\theta^{-1}(\psi(\theta)-\psi(0)) \rightarrow \infty$ as $\theta \rightarrow \infty$. The mean value theorem implies the existence of $\tilde{\theta} \in[0, \theta]$ such that $\psi^{\prime}(\tilde{\theta})=\theta^{-1} \psi(\theta)$ and hence $\overline{\lim }_{\theta \rightarrow \infty} \psi^{\prime}(\theta)=\infty$. On the other hand, it is easily seen that $\psi(\theta)$ is bounded below as $\theta \rightarrow-\infty$, so that $\lim _{\theta \rightarrow \infty} \psi^{\prime}(\theta)=0$. Since ψ^{\prime} is strictly increasing and continuous, this guarantees existence of a unique solution to $\psi^{\prime}\left(\theta_{\gamma}\right)=\gamma$ for each $\gamma>0$.

Lemma 2 Suppose $\mu<0$. Let $f(z)=z^{-1} \log \left(\frac{-\mu+z}{-\mu-z}\right)$.
a.) f is increasing on $(0,-\mu)$.
b.) For $(\mu, b) \in \mathscr{D}_{i}(i=2,4), f(z)>\frac{2 b}{\sigma^{2}}$ for $z>0$.
c.) For $(\mu, b) \in \mathscr{D}_{3}$, there exists a unique root β_{*} in $(0,-\mu)$ satisfying $f\left(\beta_{*}\right)=\frac{2 b}{\sigma^{2}}$.

Note that $f^{\prime}(z)=z^{-2} h(z)$, where $h(z)=-\left(\frac{2 \mu z}{\mu^{2}-z^{2}}+\log \left(\frac{-\mu+z}{-\mu-z}\right)\right)$. So $h(0)=0$ and $h^{\prime}(z)=$ $-\frac{2 \mu z^{2}}{\mu^{2}-z^{2}}>0$. Hence, f is increasing on $(0,-\mu)$. But

$$
\lim _{z \downarrow 0} f(z)=-\frac{2}{\mu} \quad \text { and } \quad \lim _{z \uparrow-\mu} f(z)=\infty .
$$

Hence, for $(\mu, b) \in \mathscr{D}_{i}(i=2,4), f(z)>-\frac{2}{\mu} \geq \frac{2 b}{\sigma^{2}}$ whereas for $(\mu, b) \in \mathscr{D}_{3}$, there exists a unique positive β_{*} root such that $f\left(\beta_{*}\right)=\frac{2 b}{\sigma^{2}}$.

Lemma 3 Let $g(z)=\frac{b z}{\sigma^{2}}+\arccos \left(\frac{\mu}{\sqrt{\mu^{2}+z^{2}}}\right)$
a.) For $(\mu, b) \in \mathscr{D}_{i}(i=1,2)$, there exists a unique root ξ_{*} in $\left(0, \frac{\pi \sigma^{2}}{b}\right)$ satisfying $g\left(\xi_{*}\right)=\pi$. Moreover, $g(z)<\pi$ for $z \in\left(0, \xi_{*}\right)$ and $g(z)>\pi$ for $z \in\left(\xi_{*}, \infty\right)$.
b.) For $(\mu, b) \in \mathscr{D}_{i}(i=3,4), g(z)>\pi$ for $z>0$.

For part a.), consider first the region \mathscr{D}_{1}. Note that $g^{\prime}(z)=\frac{b}{\sigma^{2}}+\frac{\mu}{\mu^{2}+z^{2}}$. If $\mu \geq 0, g^{\prime}(z)>0$ for $z>0$. But

$$
\lim _{z \downarrow 0} g(z)=\left\{\begin{array}{cc}
0, & \text { if } \mu>0 \\
\frac{\pi}{2}, & \text { if } \mu=0
\end{array} \quad \text { and } \quad \lim _{z \rightarrow \infty} g(z)=\infty .\right.
$$

Hence, g has a unique positive root ξ_{*} such that $g\left(\xi_{*}\right)=\pi$.
If $\mu<0, \lim _{z \downarrow 0} g(z)=\pi$ and clearly $g^{\prime}(z)$ is increasing on $(0, \infty)$. Note that

$$
\lim _{z \downarrow 0} g^{\prime}(z)=b \sigma^{-2}+\mu^{-1} \quad \text { and } \quad \lim _{z \rightarrow \infty} g^{\prime}(z)=b \sigma^{-2}>0
$$

Hence, for $(\mu, b) \in \mathscr{D}_{2}$, there exists a unique $\hat{\xi}>0$ such that $g^{\prime}(\hat{\xi})=0$ for which $g(z)$ is decreasing on $(0, \hat{\xi})$ and increasing on $(\hat{\xi}, \infty)$. So there exists a unique $\xi_{*}>0$ such that $g\left(\xi_{*}\right)=\pi$ for which $g(z)<\pi$ for $z \in\left(0, \xi_{*}\right)$ and $g(z)>\pi$ for $z \in\left(\xi_{*}, \infty\right)$. Since the $\arccos (\cdot)$ term of g is in $(0, \pi)$, we conclude that $\xi_{*} \in\left(0, \frac{\pi \sigma^{2}}{b}\right)$.

For part b.), if $(\mu, b) \in \mathscr{D}_{3} \cup \mathscr{D}_{4}, g^{\prime}(z)>g^{\prime}(0+)=b \sigma^{-2}+\mu^{-1} \geq 0$ for $z>0$ and thus $g(z)>\pi$ for $z>0$.

Proof of Proposition 2

Since a solution u satisfies the boundary condition $u(b)=1$, the positivity of u is implied by the decreasing monotonicity. So we need to prove that there exists a decreasing solution to (4.5) if and only if $\theta \in\left(0, \lambda_{0}\right)$.

As in Theorem 1, the solution to the linear differential equation depends critically on the sign of $\Delta=\frac{4\left(\mu^{2}-2 \theta \sigma^{2}\right)}{\sigma^{2}}$, the discriminant of the quadratic equation

$$
\begin{equation*}
\gamma^{2}+\frac{2 \mu}{\sigma^{2}} \gamma+\frac{2 \theta}{\sigma^{2}}=0 . \tag{5.3}
\end{equation*}
$$

If $\Delta \neq 0$, (5.3) has two distinct (possibly complex) roots γ_{1} and γ_{2} and $u(x)=A e^{\gamma_{1} x}+B e^{\gamma_{2} x}$.
For part a.), note that if $\theta \in\left(0, \frac{\mu^{2}}{2 \sigma^{2}}\right), \gamma_{1}=-\frac{\mu+\beta}{\sigma^{2}}$ and $\gamma_{2}=-\frac{\mu-\beta}{\sigma^{2}}$, where $\beta=\sqrt{\mu^{2}-2 \theta \sigma^{2}}>0$. Given the boundary conditions,

$$
\begin{equation*}
u^{\prime}(x)=\frac{\gamma_{1} \gamma_{2}\left(e^{\gamma_{1} x}-e^{\gamma_{2} x}\right)}{\gamma_{2} e^{\gamma_{1} b}-\gamma_{1} e^{\gamma_{2} b}} . \tag{5.4}
\end{equation*}
$$

Clearly, $u^{\prime}(x)<0$ on $[0, b]$ if and only if the denominator is positive. But this is trivial for $(\mu, b) \in \mathscr{D}_{1}$ (since $\gamma_{1}<\gamma_{2}<0$). For $(\mu, b) \in \mathscr{D}_{2}$, note that $\beta \in(0,-\mu)$, from which it follows from Lemma 2 that $\beta^{-1} \log \left(\frac{-\mu+\beta}{-\mu-\beta}\right)>\frac{2 b}{\sigma^{2}}$ (which is equivalent to the positivity of the denominator since $0<\gamma_{1}<\gamma_{2}$ for $\left.(\mu, b) \in \mathscr{D}_{2}\right)$. If $\theta=\frac{\mu^{2}}{2 \sigma^{2}}$,

$$
\begin{equation*}
u^{\prime}(x)=\frac{e^{\frac{\mu}{\sigma^{2}}(b-x)}}{\mu b+\sigma^{2}}\left(-\frac{\mu^{2} x}{\sigma^{2}}\right) \tag{5.5}
\end{equation*}
$$

so that $u^{\prime}(x)<0$ on $[0, b]$ in view of the positivity of $\mu b+\sigma^{2}$ for $(\mu, b) \in \mathscr{D}_{1} \cup \mathscr{D}_{2}$. Finally, for $\theta \in\left(\frac{\mu^{2}}{2 \sigma^{2}}, \lambda_{0}\right)$,

$$
\begin{equation*}
u^{\prime}(x)=\frac{e^{\frac{\mu}{\sigma^{2}}(b-x)}}{\xi \cos \left(\frac{\xi b}{\sigma^{2}}\right)+\mu \sin \left(\frac{\xi b}{\sigma^{2}}\right)}\left(-\frac{\xi^{2}+\mu^{2}}{\sigma^{2}}\right) \sin \left(\frac{\xi x}{\sigma^{2}}\right), \tag{5.6}
\end{equation*}
$$

where $\xi=\sqrt{2 \theta \sigma^{2}-\mu^{2}} \in\left(0, \xi_{*}\right)$. Lemma 3 establishes that $0<\frac{\xi b}{\sigma^{2}}+\varphi<\pi$, where $\varphi=$ $\arccos \left(\frac{\mu}{\sqrt{\xi^{2}+\mu^{2}}}\right)$. Hence, $\xi \cos \left(\frac{\xi b}{\sigma^{2}}\right)+\mu \sin \left(\frac{\xi b}{\sigma^{2}}\right)=\sqrt{\xi^{2}+\mu^{2}} \sin \left(\frac{\xi b}{\sigma^{2}}+\varphi\right)>0$, so that $u^{\prime}(x)<0$ for $x \in[0, b]$.

It remains to show that u is not decreasing when $\theta \geq \lambda_{0}$. Here, $\Delta<0$ and u^{\prime} is given by (5.6), where $\xi \in\left[\xi_{*}, \infty\right)$. If $\xi>\frac{\pi \sigma^{2}}{b}$, then u^{\prime} has mixed sign on $[0, b]$, whereas if $\xi \in\left[\xi_{*}, \frac{\pi \sigma^{2}}{b}\right]$, then
$\frac{\xi b}{\sigma^{2}}+\varphi<2 \pi$, so that Lemma 3 implies that $\xi \cos \left(\frac{\xi b}{\sigma^{2}}\right)+\mu \sin \left(\frac{\xi b}{\sigma^{2}}\right) \leq 0$, so that u is non-decreasing on $[0, b]$.

For part b.), if $\theta \in\left(0, \lambda_{0}\right), u^{\prime}$ is given by (5.4), where $\beta \in\left(\beta_{*},-\mu\right)$. It follows from Lemma 2 that $\beta^{-1} \log \left(\frac{-\mu+\beta}{-\mu-\beta}\right)>\frac{2 b}{\sigma^{2}}$ for $(\mu, b) \in \mathscr{D}_{3}$, so that $u^{\prime}(x)<0$ for $x \in[0, b]$.

For the converse, we now show that u is not decreasing when $\theta \geq \lambda_{0}$. If $\theta \in\left[\lambda_{0}, \frac{\mu^{2}}{2 \sigma^{2}}\right), u^{\prime}$ is given by (5.4), where $\beta \in\left(0, \beta_{*}\right]$. Lemma 2 implies that $\beta^{-1} \log \left(\frac{-\mu+\beta}{-\mu-\beta}\right)$
$\leq \frac{2 b}{\sigma^{2}}$ for $(\mu, b) \in \mathscr{D}_{3}$. Hence, $\gamma_{2} e^{\gamma_{1} b} \leq \gamma_{1} e^{\gamma_{2} b}$, so that u is non-decreasing on $[0, b]$. If $\theta=\frac{\mu^{2}}{2 \sigma^{2}}, u^{\prime}$ is given by (5.5). But clearly $\mu b+\sigma^{2}<0$, so that u is increasing on $[0, b]$. If $\theta>\frac{\mu^{2}}{2 \sigma^{2}}$, u is given by (5.6). Lemma 3 implies that $\frac{\xi b}{\sigma^{2}}+\varphi>\pi$ for $(\mu, b) \in \mathscr{D}_{3}$. With a similar argument as for part a.), we conclude that u is not decreasing.

For part c.), if $\theta<\frac{\mu^{2}}{2 \sigma^{2}}, u^{\prime}$ is given by (5.4), where $\beta \in(0,-\mu)$. Lemma 2 implies that $\beta^{-1} \log \left(\frac{-\mu+\beta}{-\mu-\beta}\right)>\frac{2 b}{\sigma^{2}}$, for $(\mu, b) \in \mathscr{D}_{4}$. Hence, $u^{\prime}(x)<0$ for $x \in[0, b]$.

It remains to show that u is not decreasing when $\theta \geq \lambda_{0}$. If $\theta=\frac{\mu^{2}}{2 \sigma^{2}}, u^{\prime}$ is given by (5.5). For $(\mu, b) \in \mathscr{D}_{4}, b \mu+\sigma^{2}=0$. So u is not decreasing. If $\theta>\frac{\mu^{2}}{2 \sigma^{2}}, u^{\prime}$ is given by (5.6). Lemma 3 implies that $\frac{\xi b}{\sigma^{2}}+\varphi>\pi$ for $(\mu, b) \in \mathscr{D}_{4}$. With a similar argument as for part a.), we conclude that u is not decreasing.

Proof of Theorem 4

With the definitions of λ_{0}, β_{*} and ξ_{*}, one can easily verify the given formula $v(x)$ does satisfy (4.1) with the boundary condition $v(0)=1, v^{\prime}(0)=0$, and $v(b)=0$. So we only check the positivity of $v(x)$ on $[0, b)$ in the following proof.

For part a.), since $\xi_{*} \in\left(0, \frac{\pi \sigma^{2}}{b}\right)$,

$$
v^{\prime}(x)=e^{-\frac{\mu}{\sigma^{2}} x}\left(-\frac{\xi_{*}^{2}+\mu^{2}}{\sigma^{2} \xi_{*}}\right) \sin \left(\frac{\xi_{*}}{\sigma^{2}} x\right)<0 .
$$

For part b.), since $\beta_{*} \in(0,-\mu)$,

$$
v^{\prime}(x)=e^{-\frac{\mu}{\sigma^{2}} x}\left(\frac{\mu^{2}-\beta_{*}^{2}}{\sigma^{2}}\right)\left(e^{-\frac{\beta_{*}}{\sigma^{2}} x}-e^{\frac{\beta_{*}}{\sigma^{2}} x}\right)<0 .
$$

For part c.),

$$
v^{\prime}(x)=e^{-\frac{\mu}{\sigma^{2}} x}\left(-\frac{\mu^{2}}{\sigma^{4}} x\right)<0 .
$$

Therefore, $v(x)>v(b)=0$ for $x \in[0, b)$.

Acknowledgements The authors would like to thank the Isaac Newton Institute for Mathematical Sciences at Cambridge University for its support of a joint visit during which this paper was completed.

References

[1] Anantharam, V.: How large delays build up in a GI/G/1 queue, Queueing Systems - Theory and Applications 5, 345-368 (1989)
[2] Asmussen, S.: Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the G/G/1 queue, Adv. Appl. Probability 14, 143-170 (1982)
[3] Asmussen, S., Pihlsgård, M.: Loss rates for Lévy processes with two reflecting barriers, Math. Oper. Res. 32, 308-321 (2007)
[4] Berger, A. W., Whitt, W.: The Brownian approximation for rate-control throttles and the G/G/1/C Queue, Dynamic Discrete Event Systems: Theory and Applications 2, 7-60 (1992)
[5] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications (2nd ed.), Springer, New York (1998)
[6] Duffield, N. G., O'Connell, N.: Large deviations and overflow probabilities for the general single-server queue, with applications, Math. Proc. Camb. Phil. Soc. 118, 363-374 (1995)
[7] Echeverria, P. E.: A criterion for invariant measure of Markov procsses, Z. Wahrsch. verw. Gebiete. 61, 1-16 (1982)
[8] Ethier, S. N., Kurtz, T. G.: Markov Processes: Characterization and Convergence, Wiley (1986)
[9] Glynn, P. W., Meyn, S. P.: A Liapounov bound for solutions of the Poisson equation, Ann. Prob. 24, 916-931 (1996)
[10] Glynn, P. W., Thorisson, H.: Two-sided taboo limits for Markov processes and associated perfect simulation, Stochastic Process. Appl. 91, 1-20 (2001)
[11] Glynn, P. W., Whitt, W.: Logarithmic asymptotics for steady-state tail probabilities in a single-server queue, J. Appl. Prob. 31A, 131-156 (1994)
[12] Harrison, J. M.: Brownian Motion and Stochastic Flow Systems, Krieger Pub Co. (1985)
[13] Kuczek, T., Crank, K. N.: A large-deviation result for regenerative processes, J. Theo. Prob., 4, 551-561 (1991)
[14] Lalley, S. P.: Limit theorems for first-passage times in linear and non-linear renewal theory, Adv. Appl. Probability 16, 766-803 (1984)
[15] Meyn, S. P., Tweedie, R. L.: Stability for Markovian processes II: continuous-time processes and sampled chains, Adv. Appl. Probability 25, 487-517 (1993)
[16] Sweet, A. L., Hardin, J. C.: Solutions for some diffusion processes with two barriers, J. Appl. Prob. 7, 423-431 (1970)
[17] Williams, R.: Asymptotic variance parameters for the boundary local times of reflected Brownian motion on a compact interval, J. Appl. Prob. 29, 996-1002 (1992)

