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We consider a particular instance of a stochastic multi-leader multi-follower equilibrium problem in which players compete
in the forward and spot markets in successive periods. Proving the existence of such equilibria has proved difficult, as has
the construction of globally convergent algorithms for obtaining such points.

By conjecturing a relationship between forward and spot decisions, we consider a variant of the original game and relate
the equilibria of this game to a related simultaneous stochastic Nash game where forward and spot decisions are made
simultaneously. We characterize the complementarity problem corresponding to the simultaneous Nash game and prove
that it is indeed solvable. Moreover, we show that an equilibrium to this Nash game is a local Nash equilibrium of the
conjectured variant of the multi-leader multi-follower game of interest. Numerical tests reveal that the difference between
equilibrium profits between the original and constrained games are small.

Under uncertainty, the equilibrium point of interest is obtainable as the solution to a stochastic mixed-complementarity
problem. Based on matrix-splitting methods, a globally convergent decomposition method is suggested for such a class of
problems. Computational tests show that the effort grows linearly with the number of scenarios. Further tests show that the
method can address larger networks as well. Finally, some policy-based insights are drawn from utilizing the framework
to model a two-settlement six-node electricity market.

Subject classifications : Nash equilibrium; complimentarity; stochastic programming; decomposition methods.
Area of review : Revenue Management.
History : Received November 2008; revisions received December 2009, April 2010; accepted July 2010.

1. Introduction
The first attempts at deregulation in the electricity sec-
tor were observed in Chile, England, and New Zealand
in the early 1990s (Green and Newbery 1992, Chao and
Huntington 1996). Similar efforts in the United States fol-
lowed suit, particularly in states/control areas of California,
New England, Pennsylvania-Jersey-Maryland (PJM) inter-
change, and New York. One of the difficulties in this pro-
cess has always been deciding between a variety of possible
market designs, primarily because simulating the impact
of such designs is difficult (Schweppe et al. 1988, Wil-
son 2002). Arguably, equilibrium models provide a useful
means of dealing with the oligopolistic structure prevalent
in such markets (Hobbs 1986, Cardell et al. 1997). In addi-
tion, the multiple settlement structure and uncertainty have
made these models large and complex (Kamat and Oren
2004, Yao et al. 2008).

The present work focuses on networked oligopolistic
power markets characterized by a sequence of two settle-
ments. Of these, the first is a financial settlement in which
firms, with generation assets, enter into financial contracts;

it is referred to as the forward market. Subject to these con-
tracts, firms compete in the real-time or spot market, which
is a physical market in which equilibrium generation, sales,
and transmission decisions aid in defining prices and flows.
Note that transmission decisions are made by the grid oper-
ator, referred to as the independent system operator (ISO).1

This paper considers the Nash game played in the forward
market where each firm is strategic with respect to the spot-
market, focusing on the resulting subgame-perfect Nash
equilibrium. Our work, while couched in the context of net-
worked electricity markets, is aimed at general two-period
equilibrium problems under uncertainty with the goal of
addressing of two questions: First, can one provide exis-
tence results for equilibria when at least some of the agents
possess some market power? Second, given the existence of
such equilibria, are there efficient methods for determining
such points? This paper presents existence and uniqueness
results for an approximation to such equilibria and presents
an efficient convergent algorithm for finding such equilibria
if they do indeed exist.

Research in networked equilibrium problems has its
roots in the efforts by Takayama and Judge on spatial price
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equilibria (SPE) (Takayama and Judge 1964). In particular,
under the assumptions of competition and a linear demand
function, the authors show that the problem can be posed
as a convex quadratic program (QP). The equality between
price and marginal cost is an important assumption of an
SPE and was shown not to hold in the presence of spatial
oligopolies as discussed by Harker (1984).

The work in two-settlement markets is founded on the
seminal research by Allaz (1992). One of the findings of
this line of research is that under specified conjectural vari-
ations, the presence of forward markets increases economic
efficiency. In Allaz (1992), the modeling structure is that
firms trade in forward contracts in the first period and sub-
sequently trade on the spot-market in the second period,
in the presence of uncertain demand. It emerges that if
one of the firms does not have access to the forward mar-
ket, then the other agents can use their forward positions
to improve their respective profits. However, if all firms
have access to forward contracts, then the profits for all
firms tend to fall. Allaz and Vila (1993) discuss the infinite-
horizon case and show that in the absence of uncertainty,
market prices tend toward marginal costs.

Our modeling framework is more general than that
adopted by Allaz (1992) in that we allow for quadratic
costs of generation and inequality constrained problems
in the spot-market. As a consequence, the resulting spot-
market equilibrium problems are complementarity prob-
lems instead of linear constraints, and consequently, the
agent problems fall under the category of hard nonconvex
problems called mathematical programs with complemen-
tarity constraints (MPCCS) (Luo et al. 1996). Such con-
straints are generally of the form 0 6 G4x5 ⊥ H4x5 > 01
where ⊥ implies that 6G4x57i6H4x57i = 0 for all i. But
defining a Nash equilibrium in forward decisions is a far
more difficult proposition because it requires solving for
an equilibrium in which each agent solves an MPCC. The
resulting equilibrium is called a Nash-Stackelberg equilib-
rium because it arises from a Nash game between a col-
lection of Stackelberg agents (Sherali et al. 1983), and
the corresponding problem is termed as an equilibrium
problem with complementarity constraints (EPCC). In gen-
eral, an equilibrium to the resulting multi-leader multi-
follower game is neither guaranteed to exist nor known
to be unique; yet, there have been efforts to show that
equilibria to such games do indeed exist. The seminal
paper by Allaz (1992), was preceded by work by Sher-
ali (1984) where the existence and uniqueness statements
were provided in a class of multi-leader multi-follower
games in which a Cournot game was played at both levels.
Su (2007) extended the existence result to accommodate
weaker assumptions on the costs and discussed algorith-
mic schemes. Under a compactness assumption on strat-
egy sets, Hu and Ralph (2007) showed the existence of an
equilibrium to a multi-leader multi-follower game arising
in power markets, while de Miguel and Xu (2009) proved

existence and uniqueness in a similar regime under uncer-
tainty. Algorithms for obtaining such problems are notori-
ously dependent on an initial solution (Cardell et al. 1997,
Hobbs et al. 2000, Yao et al. 2008) and currently possess
no global convergence theory.

Extant theoretical and algorithmic research in the study
of EPCCs is characterized by the absence of algorithms that
are both globally convergent and scalable with respect to
the size of the underlying probability measure. The present
work is motivated by both of these challenges. An inte-
gral part of this paper’s focus lies in addressing uncertainty
in the articulation of the spot-market problem. This might
arise from randomness in the spot prices, or in uncertain
availability of the generation units, or even from variabil-
ity in fuel prices. Consequently, the resulting agent prob-
lems become stochastic MPCCs. The efficient solution of
such problems has gained some attention (see Shanbhag
2006). Most heuristic approaches for solving determinis-
tic versions of such problems have relied on a Jacobi or a
Gauss-Seidel technique. Such approaches require iterating
across agent problems until there is negligible change in
the equilibrium decision (Cardell et al. 1997, Hobbs et al.
2000). In contrast, a centralized approach involves deter-
mining a feasible solution to the collection of first-order
optimality conditions (complementarity problems) of each
of the agents (Su 2005, Leyffer and Munson 2005, Hu and
Ralph 2007, Su 2007). None of the aforementioned meth-
ods currently possesses any global convergence theory. Yao
et al. (2008) also study an active-set approach for solving
equilibrium problems with complementarity constraints and
apply it to a multi-settlement model in electricity markets.
Our contributions overlap with those of Su (2007) from
the standpoint of existence where the author provides a
stronger existence result for a class of spot-forward games.
Additionally, the work by Su (2005) constructs a sequential
method for solving this class of problems via the solution
of a sequence of complementarity problems.

This paper makes the following contributions:
1. First, we consider a constrained form of the original

multi-leader multi-follower game in a two-node setting
and relate it to a simultaneous stochastic Nash equi-
librium problem, in which the first- and second-period
decisions are taken simultaneously. An analysis of the
mixed-complementarity problem corresponding to the Nash
game reveals its solvability. Furthermore, a characterization
of the mapping associated with this problem allows one
to claim the key result that any equilibrium to the simul-
taneous Nash game is also an equilibrium to the conjec-
tured variant of the multi-leader multi-follower game. A
networked generalization of this setting is examined in the
context of a power market where similar characterizations
and relationships are observed.

2. A key benefit of the complementarity-based approach
lies in greater accessibility to the equilibrium point, given
by a solution a stochastic mixed-complementarity prob-
lem. Unfortunately, because the size of the problem can
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grow with the size of ì, the sample-space, standard
techniques for solving such problems (such as pivot-
ing methods, projection-based methods, and Newton-based
schemes) cannot be employed. Instead, we develop a glob-
ally convergent matrix-splitting method for solving such a
class of equilibrium problems. Our scheme is seen to pos-
sess the key property that the computational effort scales
linearly with the size of underlying sample space.

3. Insights from a six-node electricity network are
also provided and correspond well with those from the
literature.

The remainder of this paper has five sections. Sec-
tion 2 introduces the forward market model proposed by
Allaz (1992). In particular, we provide existence theory
for the equilibria associated with the simultaneous stochas-
tic Nash problems and develop both a characterization of
such equilibria and how the equilibria relate to conjectured
Nash-Stackelberg equilibria (NSE). This class of equilibria
refers to Nash equilibria between a set of agents, some of
whom could be Stackelberg leaders with respect to some
set of followers. Section 3 extends the formulation to the
electricity market venue, where extensions of the aforemen-
tioned results are obtained. In §4, a splitting-based decom-
position method is presented for solving such a class of
stochastic equilibrium problems along with some computa-
tional results. Since the discussion of forward markets has
been carried out in the context of electricity markets, some
insight is provided from a six-node electricity market in §5.
We conclude in §6.

2. Modeling Spot-Forward Markets
Consider a simple two-node market in which there are
n generating firms operating at node 1. It is assumed that
each firm sells as much as it generates. Each firm may sell
its power at node 2 across a transmission line connecting
the two nodes. The price of power at node 2 is given by

p� 2= a�
−
∑

i

g�i 1

where g�i is the generation level of firm i for a realiza-
tion �, and a� is the random intercept of the price function.
Specifically, � lies in the sample-space ì. The generation
cost for firm i is assumed to be linear and is given by
cig

�
i . If firm i’s forward position is denoted by fi, then its

profit �i (given by the sum of the forward-market profit
and the expected spot-market profit) is given by

�i 2= pf fi + Ɛ4p�
s 4g

�
i − fi5− cig

�
i 51 (1)

where pf is the price in the forward-market. If we assume
perfect foresight in the specification of forward prices, then
we have pf = Ɛp�, and the resulting profit function �i can
be written as Ɛ44p�−ci5g

�
i 5. This is a commonly employed

assumption in such settings (cf. Pieper 2001, Yao et al.
2008, Su 2007), and one basis for such an assumption lies

Table 1. List of variables and parameters.

Definition

i Firm index
� Scenario index
fi Forward position of firm i (single-node case)
g�i Generation level of firm i under scenario �

p
f
j Price in forward-market at node j

a
f
j Linear intercept of forward price function at node j

p�
j Price in spot-market at node j under scenario �

a�
j Linear intercept of spot price function at node j

under scenario �
c�i Linear cost of generation of firm i under scenario �
d�
i Quadratic cost of generation of firm i under scenario �

s�ij Sales level from firm i to node j under scenario �
fij Forward position of firm i at node j
G�

i Capacity of generator i under scenario �
C�

ij Line capacity of link 4i1 j5 under scenario �
w�

ij Transmission price across link 4i1 j5 under scenario �
y�ij Transmission flow across link 4i1 j5 under scenario �

K Number of scenarios
p�j Probability of scenario j
I1 e Identity matrix and column of ones

in the belief that there are enough risk-neutral arbitrageurs
that will trade to remove any possible profit opportunities
that exist between the forward and expected spot prices.
We recap the variables and parameters of the model in
Table 1 and note that when addressing the two-node prob-
lem, the nodal subscript is suppressed when specifying the
price function.

2.1. The Spot-Market Equilibrium

In the spot-market, under realization �, agent i maximizes
his profit given forward positions fi and the generation
decisions of all other agents in scenario �, often compactly
denoted by g−i1�, as shown by the following parameterized
optimization problem:

AgSpot�i 4g
−i1�5 maximize

g�i >0
4p�

s 4g
�
i − fi5− cig

�
i 50

We define a scenario-specific spot-market game and its
associated equilibrium as follows.

Definition 1 (Scenario-Specific Spot-Market Game).
Given the forward positions of firms 11 0 0 0 1 n denoted
by 4f11 0 0 0 1 fn5, consider a game G�

Spot in the spot-market
associated with scenario � where the ith firm solves
the parameterized optimization problem 4AgSpot�i 4g

−i1�55.
Then the associated scenario-specific spot-market equilib-
rium is given by 8g∗

i 9
n
i=1, where g∗

i = 4g�i 5
∗ for all � ∈ ì,

and 4g�i 5
∗ solves 4AgSpot�i 4g

∗1�
−i 55.

Because this is a convex problem in g�i , the equilibrium
point is given by a linear complementarity problem LCP�

1 ,
for each � ∈ì:

LCP�
1 06 g�i ⊥ 2g�i +

∑

j 6=i

g�j − fi + 4c�i − a�5> 01 ∀ i0
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The existence and uniqueness of this scenario-specific spot-
market equilibrium can be supported by Proposition 2.

Proposition 2. Consider the scenario-specific spot-market
game given by G�

Spot . Then, given a set of forward deci-
sions f , G�

Spot admits a unique equilibrium.

Proof. This follows from observing that the LCP�
1 can be

written as

06 g� ⊥M�g� + q� > 01

where M� = I + eeT , I denotes the identity matrix,
e denotes the column of ones, g� = 4g�1 1 0 0 0 1 g

�
n 5

T , and
q� = 4c�1 − a� − f11 0 0 0 1 c

�
n − a� − fN 5

T . Because M is a
positive definite matrix, it follows from Cottle et al. (1992,
Theorem 3.1.6) that a unique solution to the LCP�

1 always
exists. �

2.2. Nash-Stackelberg Equilibria (NSE)

A Nash-Stackelberg equilibrium in this setting refers to an
equilibrium in forward contracts subject to equilibrium in
the spot-market (as specified by LCP�

1 for all � ∈ì). The
ith firm then solves (AgFori) in g and fi while taking all
the other forward positions f −i as parameters:

AgFori4f
−i5 maximize

g>01 fi
Ɛ44p�

s − ci5g
�
i 51

subject to 06 g�i ⊥ 2g�i +
∑

j 6=i

g�j − fi

+ 4c�i − a�
s 5> 01 ∀ i1�0

The problem (AgFori) is a mathematical program with
complementarity (or equilibrium) constraints or MPCC (or
MPEC) (Luo et al. 1996). Apart from the complementarity
constraint being nonconvex, it also lacks an interior, imply-
ing that the Mangasarian-Fromovitz constraint qualifica-
tion (Bertsekas 1999) does not hold at any feasible point.
The resulting Nash-Stackelberg equilibrium is defined as
follows.

Definition 3 (Forward-Market Game). Consider a
game in the forward-market, denoted by GFor , where
given f −i, the ith firm solves the parameterized optimiza-
tion problem 4AgFori4f

−i55 for all i = 11 0 0 0 1 n; and sup-
pose its associated equilibrium problem be denoted by
(EPCC1). Then the associated Nash-Stackelberg equilib-
rium of GFor in forward decisions is a tuple 8f ∗

i 9
n
i=1, such

that for all i = 11 0 0 0 1 n, 4g1 f ∗
i 5 is a solution to the ith

agent’s Stackelberg problem 4AgFori4f
−i1∗55.

Such a game is a multi-leader multi-follower game and
recently has been termed an equilibrium problem with
equilibrium (complementarity) constraints or an EPEC (or
EPCC). The nonconvexity and ill-posedness of each gen-
erator’s problem in the previous approach is problematic
and implies that existence and uniqueness questions are
less easily answered. Furthermore, there are currently no

globally convergent algorithms available for obtaining such
equilibrium points.

Commonly used approaches include a Gauss-Seidel
approach that solves each generator’s problem and passes
the solution to the next generator in hope that the iter-
ates converge to an equilibrium point (Cardell et al.
1997, Hobbs et al. 2000, Pieper 2001). Scholtes (2001)
shows that such approaches could result in cycling. Apart
from the lack of convergence theory supporting such an
approach, the stochasticity in the problems requires the
employment of stochastic nonlinear programming methods
for solving the agent problems (see Shanbhag 2006 for
recent work on the solution of stochastic MPCCs). More
recently, algorithmic work on such problems has centered
on complementarity-based approaches (Leyffer and Mun-
son 2005; Su 2005, 2007; Hu and Ralph 2007) and active-
set approaches Yao et al. (2008). In particular, the work by
Su (2005) employs a novel scheme that solves a sequence
of complementarity problems. Each complementarity prob-
lem is parameterized by a regularization parameter that cor-
responds to a relaxation of the complementarity constraints
of each agent’s problem (an MPCC). By driving this reg-
ularization parameter to zero, this algorithm constructs a
sequence that is shown to converge to an equilibrium point,
under the assumption that the starting point is in a neigh-
borhood of the solution. This is one of the first algorithms
that provides local convergence properties. The same algo-
rithm has been shown to be successful in the solution of
EPCCs arising from two-period spot-forward markets (Su
2007). The work by Hu and Ralph (2007) uses a similar
framework in which the complementarity formulation of
the EPCC is solved via PATH (Dirkse and Ferris 1993).

It should be emphasized that apart from the absence
of rigorous global convergence theory for obtaining solu-
tions to equilibrium problems with equilibrium constraints
(EPECs), the schemes are characterized by an inability to
cope with the size of the underlying problems arising from
the scenario-based model. Therefore, in considering the
development of an appropriate solution methodology, we
concentrate on convergent scalable schemes, and this rep-
resents the focus of §4.

In general, the model suggested above does not prescribe
a functional specification for forward prices. Our intent is to
construct a modified Nash-Stackelberg equilibrium problem
in which each agent’s optimization problem is further con-
strained by the risk-neutrality constraint in a setting where
forward prices are determined by an affine function

pf
= af

−

n
∑

i=1

fi1

and the resulting risk-neutrality constraint is given by

(

af
−

n
∑

i=1

fi

)

= Ɛ�

(

a�
−

n
∑

i=1

g�i

)

0 (2)
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Consequently, in the forward-market, the ith agent solves
the following modification of Agfori4f −i5:

AgForcon
i 4f −i5

maximize
g>01 fi

Ɛ44p�
s − ci5g

�
i 5

06 g�i ⊥ 2g�i +
∑

j 6=i

g�j − fi + 4c�i − a�
s 5> 01

∀ i1�1

subject to
(

af
−

n
∑

i=1

fi

)

= Ɛ�

(

a�
−

n
∑

i=1

g�i

)

0

The resulting conjectured Nash-Stackelberg game is
defined as follows.

Definition 4 (Conjectured Forward-Market Game).
Consider a game in the forward-market, denoted by Gcon

For ,
where given f −i, the ith firm solves the parameterized opti-
mization problem 4AgForconi 4f −i55 for all i = 11 0 0 0 1 n; and
suppose its associated equilibrium problem is denoted by
(EPCC2). Then the associated Nash-Stackelberg equilib-
rium of Gcon

For in forward decisions is a tuple 8f ∗
i 9

n
i=1, such

that for all i = 11 0 0 0 1 n, 4g1 f ∗
i 5 is a solution to the ith

agent’s Stackelberg problem 4AgForconi 4f −i1∗55.

This modification can be motivated in several ways, two
on which we elaborate.

Table 2. Comparison of Nash-Stackelberg equilibria.

�ì� af �f con − f ��/1 + �f �� 4�con
1 −�15/1 + ��1�� 4�con

3 −�35/1 + ��3�� 4�con
6 −�65/1 + ��6�� ��con −���/1 + ����

1 1 100e−02 −208e−05 105e−05 −807e−08 208e−05
2 1 101e−01 602e−04 −100e−03 −103e−03 302e−03
3 1 207e−01 800e−04 −506e−03 −606e−03 103e−02
4 1 302e−01 −103e−02 −905e−03 −409e−03 103e−02
5 1 504e−03 207e−05 201e−04 104e−04 206e−04
6 1 708e−04 −106e−05 −208e−07 105e−06 205e−05
7 1 200e−01 −501e−03 −800e−03 −405e−03 803e−03
8 1 404e−01 −103e−03 −203e−02 −909e−03 307e−02
9 1 301e−01 509e−03 −501e−03 −107e−02 107e−02

10 1 507e−01 −204e−03 −403e−02 −101e−02 407e−02
1 10 904e−03 −201e−05 108e−05 −709e−08 202e−05
2 10 307e−01 101e−02 209e−04 −706e−03 101e−02
3 10 408e−01 −700e−03 −304e−02 −104e−02 304e−02
4 10 601e−01 −109e−02 −106e−02 −103e−02 308e−02
5 10 602e−03 400e−05 303e−04 106e−04 303e−04
6 10 202e−01 305e−03 −208e−03 −701e−03 100e−02
7 10 600e−01 905e−03 −106e−02 −301e−02 307e−02
8 10 506e−01 −408e−03 −205e−02 −104e−02 400e−02
9 10 406e−01 102e−02 −403e−03 −300e−02 300e−02

10 10 602e−01 −207e−03 −406e−02 −102e−02 409e−02
1 20 505e−02 102e−04 −101e−04 202e−07 106e−04
2 20 701e−01 −703e−03 −405e−02 −104e−02 405e−02
3 20 601e−01 −803e−04 500e−03 −103e−02 103e−02
4 20 909e−01 −207e−03 −407e−02 −505e−02 703e−02
5 20 103e−01 −200e−03 −108e−03 −302e−03 302e−03
6 20 500e−01 801e−03 −806e−03 −109e−02 204e−02
7 20 704e−01 606e−03 −307e−02 −406e−02 507e−02
8 20 803e−01 305e−03 −500e−02 −308e−02 706e−02
9 20 708e−01 −200e−02 −604e−02 −400e−02 604e−02

10 20 706e−01 400e−03 −407e−02 −204e−02 504e−02

1. Affine forward price functions: In certain settings,
market designers might have more information regarding
the nature of forward prices, particularly that these prices
are given by an affine relationship with forward positions.
Adding the constraint (2) ensures that such a relationship
is respected. In such cases, our constrained model would
indeed be appropriate.

2. Conjectural approximation: In the absence of such
information, making an affine assumption on forward prices
allows for providing existence theory and scalable algo-
rithms (as the remainder of the paper shows). The results
would then pertain to a constrained or conjectural version
of the original Nash-Stackelberg equilibrium problem and
represent an approximation.

The remainder of this section provides some evidence
that the solutions to the Nash-Stackelberg problem and its
conjectural variant are very close in some settings. Table 2
represents a comparison of equilibria obtained via the two
models for the model described in this section. We assume
that a� is given by N4100125 where N40115 is a normally
distributed random variable with mean zero and variance
one. The random cost is given by a random variable of
N410155. The intercept of the forward price function is
varied to evaluate the impact on the forward positions and
the equilibrium profits. Table 2 shows the difference in
equilibria for af = 1, 10, and 20. For each value of af , the

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

12
.1

72
.1

26
] 

on
 0

6 
Ja

nu
ar

y 
20

17
, a

t 1
1:

37
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Shanbhag, Infanger, and Glynn: Forward Contracting Under Uncertainty
Operations Research 59(4), pp. 810–834, © 2011 INFORMS 815

number of scenarios is raised from 1 to 10, to examine the
impact of uncertainty. We find that there is no clear trend
that relates relative difference to growth in uncertainty.
Across the three choices of af , the relative difference in for-
ward positions does not change significantly. Importantly,
the deviation in equilibrium profits (in the �-norm) stays
reasonably modest reaching a maximum level of 7%. The
deviation in forward positions, expectedly, is a little higher
but does not exceed 10%. What can also be observed is that
while agent-specific profits differ slightly, the changes are
often in the same direction. If they are in opposite direc-
tions, then the norms of such a change are generally small
(as seen with �ì� = 2, af = 1, for instance). It should
be emphasized that these insights pertain to this particular
model and more definitive statements can be made only by
providing theoretical underpinnings.

2.3. Simultaneous Stochastic Nash Equilibria
(SSNEs)

The previous subsection presented a modified Nash-
Stackelberg equilibrium problem, which we will refer to
as an NSE. In this section, we construct a stochastic Nash
game, in which the first- and second-period decisions are
taken simultaneously with the intent of relating equilib-
ria arising from this class of games to those arising from
the original multi-leader multi-follower game. The resulting
equilibrium, referred to as a simultaneous stochastic Nash
equilibrium or an SSNE, is defined next.

Definition 5 (Simultaneous Stochastic Nash Equilib-
rium (SSNE)). Consider the simultaneous stochastic Nash
game, denoted by GSSNE , in which the ith firm solves the
parameterized optimization problem AgSSNi4f 1 g

−i5:

AgSSNi4f 1 g
−i5 maximize

g�i >01∀�∈ì
Ɛ4p�

s 4g
�
i − fi5− c�i g

�
i 51

while forward decisions f are specified as per the risk-
neutrality constraint (2). Then the associated simultaneous
stochastic Nash equilibrium (SSNE) is given by a tuple
4g∗

i 1 f
∗
i 5

n
i=11 where firm i solves 4AgSSNi4f 1 g

−i55 while
the forward decisions are constrained by (2).

The equilibrium conditions corresponding to GSSNE are
given by

06 g� ⊥M�g� − f + 4c� − a�e5> 01 ∀� ∈ì1
(

af
−

n
∑

i=1

fi

)

= Ɛ�

(

a�
−

n
∑

i=1

g�i

)

0

By creating n−1 identical copies of the risk-neutrality con-
straints, the resulting equilibrium conditions can be com-
pactly restated as a square mixed linear-complementarity
problem (SSNE-CP):

SSNE-CP 06 g ⊥Mg +Nf + 4b− a5> 01

Wf = Ŵ g +d1

where W = eeT 1 Ŵ =
(

p�1
W 0 0 0 p�K

W
)

1

d =







4af − Ɛa�5
000

4af − Ɛa�5







1 4b− a5=







b̄1 − a�1e
000

b̄K − a�Ke







1

b̄k
=







c
�1
1
000

c�1
n







1

M =







M�1

0 0 0

M�K







=







I + eeT

0 0 0

I + eeT







1

and N = −







I
000

I







0 (3)

The equilibrium conditions of this problem are identical to
the joint feasibility set of each agent’s problem in the Nash-
Stackelberg equilibrium problem when constrained by an
affine forward price conjecture, as the next result specifies.

Lemma 6. Consider a solution 4g1 f 5 to the mixed-
complementarity problem (SSNE-CP). Then for i =

11 0 0 0 1 n, the tuple 4g1 fi5 is a feasible solution to
4AgForcon

i 4f −i55.

Proof. Follows immediately. �

Clearly, all NSEs arising from Gcon
For are SSNEs. Expect-

edly, the reverse characterization does not always hold. In
attempting to prove precisely such a relationship, the ques-
tion of the existence of an SSNE will be approached by
showing that the equilibrium conditions (sufficient) admit
a solution. This may be attempted through a null-space
approach. This relies on the elimination of (2), which can
be compactly written as

Wf f = Ŵf g + af
− Ɛ�a

�1

where Wf = eT and Ŵf = −
(

p�1eT 0 0 0 p�KeT
)

0

Let YW denote an orthonormal basis for the range-space
of W T

f while ZW denotes an orthonormal basis for the
null-space of W T

f , respectively. It follows that f can be
expressed as ZW fZ + YW fY . By noting that 4WfYW 5 is a
square positive definite matrix, fY = 4WfYW 5

−14YW 4Ŵf g +

af −Ɛ�a
�550 It follows that the complementarity constraint

in (SSNE-CP) is given by

06g⊥4M+NYW 4WfYW 5
−1Ŵf 5

︸ ︷︷ ︸

M̂1

g

+4NZW fZ+d+NYW 4WfYW 5
−14af

−Ɛ�a
�55

︸ ︷︷ ︸

q1

>00 (4)
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Because Wf = eT , YW is given by 41/
√
n5e1 and WfYW =

41/
√
n5eT e =

√
n0 It follows that NYW 4WfYW 5

−1Ŵ and M̂1

are given by

NYW 4WfYW 5
−1Ŵf = −

1
n







I
000

I







e
(

p�1eT 0 0 0 p�KeT
)

= −
1
n







p�1eeT 0 0 0 p�KeeT

000
0 0 0

000

p�1eeT 0 0 0 p�KeeT







1

M̂1 2=







I + eeT

0 0 0

I + eeT







−
1
n







p�1eeT 0 0 0 p�KeeT

000
000

p�1eeT 0 0 0 p�KeeT







1 respectively0 (5)

It should be emphasized that the above discussion would
have been far simpler if we had used the explicit forms
for YW and ZW . However, our goal was to provide an anal-
ysis that could conceivably be extended to accommodate
general price conjectures. We may now analyze whether
an SSNE can be shown to always exist by analyzing the
complementarity problem given by (4).

Proposition 7 (Existence of an SSNE). Consider the
simultaneous stochastic Nash game denoted by GSSNE .
Then GSSNE always admits an equilibrium.

Proof. The sufficient equilibrium conditions of GSSNE are
given by (SSNE-CP), and it suffices to show that this
mixed-complementarity problem always admits a solu-
tion. But this mixed CP may be reduced to a pure LCP,
denoted by (4), and it remains to show that for any fZ the
LCP4q14fZ51 M̂15 is solvable where M̂1 is given by (5). If
eT xi is denoted by x̄i for all i, then the positive definiteness
of M̂1 can be expressed as follows:

xT M̂1x =







x1
000

xK







T 











I + eeT

0 0 0

I + eeT







−
1
n







p�1eeT 0 0 0 p�KeeT

000
000

p�1eeT 0 0 0 p�KeeT



















x1
000

xK







=

K
∑

i=1

4�xi�
2
+ x̄2

i 5−
1
n

K
∑

i=1

p�i x̄2
i

−
1
n

K
∑

i=1

∑

j 6=i

4p�i +p�j 5x̄T
i x̄j

>
K
∑

i=1

44�xi�
2
+ x̄2

i 5−
1
n

K
∑

i=1

p�i x̄2
i

−
1

2n

K
∑

i=1

∑

j 6=i

4p�i +p�j 54x̄2
i + x̄2

j 51

because x̄2
i + x̄2

j > 2x̄j x̄i. Further analysis reveals that the
expression on the right can be simplified as follows:

K
∑

i=1

4�xi�
2
+ x̄2

i 5−
1
n

K
∑

i=1

p�i x̄2
i −

1
2n

K
∑

i=1

∑

j 6=i

4p�i +p�j 54x̄2
i + x̄2

j 5

=

K
∑

i=1

(

�xi�
2
+ x̄2

i −
1
n
p�i x̄2

i −
1

2n

(

4K−15p�i +
∑

j 6=i

p�j
)

x̄2
i

)

0

Further simplification shows that the right-hand side can
be expressed as

=

K
∑

i=1

(

�xi�
2
+ x̄2

i −
1
n
p�i x̄2

i −
1

2n
44K − 25p�i + 15x̄2

i

)

=

K
∑

i=1

(

�xi�
2
+ x̄2

i −
1
n
p�i x̄2

i −
41 + 4K − 25p�i5

2n
x̄2
i

)

=

K
∑

i=1

(

�xi�
2
+ x̄2

i −
41 + 4K − 45p�i5

2n
x̄2
i

)

0

Therefore, we have that

K
∑

i=1

�xi�
2
+

K
∑

i=1

(

1 −
41 + 4K − 45p�i5

2n

)

x̄2
i

>
K
∑

i=1

�xi�
2
+

(

min
i∈8110001N 9

x̄2
i

)

K
∑

i=1

(

1 −
41 + 4K − 45p�i5

2n

)

︸ ︷︷ ︸

Term 1

0

Because p�i 6 1 for i = 11 0 0 0 1K, term 1 can be shown to
be nonnegative as per

K
∑

i=1

(

1 −
41 + 4K − 45p�i5

2n

)

>K
42n− 15

2n
−

4K − 45
2n

=
2K4n− 15+ 4

2n
> 00

It follows that

K
∑

i=1

�xi�
2
+

(

min
i∈8110001N 9

x̄2
i

)

K
∑

i=1

(

1 −
41 + 4K − 45p�i5

2n

)

>
K
∑

i=1

�xi�
2 > 01

implying that M̂1 is positive definite and LCP4q14fZ51M15
is solvable for all fZ by Theorem 3.1.6 of Cottle et al.
(1992). It follows that (SSNE-CP) admits a solution, and
the simultaneous stochastic Nash equilibrium problem is
solvable. �
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We conclude this subsection with a characterization
of the mapping pertaining to complementarity problem
(SSNE-CP). This problem can be viewed as a complemen-
tarity problem CP4C1 F 5 where C, a closed convex cone,
and F , the associated mapping, are defined as

C 2=�Kn
+

×�n and F 4g1 f 5 2=

(

Mg +Nf + 4b− a5

−Ŵ +Wf −d

)

0

(6)

The complementarity problem CP4C1 F 5 requires an x sat-
isfying

C 3 x ⊥ F 4x5 ∈ C∗1 (7)

where C∗ = 8U 2 uT x > 01 x ∈ C90 Note that by showing
that characterizing F as a P0 mapping is of particular rele-
vance in the next section, where we attempt to relate SSNEs
to NSEs.

Lemma 8. Consider the complementarity problem
CP4C1 F 5, corresponding to (SSNE-CP), where C and F
are defined in (6). Then F is a P0 mapping over C.

Proof. Recall from Proposition 3.5.9 of Facchinei and
Pang (2003) that F is a P0 mapping over a Cartesian set C
if ïF 4x5 is a P0 matrix for all x ∈ C. Note that the carte-
sian nature of C follows trivially. Showing that ïF is a P0

matrix requires proving that every principal minor of ïF
has a nonnegative determinant. By the definition of F , the
Jacobian ïF is given by

ïF =













M1 −I
0 0 0

000

MK −I

−p�1W 0 0 0 −p�KW W













1

where Mi ∈ �n×n for i = 11 0 0 0 1 n and W ∈ �n×n0 Con-
sider any principal submatrix denoted by G�� where � =
⋃K+1

i=1 �i ⊆ 811 0 0 0 1 4K + 15n91 and �i are nonoverlapping
index sets. We prove the required result by proving the
nonnegativity of the determinants corresponding to the fol-
lowing mutually exclusive cases:

1. Suppose �K+1 = ∅, implying that � ⊆ 811 0 0 0 1 nK9
and G�� is a submatrix of a positive definite matrix. Con-
sequently, G�� is positive definite and det4G��5 > 00

2. Suppose
⋃K

i=1 �i = ∅ and � ⊆ 8nK + 11 0 0 0 1
n4K+1590 Then G�� is a principal submatrix of W , a pos-
itive semidefinite matrix, and det4G��5> 0.

3. Suppose � is such that G�� contains multiple rows of
the system

(

−p�1W 0 0 0 −p�K W W
)

1 (8)

or ��K+1�> 1. Then, at least two rows of G�� are identical
and det4G��5 = 00 It remains to show that det4G��5 > 0
when G�� contains a single row from (8) or ��K+1� = 10

Suppose M�j�j
represents the principal submatrix of Mj

with index set �j and W�K+1�j
represents the submatrix of

W specified by row and column index sets specified by
�K+1 and �j . If I�j�K+1

is defined analogously, then the
determinant of G�� is specified by

det4G��5=

K
∏

i=1

det4M�i�i
5

·

(

1 −

K
∑

j=1

p�j 4W�K+11�j
4M�j�j

5−14I�j�K+1
5

)

0

Note that I�j�K+1
is a column of the identity matrix and

M−1
�j�j

= 4Ij −41/41 + nj55eje
T
j 5, where Ij and ej denote the

identity matrix and the column of ones in �nj×nj and �nj ,
respectively, where nj = ��j �. Furthermore, by recalling that
W�K+1�j

= eTj and 4A5i denotes the ith column of A, then it
follows that

K
∑

j=1

p�jW�K+11�j
4M�j�j

5−14I�j�K+1
5

=

K
∑

j=1

p�j eTj

(

Ij −
1

nj + 1
eje

T
j

)

�j

=

K
∑

j=1

p�j

(

1 −
nj

nj + 1

)

< 10

Finally, det4G��5 > 0 because det4M�j�j
5 > 0 for all j =

11 0 0 0 1K0 �

2.4. SSNEs and NSEs

In the previous subsection we showed that simultane-
ous stochastic Nash equilibria exist. Yet the relationship
between SSNEs and NSEs requires a closer examination.
In particular, we consider the natural question: when is an
SSNE, corresponding to GSSNE , an NSE of Gcon

For? Recall
that an NSE requires that every agent solves a Stackelberg
problem or a mathematical program with complementarity
constraints. The remainder of this section focuses on prov-
ing when an SSNE is indeed an NSE.

Recall that the SSNE requires the solution of the fol-
lowing mixed-complementarity problem while the NSE is
given by an equilibrium problem with complementarity
constraints denoted by (EPCC2). In particular, the EPCC of
interest represents an equilibrium problem in forward deci-
sions fi in which agent i solves AgForcon

i 4f −i5. It might
be recalled from Lemma 6 that a feasible point to all the
agent problems in (AgForcon

i 4f −i5) is given by a solution to
(SSNE-CP).

The main result of this section states that any equilibrium
of GSSNE is an equilibrium to GCon

For . This requires an inter-
mediate result that relates to the complementarity problem
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arising in each agent’s problem. This agent-specific com-
plementarity problem is denoted by CP4Ci1 Fi5, where

Fi4xi3 x
−i5 2=

(

M Ni

−eT 1

)(

g

fi

)

+







b− a+N f̄ −i

−
∑

j 6=i

fj −d







1

xi 2=

(

g

fi

)

1 Ci 2=�Kn
+

×�1 f̄ −i
j =







fj1 j 6= i

01 j = i
1

(9)

and Ni is the ith column on N . We begin by providing a
characterization of the agent-specific feasible region arising
in AgForconi 4f −i5.

Lemma 9. Consider the parameterized agent-specific prob-
lem 4AgForconi 4f −i55 where the feasible region is given
by the complementarity problem CP4Ci1 Fi5, defined in (9)
and (7). Then Fi is a P−mapping over Ci.

Proof. We employ a proof similar to that provided in
Lemma 8. We begin by recalling that every principal sub-
matrix of ïFi is a principal submatrix of ïF , defined in the
proof of Lemma 8. However, we observe from Lemma 8
that every principal submatrix has a nonnegative determi-
nant. It suffices to show that every principal submatrix has
a strictly positive determinant because every index set �
is given by

⋃K+1
i=1 �i and �K+1 has a cardinality of one.

In effect, when considering case (2) from the proof of
Lemma 8, the submatrix is 1 × 1 matrix given by 1 and
trivially has a positive determinant. Because all other prin-
cipal submatrices lead to positive determinants, the required
result follows. �

Utilizing this result, we now prove that every equilibrium
of Gssne is an equilibrium of Gcon

For 0

Theorem 10 (Existence of an NSE to Gcon
For ). Suppose

4g1 f 5 is an equilibrium of Gssne. Then 4g1 f 5 is a local
Nash equilibrium of Gcon

For and a solution of (EPCC2). Fur-
thermore, an equilibrium of Gcon

For always exists.

Proof. This follows from noting that for i = 11 0 0 0 1 n,
given f −i, the feasible region of 4AgForicon4f

−i55 is a sin-
gleton. In particular, if this holds, then 4g1 fi5 is trivially a
local minimizer of 4AgForconi 4f −i55. It remains to show that
given f −i, the feasible region of each of the agent problems
is indeed a singleton. But, given an f −i, the complementar-
ity problem corresponding to each agent has a P-mapping.
It follows from (Facchinei and Pang 2003, Theorem 3.5.10)
that at most one solution to this problem exists. However,
we know that 4g1 fi5 is a feasible solution to this problem,
given f −i because 4g1 f 5 is a solution to (SSNE-CP). It
can therefore be concluded that the feasible region of each
agent’s problem is indeed a singleton. Because (SSNE-CP)
is always solvable, the existence of an equilibrium to Gcon

For

is always guaranteed. �

3. Networked Electricity
Spot-Forward Markets

Section 2 introduced a two-node spot-forward market model
in a simple setting with n producers and infinite capacities.
In this section, we place the problem in the context of elec-
tricity markets and consider a two-settlement problem, in
which participants trade in the forward- and spot-markets
in subsequent periods. Generally, only physical linkages
between nodes or buses are considered, and this node-
linkage specification is denoted by the node-admittance
matrix. The admittance characteristics of the linkages are
articulated through the branch-admittance matrix. Our anal-
ysis is restricted to high-voltage transmission systems,
allowing us to assume that the voltage angles are small and
the voltage magnitudes are constant. Moreover, the losses
are considered to be negligible. The resulting power flow
equations are often termed DC load flow equations. Further
details can be found in Schweppe et al. (1988). Throughout
our analysis, we use DC load flow analysis to specify flows.

3.1. Spot-Market Equilibrium

Consider an n-node network with a firm at each node. We
assume that firm i has a generator at node i but might sell to
all other nodes in the network (we assume a fully connected
grid but this assumption is without loss of generality). The
sales by firm i (housed at node i) to node j are denoted by
sij . We collectively denote the sales decisions by firm i by
si1 0 = 4s�i11 0 0 0 1 s

�
in5. In addition, s�

−i refers to the sales deci-
sions of all agents except i, namely, 4s�j1 01 j 6= i5. Suppose
that the nodal demand function at node j under realization
� is given by

p�
j 4s01 j5 2= a�

j −
∑

i

s�ij 0 (10)

Suppose firm i generates g�i units of power and sells s�ij
units of power to node j under realization �. We also
denote the forward purchases of firm i at node j by fij .
Also, the capacity on sales and generation is denoted by
C�

ij and G�
i . The capacity and conservation constraints are

given by g�i 6 G�
i and g�i =

∑

j s
�
ij , respectively. We may

eliminate the generation variable g�i by using the conserva-
tion constraints to obtain a reduced model:

nAgSpot�i 4s
�
−i1 01 f 5 maximizes�i1 0 h4s�i1 05

G�
i −

∑

j

s�ij > 02 ��
i 1

subject to s�ij > 02 ��
ij ∀ j

C�
ij − s�ij > 02 ��

ij 1 ∀ j1

where h4s�i1 05 is defined as

h4s�i1 05 2= p�
i 4si1 054s

�
ii − fii5

︸ ︷︷ ︸

Net revenue from local sales

+
∑

k 6=i

4p�
k 4s

�
k1 05+w�

ik54s
�
ik − fik5

︸ ︷︷ ︸

Net revenue from networked sales with transmission costs
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− c�i
∑

j

s�ij −
1
2
d�
i

(

∑

j

s�ij

)2

︸ ︷︷ ︸

Linear and quadratic costs of generation

0

Note that w�
ik is sign-unconstrained, and firms may obtain

revenue or pay a charge contingent on its sign. The opti-
mality conditions of this problem are given by

06 s�ii ⊥ 42 +di5s
�
ii

+
∑

k 6=i

s�ki − fii +��
i +��

ii + c�i − a�
i > 01 ∀ i

06 s�ij ⊥ 42 +di5s
�
ij

+
∑

k 6=i

s�kj −w�
ij −fij +��

i +��
ij +c�i −a�

i >01 ∀j 6= i1∀ i1

06 ��
i ⊥G�

i −
∑

j

s�ij > 01 ∀ i

06 ��
ij ⊥C�

ij − s�ij > 01 ∀ j 6= i1 ∀ i

for all � ∈ì0 The net flow across linkage 4ij5 during real-
ization � is given by

y�ij = s�ij − s�ji1 ∀ j1 i0 (11)

A transmission provider is now introduced into the frame-
work. He maximizes transmission revenue subject to
meeting transmission constraints as shown in the transmis-
sion provider’s problem T 4s5, where s collectively refers
to the sales decisions (see below). Note that the firms
pay the provider for transmission of electricity; conse-
quently, the transmission provider can be seen as maximiz-
ing its transmission revenue.

Let the price of transmitting a unit across link 4ij5 for
realization � be given by w�

ij with the corresponding flow
being denoted by y�ij . The linkage capacity during realiza-
tion � is given by C�

ij .

nISO�4s�5 maximize
∑

i1 j

4w�
ij 5

T y�ij 1

subject to C�
ij − y�ij > 02 ��

ij

C�
ij + y�ij > 02 ��

ji1 ∀ i1 j0

The transmission provider’s optimality conditions are
given by

w�
ij = ��

ij −��
ji1

06 ��
ij ⊥C�

ij − s�ij + s�ji > 01

06 ��
ji ⊥C�

ij + s�ij − s�ji > 01

for all � ∈ ì. We define the scenario-specific spot-market
Nash equilibrium as follows.

Definition 11 (Scenario-Specific Networked Spot-
Market Game). Consider a game G�

nSpot in the spot-market
associated with scenario � and given forward positions fij ,
∀ i1 j = 11 0 0 0 1 n where the ith firm solves the parameterized
optimization problem 4nAgSpot�i 4s

�
−i1 055 for i = 11 0 0 0 1 n

and the ISO solves 4nISO�4s�55. Then the Nash equilib-
rium in spot-market decisions is given by the tuples 8s∗

i1 09
n
i=1

and 8y∗
11 01 0 0 0 1 y

∗
n1 09

n
i=1, where 4s�i1 05

∗ and 4y�5∗ are solutions
of 4nAgSpot�i 4s

�1∗
−i 1 f 55 and 4nISO�4s�1∗55, respectively, for

all i = 11 0 0 0 1 n and for all � ∈ì.

Specifically, given fij1 ∀ i1 j , if s�, ��, ��, ��, M̄�, Ē,
and Ī are defined as

s� 2=







s�11 0
000

s�n1 0







1 �� 2=







��
1
000

��
n







1 �� 2=







��
11 0
000

��
n1 0







1

�� =







��
11 0
000

��
n1 0







1 M̄� 2= diag4r�5+







I 0 0 0 I
000

0 0 0
000

I 0 0 0 I







1

Ē 2=







−eT

0 0 0

−eT







1 Ī 2=







−I
0 0 0

−I







1

(12)

and r�i = 42 + d�
i 5 for i = 11 0 0 0 1 n, then the equilibrium

conditions to scenario-based Nash equilibrium problem are
given by the complementarity problem

06 z� ⊥ M̂�z� +Nf + q� > 01 (13)

where z� =















s�

��

��

��















1 M̂�
=















M̄� −ĒT −Ī −F̄ T

Ē

Ī

F̄















1

N = −













I












1 q�
=















q�
s

q�
�

q�
�

q�
�















1 (14)

q�
s = 4c�i − a�

i 5i∈N1 q�
� = 4G�

i 5i∈N1 q�
� = 4C�

ij 5i1 j∈N1

q�
� =

(

C�
ij

C�
ij

)

i1 j∈N

1 (15)

and the kth row of F̄ corresponds to link 4i1 j5 and
F̄k1 i∗n+j = −F̄k1 j∗n+i = 1.

It should be further remarked that the transmission
prices, denoted by w�

ij , cannot be set independently. The
equilibrium conditions of the game dictate that these prices
are given by the difference between the Lagrange multipli-
ers on the line. Specifically, we have that w�

ij = ��
ij − ��

ji
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for all i1 j , i 6= j . However, we must emphasize that the
unboundedness cannot be done away with in general but
requires examining if indeed there are equilibria at infin-
ity. In fact, the need to characterize equilibria is founded
on precisely such concerns: can there be equilibria with
arbitrarily high prices? In fact, while we show that equilib-
ria exist and are given by a solution to a complementarity
problem with a P0 mapping, we observe that the trajectory
of equilibria is unbounded (see end of §3.3). Note that a
regularized problem introduces well-posedness and leads to
unique equilibria.

Proposition 12. Consider the spot-market game denoted
by G�

nSpot . Then given a set of forward decisions f , G�
nSpot

admits a Nash equilibrium.

Proof. The matrix M̂� is a positive semidefinite matrix
because M̄� is a symmetric positive definite matrix. Recall
that for an LCP4q1M5, if M is positive semidefinite and
there exists a z> 0 such that Mz+ q > 0, then LCP4q1M5
is solvable. In effect, it suffices to show that (13) admits a
feasible solution, given an arbitrary set of forward positions
denoted by f . Any solution z� to this problem is given
by 4s�1��1��1��5. Suppose s�1�� ≡ 0. It follows from
the nonnegativity of q�

� , q�
� , and q�

� for all � ∈ì that the
following three constraints are feasible:

Ēs� + q�
� = q�

� > 01 Ī s� + q�
� = q�

� > 01

F̄ s� + q�
� = q�

� > 03

and it remains to show that

−f − ĒT��
− Ī��

+ q�
s > 00

It can be seen that if −f + q�
s is nonnegative, then ��,

�� ≡ 0 forms the remainder of the feasible solution. If not,
then either �� or �� can be made sufficiently positive to
ensure that

−f − ĒT��
− ĪT��

+ q�
s > 01

where Ē1 Ī have at least one strictly negative entry in every
column. This concludes the proof, and the scenario-specific
spot-market equilibrium problem admits a solution. �

Agents compete in the forward market subject to equi-
librium in the spot-market. Because, the specification of
the spot-market is uncertain, a scenario-based characteri-
zation is used. The resulting Nash-Stackelberg game is a
networked extension of GFor and is the focus of the next
section.

3.2. A Nash-Stackelberg Equilibrium

The Nash-Stackelberg equilibrium in forward decisions
involves a set of agents in which the ith generator maxi-
mizes his expected profit from forward and spot positions
subject to the complementarity constraint

LCPi 06 z� ⊥ M̂�z� −Nifi + q�
i > 0 ∀�1

where q�
i = q� −

∑

j 6=iNjfj , where Ni is an appropriately
defined submatrix of N . In an effort to maintain consis-
tent notation, agent i’s optimization problem is denoted by
(nAgFori4f

−i5):

nAgFori4f
−i5

maximize
fi1 z

Ɛ4 1
2z

�1TQ�z� + 4r�5T z�51

subject to 06 z� ⊥ M̂�z� −Nf + q� > 0 ∀�1

where the profit function is defined by

1
2
4z�5TQ�z� + 4r�5T z�

2= p�
i 4si1 05s

�
ii +

∑

k 6=i

4p�
k 4s

�
jk5+w�

ik5s
�
ik

− c�i g
�
i −

1
2
d�
i 4g

�
i 5

20 (16)

The corresponding Nash-Stackelberg equilibrium is defined
as follows.

Definition 13 (Networked Forward-Market Game).
Consider a game in the forward-market, denoted by GnFor ,
where given f −i, the ith firm solves the parameterized
optimization problem 4nAgFori4f

−i55 for i = 11 0 0 0 1 n, and
suppose its associated equilibrium problem is denoted by
(EPCC3). Then the associated Nash-Stackelberg equilib-
rium of GnFor in forward decisions is a tuple 8f ∗

i 9
n
i=1 such

that for all i = 11 0 0 0 1 n, 4z1 fi5 is a solution to the ith
agent’s Stackelberg problem 4nAgFori4f

−i1∗55.

For the reasons described in §2, the analysis of such
equilibrium problems is difficult, particularly from the
standpoint of showing the existence of equilibria. In the
single-node setting, we introduced a conjecture and showed
that a related simultaneous stochastic Nash game was
indeed an equilibrium to the conjectured variant of the
Nash-Stackelberg game. The latter leads to a modified set
of agent problems, defined for the ith player as

nAgForcon
i 4f −i5

maximize
fi1 z=4s1�1�1�5

Ɛ4 1
2z

�1TQ�z� + 4r�5T z�51

subject to 06 z� ⊥ M̂�z� −Nf + q� > 0 ∀�1

a
f
j −

∑

i

fij = Ɛ�

(

a�
j −

∑

i

s�ij

)

1 ∀ j1

allowing us to define the conjectured multi-leader multi-
follower game.

Definition 14 (Conjectured Networked Forward-
Market Game). Consider a game in the forward-market,
denoted by Gcon

nFor , where given f −i, the ith firm solves
the parameterized optimization problem 4nAgForconi 4f −i55
for i = 11 0 0 0 1 n, and suppose its associated equilibrium
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problem is denoted by (EPCC4). Then the associated
Nash-Stackelberg equilibrium of Gcon

nFor in forward deci-
sions is a tuple 8f ∗

i 9
n
i=1 such that for all i = 11 0 0 0 1 n,

4z1 fi5 is a solution to the ith agent’s Stackelberg problem
4nAgForconi 4f −i1∗55.

Again, this conjecture corresponds with a perturbation
of a risk-neutrality constraint relating forward prices at a
node with the expected spot prices. Our goal is to examine
whether one may provide an existence statement for equi-
libria pertaining to Gcon

nFor and possibly relate its equilibria
to those arising from the networked analogues of SSNEs.

3.3. Networked Simultaneous Stochastic Nash
Equilibria (SSNE)

As in §2, we observe that we may construct a stochastic
Nash game whose equilibrium conditions are given by the
joint set of feasibility conditions of the agent problems. In
fact, we showed for the two-node problem, that an equi-
librium of this game is an equilibrium of the conjectured
variant of the Nash-Stackelberg game. We pursue a sim-
ilar question in the networked setting: First, we analyze
whether networked SSNE indeed exist and whether they
are unique; and we subsequently relate the obtained SSNEs
to the Nash-Stackelberg equilibria of interest. We begin by
defining the networked simultaneous stochastic Nash game.

Definition 15 (Simultaneous Stochastic Nash Equi-
librium SSNE). Consider the simultaneous stochastic Nash
game, denoted by GnSSNE , in which the ith firm solves the
parameterized optimization problem nAgSpoti4f 1 s

�
−i5 for

i = 11 0 0 0 1 n, and the ISO solves 4nISO4s�55, while forward
decisions f are specified by the risk-neutrality constraint:

a
f
j −

∑

i

fij = Ɛ�

(

a�
j −

∑

i

s�ij

)

1 ∀ j0

Extending the framework in §2, the equilibrium condi-
tions of the simultaneous stochastic Nash game are given
by the stochastic mixed linear-complementarity problem,
denoted by (SSNE-CPN).

SSNE-CPN 06 z⊥ M̂z+Nf + q > 01

Wf f = Ŵf z+d1

where Wf = 4I 0 0 0 I5 and

Ŵ r
= 4p�1Wf 0 0 0 p�KWf 0 0 0 0 050 (17)

As discussed in §2, one avenue for analyzing the existence
of a mixed-complementarity problem is through the elimi-
nation of linear equality constraint (Cottle et al. 1992), an
option that is available only if Wf is square and nonsingu-
lar. In the current setting, Wf is a rectangular full row-rank
system, and we present a null-space approach for reducing
the problem to a pure LCP. This requires an orthonormal
basis for the range-space of 4W f 5T , as given by the follow-
ing result.

Lemma 16. Consider the matrix Wf defined by Wf =

4I 0 0 0 I5 where I ∈ �n×n and Wf ∈ �n2×n0 Then an
orthonormal basis for the range space of W T

f is given by
YW where YW is defined as

YW = −
1

√
n
4I 0 0 0 I5T 0

Proof. Proof omitted. �

Next, we show that (SSNE-CPN) can be transformed to a
linear-complementarity problem. If ZW denotes a basis for
the null-space of Wf , then f can be expressed as ZW fZ +

YW fY where WfYW is a square nonsingular matrix. It fol-
lows that we have

Ŵf z−WfYW fY +d = 01 implying that

fY = 4WfYW 5
−14Ŵf z+d51

allowing us to express (SSNE-CPN) as the following linear-
complementarity problem:

06 z⊥ 4M̂ +NYW 4WfYW 5
−1Ŵf 5

︸ ︷︷ ︸

M̂2

z

+NZW fZ + 4q +NYW 4WfYW 5
−1d5

︸ ︷︷ ︸

q24fZ5

> 01

where fZ is a null-space component of f . Furthermore,
WfYW is given by

WfYW = −
1

√
n
nI1 implying that 4WfYW 5

−1
= −

1
√
n
I0

Because YW = −41/
√
n5W T

f 1 it can be concluded that

YW 4WfYW 5
−1Ŵf

= −
1

√
n
4−W T

f 5
1

√
n
I4p�1Wf 0 0 0 p�KWf 0 0 0 0 05

=
1
n
4p�1W 0 0 0 p�KW 0 0 0 0 051

where W =







I 0 0 0 I
000

0 0 0
000

I 0 0 0 I







0

It follows that M̂2 is given by

M̂2 =

(

Mr −AT

A

)

1 where Mr =







M̄1

0 0 0

M̄K







−
1
n







p�1W 0 0 0 p�KW
000

0 0 0
000

p�1W 0 0 0 p�KW







0 (18)

If Mr can be shown to be positive definite, then M̂2 can be
claimed to be positive semidefinite.
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Lemma 17. Consider the matrices Mr and M̂2 defined
by (18). For n> 2, Mr is positive definite and M̂2 is positive
semidefinite.

Proof. It suffices to show that Mr is positive definite. This
requires showing that zTMz > 0 for all nonzero z where
Mr is given by

Mr =







r
�1
d I

0 0 0

r
�K

d I







︸ ︷︷ ︸

H1

+







W
00 0

W







−
1
n







p�1W 0 0 0 p�KW
000

0 0 0
000

p�1W 0 0 0 p�KW







︸ ︷︷ ︸

H2

1 (19)

where r
�j

d = diag4r�j 50 Because r
�j

d are nonnegative for j =

11 0 0 0 1K, it suffices to show that H2 is positive semidefinite.
We begin by observing that W can be expressed as follows:

W =







I 0 0 0 I
000

0 0 0
000

I 0 0 0 I







=







I
000

I







(

I 0 0 0 I
)

=UU T 0

If U T zi is denoted by z̄i for all i, then the positive definite-
ness of Mr may be expressed as follows:

zTH2z=







z1
000

zK







T 





W
00 0

W







−
1
n







p�1W 0 0 0 p�KW
000

000

p�1W 0 0 0 p�KW













z1
000

zK







=

K
∑

i=1

�z̄i�
2
−

1
n

K
∑

i=1

p�i�z̄i�
2
−

1
n

K
∑

i=1

∑

j 6=i

4p�i +p�j 5z̄Ti z̄j

>
K
∑

i=1

�z̄i�
2
−

1
n

K
∑

i=1

p�i�z̄i�
2

−
1

2n

K
∑

i=1

∑

j 6=i

4p�i +p�j 54�z̄i�
2
+ �z̄j�

251

because �z̄i�
2 +�z̄j�

2 > 2z̄Tj z̄i. Further analysis reveals that
the expression on the right can be simplified as follows:

K
∑

i=1

�z̄i�
2
−

1
n

K
∑

i=1

p�i�z̄i�
2

−
1

2n

K
∑

i=1

∑

j 6=i

4p�i +p�j 54�z̄i�
2
+ �z̄j�

25

=

K
∑

i=1

(

�z̄i�
2
−

1
n
p�i�z̄i�

2
−

1
2n

44K−15p�i +
∑

j 6=i

p�j 5�z̄i�
2

)

0

Finally, the expression on the right-hand side can be further
expressed as

K
∑

i=1

(

�z̄i�
2
−

1
n
p�i�z̄i�

2
−

1
2n

44K − 15p�i +
∑

j 6=i

p�j 5�z̄i�
2

)

=

K
∑

i=1

(

�z̄i�
2
−

1
n
p�i�z̄i�

2
−

1
2n

44K − 25p�i + 15�z̄i�
2

)

=

K
∑

i=1

(

�z̄i�
2
−

1
n
p�i�z̄i�

2
−

41 + 4K − 25p�i5

2n
�z̄i�

2

)

=

K
∑

i=1

(

�z̄i�
2
−

41 + 4K − 45p�i5

2n
�z̄i�

2

)

0

Therefore, we have that
K
∑

i=1

(

1 −
41 + 4K − 45p�i5

2n

)

�z̄i�
2

>
(

min
i∈8110001N 9

�z̄i�
2
)

K
∑

i=1

(

1 −
41 + 4K − 45p�i5

2n

)

︸ ︷︷ ︸

Term 1

0

Because p�i 6 1 for i = 11 0 0 0 1K, term 1 can be shown to
be nonnegative as per
K
∑

i=1

(

1 −
41 + 4K − 45p�i5

2n

)

>K
42n− 15

2n
−

4K − 45
2n

=
2K4n− 15+ 4

2n
> 00

It follows that
K
∑

i=1

(

min
i∈8110001N 9

�z̄i�
2
)

K
∑

i=1

(

1−
41+4K−45p�i5

2n

)

>
K
∑

i=1

�z̄i�
2>01

implying that Mr is positive definite.
Finally, for a nonzero vector z = 4u1 v5, the product

zT M̂2z can be expressed either as (1) or (2) based on
whether u 6= 0 or u≡ 0:

415
(

u
v

)T (
Mr −AT

A 0

)(

u
v

)

= uTMru> 01

425
(

0
v

)T (
Mr −AT

A 0

)(

0
v

)

= 01

leading to the immediate conclusion that M̂2 is positive
semidefinite. �

Therefore, for a given fZ, the complementarity problem
(SSNE-CPN) is a monotone complementarity problem, and
its solvability can be concluded through Proposition 18.

Proposition 18 (Existence of Equilibrium to GnSSNE).
Consider the simultaneous stochastic Nash equilibrium
problem denoted by GnSSNE . Then an equilibrium to this
problem is given by a triple 4z1 fY 1 fZ5, where

z ∈ SOL4q4fZ51M251 fY = 4WfYW 5
−14Ŵf z+d51

and fZ is an arbitrary vector. Furthermore, the
LCP4q4fZ51M25 is a monotone LCP that admits a solution
for all fZ.
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Proof. From the earlier discussion, we observe that a solu-
tion to (SSNE-CPN) is given by 4z1 fZ1 fY 5 where fZ and
fY are the null-space and range-space components of f .
Additionally, fY can be uniquely derived from z by noting
that fY = 4WfYW 5

−14Ŵf z+d50
It remains to show that LCP4M21 q24fZ55 is solvable

for all fZ. First, we note that by the positive definite-
ness of M r , the positive semidefiniteness of M2 follows.
From Cottle et al. (1992, Theorem 3.1.2), the feasibility of
LCP4q24fZ51M25 suffices for solvability; in effect, if there
exists a z > 0 such that Mz + q > 0, LCP4q24fZ51M25 is
solvable. Recall that z= 4s1�1�1�5 and let s1�≡ 0. From
the nonnegativity of q�

� , q�
� , and q�

� , we have that

Ēs� + q�
� = q�

� > 01 Ī s� + q�
� = q�

� > 01

F̄ s� + q�
� = q�

� > 01 ∀� ∈ì0

Feasibility of z follows by ascertaining if one can determine
a nonnegative �� and �� such that

M2s
�

− ĒT��
− ĪT��

+ q�
s = −ĒT��

− ĪT��
+ q�

s > 01

∀� ∈ì0

Clearly, if q�
s > 0, �1� ≡ 0 will suffice; if not, by noting

that ĒT and ĪT are matrices with a positive entry on each
row, it follows that by raising either � or � to a sufficiently
large positive level, we obtain feasibility. This concludes
the proof. �

Motivated by a need to characterize (SSNE-CPN), we
observe that this problem is equivalent to the square-
complementarity system denoted by CP4C1 F 5 where

F 4z1 f 5=

(

M̂z+Nf + q

Ŵf z+Wf f +d

)

and C =�K4n2+m25
+ ×�n2

1

(20)

where z ∈ �n2+m2
. Furthermore, we show as in §2 that F

is a P0 mapping over the cone C. In an effort to simplify
the exposition, we consider a setting where transmission
constraints are relaxed and only capacity constraints persist.
Consequently, the mapping ïF is given by

ïF =















M̂1 N
00 0

000

M̂K N

−p�1Ŵ 0 0 0 −p�K Ŵ W















1

where M̂j =

(

Mj + r
�j

d I
−I

)

1 Nj =

(

−I
)

1 (21)

Ŵ = 4W 051 (22)

where Mj is defined in (12). Note that M̂j and its inverse
are given by

M̂ =

(

M̄j I

−I

)

and M̂−1
j =

(

−I

I M̄j

)

1 respectively.

Lemma 19. Consider the complementarity problem
CP4C1 F 5 defined in (20). Then the mapping F 4z1 f 5 is a
P0 mapping over the cone C.

Proof. We prove that F 4z1 f 5 ∈ P0 by showing that
ïF 4z1 f 5 is a P0 matrix for all 4z1 f 5 ∈ C. A matrix M ∈

�n×n belongs to the class of P0 matrices, if all principal
submatrices have nonnegative determinants. This prompts
such an evaluation for all submatrices G��

G��=















M̂�1�1
N�1�K+1

0 0 0
000

M̂�K�K
N�K�K+1

−p�1Ŵ�K+1�1
000 −p�K Ŵ�K+1�K

W�K+1�K+1















1

where � =
⋃K+1

i=1 �i ⊆ 811 0 0 0 1K4m2 + n25 + n29 and �i ∩

�j = ∅1 i 6= j . We consider the following set of mutually
exclusive cases and show in each case that the principal
submatrix has a nonnegative determinant.

(i) If �K+1 = ∅, then G�� is any submatrix of Ḡ where

Ḡ=







M̂�1�1

0 0 0

M̂�K�K







1

then det4G��5 > 0 because Ḡ is a positive semidefinite
matrix, implying that it is a P0 matrix.

(ii) If
⋃K

i=1 �i = ∅, then G�� is a principal subma-
trix of W , a positive semidefinite matrix, implying that
det4G��5> 00

(iii) If � is chosen arbitrarily and ��K+1�> n, then G��

has a zero determinant because at least two of the rows
are identical. It remains to show that det4G��5 > 0 when
��n+1� 6 n0 Without loss of generality, we assume that
��K+1� = n, implying that W�K+1�K+1

is an identity matrix of
size n. Then det4G��5 is given by the following:

det4G��5

=

K
∏

i=1

det4M̂ i
�i�i

5

·det
(

W�K+1�K+1
−

K
∑

i=1

4−p�iŴ�K+1�i
4M̂ i

�i�i
5−1N�i�K+1

5

)

0

(23)

The remainder of our proof is twofold:
(a) First, we show that det4M̂ i

�i�i
5 is positive. We begin

by noting that M̄ i
�i�i

, a principal submatrix of a positive
definite matrix, namely M̄ i, is also positive definite. Con-
sequently, 4M̄ i

�i�i
5−1 is also positive definite. Finally, the

structure of M̂i allows one to express det4M̂ i
�i�i

5 as

det4M̂ i
�i�i

5= det4M̄ i
�i�i

5det44M̄ i
�i�i

5−151

where the second term in the product is the Schur comple-
ment. The positivity of the determinant follows from the
positive definiteness of 4M̄ i

�i�i
5−10
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(b) Next, we show that the second term in (23), namely
the Schur complement, has a nonnegative determinant. This
can be concluded by observing that

4−p�iŴ�K+1�i
4M̂ i

�i�i
5−1N�i�K+1

5

= p�i
(

W 0
)

(

0 −I

I M̄i

)(

−I

0

)

= 01 forall i = 11 0 0 0 1K0

Because W�K+1�K+1
is an identity matrix, it follows that

det

(

W�K+1�K+1
−

K
∑

i=1

4−p�iŴ�K+1�i
4M̂ i

�i�i
5−1N�i�K+1

5

)

= det4W�K+1�K+1
5= 10 �

A characterization of the mapping as a P0 mapping
has immediate relevance from the standpoint that it allows
for claiming uniqueness of a perturbed problem. Specifi-
cally, the complementarity problem CP4C1 F +�I5 admits a
unique solution where ïI = I 0 This has relevance in devel-
oping a relationship between NSEs and SSNEs, a question
that will be probed in the next subsection.

Proposition 20. Consider the complementarity problem
CP4C1 F 5. Then the perturbed problem CP4C1 F + �I5
admits a unique solution for all �> 0.

Proof. This follows immediately from noting that F is a
continuous P0 function over a cone C that can be expressed
as a cartesian product. It follows from Facchinei and Pang
(2003, Theorem 3.5.15) that the perturbed complementarity
problem admits a unique solution. �

It would be natural to expect that if 4z�1 f�5 represents
the unique solution to CP4C1 F + �I5, that

lim
�→0

4z�1 f�5= 4z1 f 51

where 4z1 f 5 is a solution of CP4C1 F 50 This technique,
termed as a Tikhonov regularization scheme (Facchinei and
Pang 2003), leads to a unique trajectory that converges to
the least-norm solution of CP4C1 F 5 if F is a monotone
map. However, our mapping is weaker in that it belongs
to the class P0. By leveraging (Facchinei and Pang (2003,
Theorem 12.2.8), a sufficiency condition for the Tikhonov
trajectory to converge to a solution of the original problem
is that the solution set of CP4C1 F 5 is bounded. Yet, from
Proposition 18, we show that a solution ray can be con-
structed along which fZ, the null-space component of f ,
is made arbitrarily large. Consequently, the solution set
of CP4C1 F 5 is not bounded, and one may not directly
claim that the Tikhonov trajectory converges. Furthermore,
it remains unclear if the limit point of this trajectory will
indeed be an NSE.

3.4. Networked SSNEs and NSEs

Our goal in this section is to derive a relationship
between simultaneous stochastic Nash equilibria and Nash-
Stackelberg equilibria. The first observation we make is that
a perturbed SSNE, given by the solution to CP4C1 F + �I5,
is an equilibrium of a perturbed variant of the conjec-
tured Nash-Stackelberg equilibrium problem. The perturbed
game, denoted by Gcon1�

nFor , is a Nash game in which the ith
agent solves (nAgForcon1�

i 4f −i5):

nAgForcon1�
i 4f −i5

maximize
fi1 z=4s1�1�1�5

Ɛ4 1
2z

�1TQ�z� + 4r�5T z�51

subject to 06 z� ⊥ 4M̂�
+ �I5z� −Nf + q� > 0 ∀�1

a
f
j −

∑

i 6=j

fij −fjj41+�5=Ɛ�

(

a�
j −

∑

i

s�ij

)

1 ∀ j0

Note the crucial difference between (nAgForcon
i 4f −i5) and

its variant, defined above, lies in the perturbation of the
complementarity problem specifying the feasible region.
This regularization is crucial in ensuring that the feasible
region of every agent problem, given a collection of com-
petitive forward decisions, is indeed a singleton, as clarified
by Proposition 21.

Proposition 21. Given a � > 0, suppose 4z1 f 5 is a solu-
tion of G�

nSSNE . Then 4z1 f 5 is a local Nash-Stackelberg
equilibrium of (G�

nFor). Furthermore, the local Nash-
Stackelberg equilibrium always exists.

Proof. We proceed as in Theorem 10. First, given a solu-
tion f −i, the feasible region of (nAgForcon1�

i 4f −i55 is given
by a complementarity problem CP4C1 F�5 where

F�4z1 f 5=

(

4M̂ + �I5z+Nf

Ŵf z+ 4Wf + �I5f

)

0

But F is a continuous P0 mapping over C, implying that
its regularization—namely F +�I—leads to a complemen-
tarity problem that has a unique solution (see Facchinei
and Pang 2003, Th. 3.5.15). It follows that the feasible
region of the agent problem is a singleton and 4z1 fi5 is
trivially a local minimizer of (nAgForcon1�

i 4f −i55 for all
i = 11 0 0 0 1 n. It follows that 4z1 fi5

n
i=1 is a local Nash-

Stackelberg equilibrium of (EPCC�
45. Finally, because the

simultaneous stochastic Nash equilibrium, corresponding to
(G�

nSSNE) both exists and is unique, it follows that G�
nFor

always admits an equilibrium. �

It must be remarked that if �→ 0, it remains unclear if
we can show that the feasible regions of the agent problems
remain singletons, given f −i. Consequently, we employ a
fixed positive regularization parameter �.

In this section, we have shown that a solution to a spe-
cific complementarity problem provides at least one solu-
tion to the original Nash-Stackelberg game. Additionally,
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Table 3. Comparison of accuracy and effort: Conjectured games vs. EPECs.

Conjecture with �= 1e− 4 Conjecture with �= 1e− 8 Gauss-Seidel EPEC solver

K ã� ãpf iter tcpu ã� ãpf iter tcpu ã� ãpf iter tcpu

1 00000 00000 11 000 00000 00000 11 000 0.000 0.000 273 201
2 00000 00000 16 001 00000 00000 17 001 0.000 0.000 482 505
3 00000 00000 33 006 00000 00000 15 002 0.000 0.000 305 509
4 00000 00000 22 008 00000 00000 22 007 0.000 0.000 302 803
5 00008 00005 17 008 00008 00005 17 008 0.016 0.000 478 1205
6 00004 00003 14 100 00004 00003 14 100 0.009 0.000 272 808
7 00000 00000 19 206 00000 00000 17 202 0.000 0.000 333 1206
8 00027 00017 15 204 00027 00017 15 204 0.054 0.000 11993 5706
9 00001 00001 30 800 00001 00001 33 900 0.002 0.000 41550 22907

10 00007 00005 22 702 00007 00005 22 702 0.015 0.000 31629 23105

we showed that an approximation of this complementarity
problem is always solvable. Next, we provide a quantitative
comparison of both the accuracy and computation effort
associated with using the conjectured framework and draw
a comparison with a more standard EPEC approach. The
approaches are employed on a six-node electricity market
model with a varying number of scenarios.

In Table 3 we provide a comparison of both the accu-
racy and effort associated with using the Nash approach
versus solving the EPEC, via a Gauss-Seidel scheme (Hu
and Ralph 2007). Using the solution to the mixed-
complementarity problem as a basis, we compute the solu-
tions of the conjectured problems and the EPECs using ã�
and ãpf as a basis for comparison, where ã� and ãpf are
defined as

ã� =
�� −�∗�

��∗�
and ãpf =

�pf −p∗
f �

�p∗
f �

0

The effort is specified in terms of the number of minor
iterations (iter) and CPU time (tcpu). Recall that our con-
jecture is a perturbation of the affine price function by �,
and results are provided for � = 1e− 4 and � = 1e− 8. It
should also be noted that for all the schemes, feasibility and
optimality tolerances were set at 1e− 8, and knitro was
employed for solving both the complementarity problems
and the MPCCs (in the EPCC solution framework). The
Gauss-Seidel EPCC solver is terminated when the change
ãfk = �fk − fk−1�/�fk−1�6 1e− 5.

From an accuracy perspective, the perturbed Nash games
provide very accurate solutions even for �= 1e− 4. Impor-
tantly, as the size of the problem increases, the accuracy
does not degenerate in the perturbed Nash setting.

In terms of effort, the Nash problems are obviously much
easier to solve than the EPCCs because they are LCPs. It is
observed that the number of minor iterations tends to stay
between 20 and 40 for both values of �. The EPCC solver
cycles through each agent problem, solving six MPCCs for
each cycle. As a consequence, the total number of minor
iterations over all cycles can be quite large. In particular, we
see a steep incline in the number of minor iterations as the
number of scenarios grows. If one measures CPU time, the
growth is even more severe, suggesting that Gauss-Seidel
schemes for large-scale problems might be inadvisable.

4. A Decomposition-Based
Splitting Algorithm

The earlier two sections showed that in both a two-node
and a networked setting, the solution to the conjectured
variant of the multi-leader multi-follower game is obtain-
able through the solution of a simultaneous stochastic Nash
game. The latter leads to a stochastic complementarity prob-
lem, and under the assumption of a discrete distribution
with an arbitrarily large support, the size of this problem
might grow to astronomical levels. As a consequence, direct
approaches for the solution of such problems are inadvis-
able. In fact, we provide some computational evidence to
support that the growth in effort is exponential, implying
the need for a decomposition method for such a class of
problems.

This section is devoted toward developing a scalable
approach for solving the obtained class of stochastic mixed-
complementarity problems. Methods for the solution of
LCPs range from interior-point methods (Ralph and Wright
2000, Facchinei and Pang 2003, Cottle et al. 1992),
splitting methods (Cottle et al. 1992), to Newton-based
approaches (Ferris and Munson 2000, Cottle et al. 1992).
Extensions to the stochastic case have been dealt with by
Lin et al. (2003).

We present a splitting-based decomposition (referred to
as the DS method) method based on solving the mixed-LCP
through the solution of a sequence of LCPs. Each LCP is
stochastic in nature and can be arbitrarily large. In §4.1, we
present the DS method along with convergence theory. The
computational burden can be lightened considerably by the
use of sampling, and these ideas are discussed in §4.2. In
§4.3 we provide a description of the performance of the
method and compare it with solving the problem directly
using KNITRO (Byrd et al. 1999).

4.1. The DS Algorithm

We solve the stochastic complementarity problem arising
from GnSSNE by a scenario-decomposition approach that
relies on the ideas of matrix splitting methods (cf. Cottle
et al. 1992). This ensures that when the number of scenarios
grows, the problem could still be solved efficiently. How-
ever, (SSNE-CPN) is not immediately scenario-separable
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because the equality constraints contain an expectation term
and the complementarity constraints contain the first-stage
forward decisions f . Our problem of interest is a regular-
ized form of (SSNE-CPN), denoted by (SSNE-CPN�) and
defined as

SSNE-CPN� 06 z⊥ 4M̂ + �I5z+Nf + q > 0

Ŵf z+ 4Wf + �I5f +d = 00

Because Wf +�I is nonsingular, we may eliminate f , lead-
ing to a linear complementarity problem:

SSNE-LCPN� 06 z⊥ Mz+ q> 01

where

z=















s

�

�

�















1 M =















M� + �I −ÊT −ÎT −̂F T

Ê �I

Î �I

̂F �I















1

q =















qs − 4W �
f 5

−1d

q�

q�

q�















1 ÊT
=







ĒT

0 0 0

ĒT







1

ÎT =







ĪT

0 0 0

ĪT







1 F̂ T
=







F̄ T

0 0 0

F̄ T







1

M� =















M̄�1 −p�14W �
f 5

−1W −p�24W �
f 5

−1W

−p�14W �
f 5

−1W M̄�2 −p�24W �
f 5

−1W
000

−p�14W �
f 5

−1W −p�24W �
f 5

−1W

1

0 0 0 −p�K 4W �
f 5

−1W

0 0 0 −p�K 4W �
f 5

−1W

0 0 0 M̄�K −p�K 4W �
f 5

−1W0















0 (24)

If Id, Ic, and W denote

Id = �







I
0 0 0

I







and Ic =







I
000

I







1 and

W =







I 0 0 0 I
000

0 0 0
000

I 0 0 0 I







1

then the M� can be shown to be positive definite in the next
result. This is an important step because the monotonicity
of the complementarity problem in the reduced problem
provides us with an avenue for developing a decomposition
scheme.

Proposition 22. If �> 0 and W �
f , W , and M� are defined

as (17) and (24), then the matrix M� is positive definite.

Proof. The inverse of W �
f is analytically obtainable by

recalling that

4Id + IcI
T
c 5

−1
= I−1

d − I−1
d Ic4I + ITc I

−1
d Ic5

−1ITc I
−1
d 0

Therefore, 4W �
f 5

−1 is given by

4W �
f 5

−1
= I−1

d − I−1
d Ic

(

I +
n

�
I
)−1

ITc Id

= I−1
d −

�

�+ n
I−1
d IcI

T
c I

−1
d =

1
�
Id −

1
�4�+ n5

W 0

After some simplification, 4W �
f 5

−1Ŵ may be expressed
as
(

p�14W �
f 5

−1W 0 0 0 p�K 4W �
f 5

−1W
)

, where

4W �
f 5

−1W =

(

1
�
W −

n

�4�+ n5
W

)

=
1

�+ n
W0 (25)

It follows that M�, after some simplification, is given by

M� 2=







r
�1
d I

0 0 0

r
�K

d







︸ ︷︷ ︸

H1

+







W
00 0

W







−
1

n+ �







p�1W 0 0 0 p�KW
000

0 0 0
000

p�1W 0 0 0 p�KW







︸ ︷︷ ︸

H�
2

1

where r
�j

d = diag4r�j 50 From Lemma 17 and the positivity
of � we have for any z 6= 0

zT 4H1 +H�
2 5z> zT 4H1 +H25z > 01

where H1 and H2 are specified in (19). �

This transformation has several implications. First,
it leads to a monotone linear-complementarity problem
because M� is positive definite. However, in eliminating
the forward decisions, we witness the loss of diagonal
decomposability, often a crucial component for develop-
ing scalable schemes. Yet, as the remainder of this subsec-
tion shows, we utilize matrix-splitting methods to recover
decomposability, and therefore scalability.

While the existence and uniqueness of a solution to
(SSNE-CPN�) follows from Proposition 20, what is not
clear is whether a scalable splitting method can be
employed for its solution. Specifically, we are interested in
solving a sequence of problems denoted by (SSNE-CPNj

�)
to obtain a solution to (SSNE-CPN�) where the latter is
defined as

SSNE-CPNj
� 06 zj ⊥ Bzj + qj > 01
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where

qj 2= 4q +Czj−151 B =

(

M̂ −U T

U I

)

1

C =

(

N4W f 5−1Ŵ 0

0 4�− 15I

)

1 (26)

and M = B + C. The choice of B is essential in ensur-
ing that (SSNE-CPNj

�) can be decomposed into a set
of scenario-specific LCPs. While this appears challeng-
ing given the structure of B, the diagonally decompos-
able structure of M̂ and the decomposable structure of U
allow for precisely such a decomposability. It remains to
show that the overall matrix splitting scheme does indeed
converge.

Note that the positive definiteness of B ensures the
uniqueness of each iterate. Such splitting methods are dis-
cussed extensively in Cottle et al. (1992) in the context of
LCPs and are not guaranteed to work in general. In this
case, the matrix M is positive definite while B is positive
definite (but not necessarily symmetric). Given a positive
definite matrix B, we define B̂ such that B̂T B̂ =

1
2 4B+BT 5

where B̄ =
1
2 4B+BT 5. Without loss of generality, it suffices

to assume all quadratic components of generation cost are
zero and B̄ is given by

B̄ =











W + I
0 0 0

W + I
I











and B̂ =











D
00 0

D
I











1

D =















aI bI 0 0 0 bI

bI aI
0 0 0

000

000
0 0 0

0 0 0 bI

bI 0 0 0 bI aI















1 (27)

where2 a= 41+b5 and b = 4
√
n+ 1 − 15/n0 It follows that

D−1 is given by

4Id + 4
√
bIc54

√
bIc5

T 5−1

= 4Id − bIdIc4I + bITc Ic5
−1ITc Id5

=

(

Id − bIdIc

(

1
nb+ 1

4ITc Ic5

)

ITc Id

)

=

(

Id −
b

nb+ 1
W

)

0

This allows us to prove the following condition on the spec-
tral radius.

Lemma 23. Given a � ∈ 40115, and let B̂ and C be as
defined in (27) and (26), and b = 4

√
n+ 1 − 15/n. Then

the following hold:
(a) If the size of the sample-space K is bounded as

K <

(

4n+ �54nb+ 152

n

)2

1

then the spectral radius �4B̂1C5= �4B̂−15TCB̂−1�2 < 10

(b) If p�j = 1/K for all j = 11 0 0 0 1K, then
�4B̂−15TCB̂−1�2 < 10

Proof. The matrix B̂−TCB̂ is given by

=
1

n+ �



















(

Id −
b

nb+ 1
W

)

0 0 0
(

Id −
b

nb+ 1
W

)

I



















·















p�1W 0 0 0 p�KW

000
000

000

p�1W 0 0 0 p�KW
4�− 15I















·



















(

Id −
b

nb+ 1
W

)

0 0 0
(

Id −
b

nb+ 1
W

)

I



















1

=
1

n+ �



















(

Id −
b

nb+ 1
W

)

0 0 0
(

Id −
b

nb+ 1
W

)

I



















·





















p�1
1

nb+ 1
W 0 0 0 p�K

1
nb+ 1

W

000
000

000

p�1
1

nb+ 1
W 0 0 0 p�K

1
nb+ 1

W

4�− 15I





















1

=
1

n+ �





















p�1
1

4nb+ 152
W 0 0 0 p�K

1
4nb+ 152

W

000
000

000

p�1
1

4nb+ 152
W 0 0 0 p�K

1
4nb+ 152

W

4�− 15I





















=
1

4n+ �54nb+ 152
A1

where A 2=











p�1W 0 0 0 p�KW
000

000
000

p�1W 0 0 0 p�KW
4�− 15I











0

Finally, by recalling that 41 − �5 < 1 6 n, we note that
�A�2 can be bounded as per �A�2 6

√

�A�1�A��1 where
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the �·�� and �·�1 are given by the maximum absolute row
and column sum, respectively. The structure of A allows us
to obtain explicit bounds for �A��, �A�1, and �A�2:

�A�� =

K
∑

j=1

np�j = n1

�A�1 = max
j

4Knp�j 56 nK1 �A�2 6 n
√
K0

Finally, the required spectral condition �B̂−TCB̂�< 1 holds
when

n
√
K

4n+ �54nb+ 152
< 1 or K <

(

4n+ �54nb+ 152

n

)2

0

If we further assume that p�j = 1/K for all j = 11 0 0 0 1K,
it then follows that �A�1 = n and �A�2 6 n, implying that
K can be chosen to be arbitrarily large. �

Note that for arbitrarily probability measures, the result
does not require that K be bounded but merely requires that
it should not grow significantly faster than n2. Moreover,
�A�1 is large when one scenario has a high likelihood.
Expectedly, when n is small, then the resulting systems are
well within direct solvers, and the real challenges lie for
large n and K. Note that the more likely setting is that
the probability distribution is uniform (as arising from a
sampled problem), and in this setting the choice of K can
be arbitrary. Based on this bound, the convergence of the
splitting method can be established, as Theorem 24 states.

Theorem 24 (Theorem 5.3.12 From Cottle et al.
1992). Suppose B is a positive definite matrix. Let B̂ be a
positive definite matrix such that B̂T B̂ =

1
2 4B + BT 5. Sup-

pose also that

�4B̂1C5= �B̂−TCB̂−1
�< 10

Then for any starting z> 0, the uniquely defined sequence
of iterates 8zk9 converges to a unique solution of (SSNE-
CPN�5.

Algorithm 1 provides an outline of the splitting method.
Specifically, the scheme constructs a sequence 8zj9 that
converges to a solution to (SSNE-CPN�5) where the iter-
ate zj is computed in a scenario-specific fashion, providing
4zj5� for � ∈ì.

Algorithm 1 (Decomposition and splitting method)

Initial �� �̂ > 0� j = 1
while �diag�zj���M�zj +q��� > �̂ do
zj ∈ SOL�B�qj��k��
for �= 1� ��� do
Let �zj�� ∈ SOL�B�

j � �q
j���

qj �= q+Czj

j �= j + 1

As a final note, we observe that there could be other
splitting-based approaches that are less reliant on spectral
bounds. Yet these are less susceptible to separability. For
instance, given a problem 06 z⊥Mz+ q > 0, where M is
a row-sufficient matrix (that is not necessarily symmetric),
then z solves the given LCP if and only if z solves the
convex quadratic program

min zT 4q + 4M +MT 5z51

Mz+ q > 01 z> 00

Specifically, M +MT could be split as B+C, allowing for
decomposing the objective function by scenario (see Cottle
et al. 1992). However, the constraints are still not imme-
diately separable by scenario, implying that the quadratic
program, although convex, is not immediately separable.

4.2. Introducing Sampling

In this section, we consider how one can further ease the
computational burden by using a sample of the distribution,
instead of using the original distribution at each iteration of
the matrix splitting method. Consequently, at each iteration
of the DS method we solve

̂SSNE-CPN
j

�

06 z�j ⊥ 4M̄�
+ �I5z�j +Nfj + q̄� > 0 ∀� ∈ìk

1
�ìj �

∑

�∈ìj

W �z�j −W �
f fj + qf

= 00

In effect, at the jth iteration, the problem size is pro-
portional to nj = �ìj �. If the sequence nj increases fast
enough to K, such a scheme is seen to converge in prac-
tice. An important question is which distribution to use
in the construction of the sample. We construct residuals
based on r�j = 4z�j 5

T 4M̄�z� + q̄�
j 50 The physical interpre-

tation of this residual vector is that scenarios with large
residuals are further away from the solution than scenar-
ios with smaller residuals. This allows for two approaches
that are inspired by ideas of inexact-Newton methods. In
this class of methods, the Newton direction is computed
with increasing exactness as one approaches the solution,
the benefit being the savings in computational effort. In
a similar fashion, away from the solution, we solve an
approximation of the complementarity problem by select-
ing or sampling a set of scenarios using the set of residuals
to guide this choice. Two schemes are suggested. The first
merely sorts the residual vector and chooses the largest nj

scenarios (from the standpoint of residuals) and is denoted
by SORT The second technique biases the true distribution
by the normalized residual vector. In effect, this raises the
likelihood of choosing a scenario if the residual associated
with it is large. We refer to this strategy as MC. Finally, the
approach using all the scenarios is denoted by FULL.
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4.3. Computational Results

The algorithm was implemented on Matlab 7.0 on a
Linux platform with 2GB of RAM. The subproblem
solver employed was the nonlinear programming solver
KNITRO (Byrd et al. 1999).

Comparison with standard solvers: First we discuss
our computational experience with direct methods for solv-
ing stochastic complementarity problems and contrast the
growth in effort with that seen when using decomposition
methods.

Table 4 provides a comparison between a direct solution
of the problem and a splitting-based approach, on the basis
of CPU time. We observe that the growth in CPU time for
KNITRO is significantly higher than the parallelized effort
associated with the splitting methods. The parallelized time
was calculated by assuming that each scenario problem was
solved in parallel. It was not obtained through an actual
implementation but obtained by as an estimate. Specifically,
the estimate used the maximum time taken to solve any of
the scenario problems as the time taken for the entire set
of scenarios. In fact, for sample sizes as small as 50, the
direct approach has already grown in effort by a factor of
100, when compared with a sample size of 10.

Scalability of the method with network size: Table 5
shows how the algorithm scales with the size of the net-
work. While a clear trend is not evident, the number of
major and minor iterations does not grow rapidly with the
size of the network. For instance, when the network size is
raised from 3 to 18 nodes with 25 scenarios, the number of
minor iterations increases from 325 to 925. Each subprob-
lem does take longer to solve because the corresponding
complementarity problems have grown. In fact, the key bar-
rier in solving the problem for larger networks lies in the
need to construct the matrix of the linear-complementarity
problem (LCP). Solving the scenario problems can be done
effectively for sizes well into the tens of thousands of vari-
ables. For addressing large-scale networks, we would not
construct such a matrix directly but would work instead
with the scenario blocks.

Scalability of method and sampled variants with �ì�:
Table 6 compares the behavior of the DS method. Our basis
of comparison is a set of equilibrium problems based on a
three-node network with s scenarios. The resulting deter-
ministic problems are of the order of n2s. In fact, even

Table 4. CPU time comparison: direct vs. splitting
method (parallelized time).

n s cputimedirect �f DS
∗

− f∗� iterDS maj− iterDS cputimeDS

3 10 0066 3.4e−07 80 11 0.31
3 20 4066 6.8e−07 187 22 0.63
3 30 13037 2.0e−06 74 9 0.25
3 40 35035 4.0e−07 62 8 0.19
3 50 73038 7.5e−07 63 8 0.19
3 60 149045 5.2e−07 101 12 0.28

Table 5. Scalability of DS method with size of
network.

n s minor-iter maj-iter

3 25 325 4
4 25 350 4
5 25 225 4
6 25 450 4
7 25 550 4
8 25 500 4
9 25 825 4

10 25 775 4
11 25 700 4
12 25 725 4
13 25 725 4
14 25 800 4
15 25 775 4
16 25 775 4
17 25 750 4
18 25 925 4
19 25 850 4
20 25 900 4

with such small networks, the deterministic complementar-
ity problem is of the order of 20,000 variables. The termi-
nation criterion in the DS methods are based on when the
complementarity residual is sufficiently small, or namely
zT 4Mz+q56 �. The initial values for the forward and spot
positions are zero. Moreover, the sampling extensions are
started at 40% of �ì� and are incremented by 1.1 at the
end of each major iteration. When comparing KNITRO to
the iterative methods, we use CPU time as a basis of com-
parison. Note that the CPU time only accounts for the calls
to the solver and not for linear algebra operations. More-
over, all calls to KNITRO are with default options in terms of
optimality criteria. However, when comparing the iterative
methods, we use the number of major and minor iterations.
The minor iterations would essentially correspond to the
total number of complementarity problems solved. This is
analogous to using the number of function and gradient
evaluations for first-derivative optimization methods.

Summary of findings: The main findings of our com-
putational research were:

• The growth in effort when using splitting-based meth-
ods is approximately linear with s while direct approaches
result in rapid exponential growth.

• The number of major iterations is approximately con-
stant across different sample sizes and ranges from 8 to 11
when n= 3. For larger networks, the effort does not grow
significantly, with the main challenge being the construc-
tion of the full complementarity matrix.

• While the sampling/sorting extensions often outper-
form the FULL implementation, a conclusive statement
requires further research.

Remark on suitability of algorithm: We conclude this
section with a short discussion on the suitability of our
methodological approach. The problem of interest is a
monotone linear complementarity problem and a host of
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Table 6. DS method: SORT, SAMP and FULL.

s �ãMC� minor-iterMC maj-iterMC �ãSORT� minor-iterSORT maj-iterSORT minor-iterFull maj-iterFull

50 2.90E−08 31214 11 5.90E−09 31226 11 31014 10
70 1.40E−08 41498 11 1.40E−08 41020 10 41202 10
90 1.30E−08 51207 10 1.30E−08 51208 10 51439 10

110 1.80E−08 51723 9 1.60E−08 61468 10 61757 10
130 1.40E−08 71703 10 6.30E−08 71699 10 71160 9
150 1.10E−07 81813 10 1.10E−07 81816 10 91152 10
170 6.40E−08 101041 10 1.60E−08 101049 10 101471 10
190 1.50E−08 111198 10 1.00E−08 111199 10 101360 9
210 7.10E−09 121397 10 1.50E−08 121390 10 121918 10
230 3.20E−08 131545 10 3.20E−08 131556 10 121564 9
250 9.70E−09 131106 9 3.00E−08 131102 9 151402 10
270 7.30E−08 171845 11 8.60E−08 141141 9 161664 10
290 7.50E−08 171176 10 9.30E−08 171178 10 151906 9
310 7.40E−09 181343 10 2.40E−08 181379 10 191126 10
330 4.20E−08 191573 10 5.70E−08 171298 9 181101 9
350 1.10E−08 201743 10 9.80E−08 201713 10 211595 10
370 2.30E−09 211902 10 5.50E−08 211906 10 221791 10
390 8.80E−08 201367 9 9.50E−08 231065 10 231985 10
410 6.90E−08 241171 10 1.30E−07 221469 9 261459 10
430 2.40E−08 191552 8 6.10E−08 261630 10 271701 10
450 5.50E−08 261608 10 2.50E−08 271778 10 281947 10
470 2.70E−08 241578 9 6.40E−08 251611 9 301166 10
490 3.10E−08 281997 10 5.10E−08 301157 10 311377 10
510 3.10E−08 331593 11 5.60E−08 271736 9 321640 10
530 6.10E−08 271755 9 2.30E−08 321585 10 331912 10
550 2.50E−08 321535 10 9.20E−08 331756 10 311245 9
570 5.90E−08 331739 10 8.10E−08 301942 9 361404 10

schemes exist for such problems, such as pivoting meth-
ods, projection-based methods and matrix splitting schemes
(cf. Cottle et al. 1992 for an overview of the schemes).
Our problem, however, is a large-scale monotone LCP
with a rather specific structure, arising from the agent-
specific two-period stochastic programs. In particular, the
size of the problem is directly proportional to the cardi-
nality of ì, the sample-space. Accordingly, we concentrate
on the development of scalable schemes with an important
characteristic: the computational effort should grow slowly
with �ì�. Matrix-splitting methods provide one avenue for
deriving such scalability because the splitting allows for the
solution of �ì� smaller LCPs at each major iteration. In
fact, Table 6 shows that the effort grows linearly with the
size of the sample-space. Finally, the construction of such
schemes requires providing appropriate spectral properties,
as seen in §4.1.

Note that other convergent decomposition schemes
could also be constructed. For instance, an alternate
approach could be through the use of interior point meth-
ods (Facchinei and Pang 2003, Ralph and Wright 2000),
wherein the Newton direction is computed via a decom-
position scheme—an avenue that has been investigated for
solving stochastic nonlinear programs (Shanbhag 2006). In
recent work, Kannan et al. (2011) employed a projection-
based method for solving a stochastic game-theoretic prob-
lem. One of the challenges in such approaches is that
the projection step requires the solution of a stochastic
quadratic program (when the constraints are polyhedral),

a challenge that is overcome through the use of scalable
dual decomposition methods (Ruszczyński 2003, Shanbhag
2006).

5. An Electricity Market Model
In this section, we apply our two-period model to a six-
node power market. We assume that each node houses
an independent generator, and we assume full connectivity
between the nodes. Each firm is faced with specifying for-
ward positions in the first period. Subject to these positions
and the realization of the uncertainty, the firms then com-
pete in a spot-market. It is assumed that there are s possible
realizations that the randomness can assume.

We restrict ourselves to a six-node model with 20 sce-
narios in the second period (n = 6, s = 20). Spot-market
prices are specified based on a random demand function
p�
i = a�

i −
∑

j s
�
ji1 i = 11 0 0 0 16, while forward prices are

similarly defined by p
f
i = a

f
i −

∑

j fij 0 Table 7 specifies the
parameters associated with the price functions. The base
case parameters allow for no uncertainty. Using the base

Table 7. Model parameters (base case).

as
� 100

ms
� 1

af 100
mf 1
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Table 8. Generator details (base case).

i Ci ci di

1 20 0 0
2 50 10 1
3 60 12 1
4 70 14 1
5 80 16 1
6 90 18 1

scenario as a reference point, we examine the behavior of
the market in a variety of settings.

Table 8 provides base case details of each of the six gen-
erators. In particular, the first generator has lower capac-
ity of 20 MW with negligible operating costs and can be
likened to a wind-based generator. The other five generators
have quadratic costs of generation with a capacity levels
ranging from 50 to 90 MW.
D Base-case (Table 9): In the base case, there is pre-

cisely one scenario in the future, implying that there is
no uncertainty. The wind generator generates at maximum
capacity while generators 2 and 3 also generate close to
their capacity. Generators 4–6, however, do not use their
entire capacity. In fact, as capacity increases in the face of
modest cost increases, firms tend to have higher sales. Yet,
as costs increase significantly, as seen with generators 4–6,
generation levels are depressed. Because the transmission
constraints are slack, the nodal prices are identical across
the network.
D High fuel prices (Table 10): Next, we consider a set-

ting where agents compete with the possibility of high fuel
prices in the future. We assume that generator 6 has the
highest proportion of fuel-fired generation while genera-
tor 2 has the lowest, and we further assume that the increase
in costs are perfectly correlated for each generator, with
the actual value of the increase being specified by a multi-
plier. The reference level of the random linear cost in the

Table 9. Base case.

i Expected linear cost Expected profits Expected sales Expected availab. Price

1 0000 1188006 20000 20000 59040
2 10000 1219054 48014 50000 59040
3 12000 1123005 46043 60000 59040
4 14000 1030048 44072 70000 59040
5 16000 941083 43000 80000 59040
6 18000 857010 41029 90000 59040

Table 10. High fuel prices.

i Expected linear cost Expected profits Expected sales Expected availab. Price

1 0000 11437050 20000 20000 71088
2 30035 863055 39061 50000 71088
3 35073 654062 35000 60000 71088
4 41008 477011 30042 70000 71088
5 48044 276039 24010 80000 71088
6 53067 168071 19062 90000 71088

Figure 1. Variability of equilibrium profits with costs.
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spot-market for each of the 20 scenarios is determined by
a normally distributed random variable of mean zero and
variance one. Using the previously specified multiplier, the
corresponding firm-specific generation costs are determined
for each scenario.

Expectedly, the price of electricity rises as generation is
suppressed. Firm 1’s profits increase because its costs are
unchanged as a wind-generator but reaps the benefits of
higher prices. We examine this prospect further by examin-
ing the impact of increasing costs on the profits and provide
a schematic in Figure 1. Interestingly, as the costs increase
even further, low-cost generators see a steady ascent in
profits at the expense of high-cost generators. From Fig-
ure 1, it can also be seen that as costs become even larger,
the price increases toward the maximum price while the
market participation keeps reducing correspondingly.
D Higher expected availability (Table 11): If the capac-

ity is assumed to be random in the spot-market with higher
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Table 11. High expected availability with quadratic costs.

i Expected linear cost Expected profits Expected sales Expected availab. Price

1 0000 21803094 49082 49082 56029
2 10000 11071022 45092 80012 56029
3 12000 980071 44021 89091 56029
4 14000 894012 42049 99069 56029
5 16000 811044 40078 110015 56029
6 18000 732069 39006 119089 56029

Table 12. High expected availability with zero quadratic costs

i Expected linear cost Expected profits Expected sales Expected availab. Price

1 0000 934030 49082 49082 18076
2 10000 613088 70012 70012 18076
3 12000 539085 79091 79091 18076
4 1000 11592052 89069 89069 18076
5 4000 11477075 100015 100015 18076
6 16000 269065 97078 109089 18076

Table 13. Highly constrained transmission lines.

i Expected linear cost Expected profits Expected sales Expected availab. Price

1 0000 11550000 20000 20000 77050
2 10000 11152076 40000 40000 58082
3 12000 11047019 44072 50000 57078
4 14000 974076 43034 60000 58016
5 16000 904089 41095 70000 58055
6 18000 830057 40042 80000 58076

expected availability, the results are found to be interesting
in that they do not appear to result in uniformly higher prof-
its. Clearly, increased profits would be expected if capacity
constraints are tight, as in the case of the wind-generator
(generator 1), and that is observed here. However, in the
case of generator 6, the expected sales increase by nearly
30 units from the base case, with a steep decline in profits.
In effect, incremental generation from the base case comes
at a significant loss.

A possible answer lies in the quadratic costs of genera-
tion. Incremental generation, despite its availability, comes
at a significant loss. To ascertain if quadratic costs do con-
tribute, we recomputed the equilibria under the assumption
of zero quadratic costs, we find that the generation levels
are at capacity—essentially the quadratic costs were keep-
ing generation suppressed (see Table 12). Another possible
explanation might be found in noting that increasing the
availability leads to more intense competition. This mani-
fests in higher generation and correspondingly lower prices
and profits.
D Highly constrained transmission lines (Table 13):

Constrained transmission lines are often pointed as being
responsible for high nodal prices. In fact, if transmission
capacities of lines leading to node 1 are assumed to reduce
from 4 units to 005 units, then (see Figure 2) it can be
seen that while nodal prices are very similar for higher lev-
els of transmission levels, at lower levels of transmission

the nodal price at node 1 jumps by more than 20 units as
this node is effectively isolated. In fact, the price at that
node is a directly related to available generation capacity at
that node. Table 13 provides a summary of expected profits
under the setting that capacity levels are 0.5. Interestingly,
the isolated generator garners nearly 30% higher profits
than the base case in a constrained transmission setting.

Figure 2. Sensitivity of nodal prices.
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Insights from the model: Finally, some insights are pro-
vided from a six-node electricity market model with uncer-
tain spot-prices, costs and capacities:

• In a regime of high fuel prices, firms with low-cost
generation garner profits at the expense of firms with higher
costs. As costs keep increasing, prices increase and partic-
ipation falls.

• Higher expected availability does not manifest itself in
increased profits, partially because increased generation is
less profitable owing to quadratic costs and possibly from
more intense competition. If the quadratic cost of gener-
ation is reduced to zero, we do observe that not only do
firms make more profits, they generate at full capacity.

• Constrained transmission lines lead to price differ-
ences across the network. Particularly interesting is the
increase in profits arising from high prices seen in nodes
that have reduced access to the rest of the network.

6. Contributions and Future Research
This paper is motivated by the challenges in both prov-
ing the existence of a Nash-Stackelberg equilibrium in an
uncertain multiperiod setting as well as by question of
developing scalable convergent algorithms for obtaining
such points. In this section, we summarize some of the
main thrusts of our work.

1. We consider a spot-forward equilibrium problem in
which agents compete in the forward-market subject to
equilibrium in the spot-market. Additionally, we work
under the setting that the forward prices are specified by an
affine price function, and this is enforced by adding a lin-
ear risk-neutrality constraint to each agent’s problem. This
could be viewed as a consequence of a belief of how for-
ward prices are set. Alternately, one could also view such
a constraint as being a conjecture on forward price func-
tions. In the current context, preliminary numerical tests
show that equilibrium profits vary slightly between the con-
jectured and original models and suggest that these differ-
ences are relatively invariant to price function intercepts
and uncertainty.

2. We construct a simultaneous stochastic Nash-
equilibrium (SSNE) problem whose solution is shown to
be a local Nash equilibrium of the conjectured version of
the original multi-leader multi-follower game. Furthermore,
we show that the SSNE always exists and is characterized
by a complementarity problem with a P0 mapping in both
two-node and more general networked settings.

3. The SSNE may be obtained as a solution to a stochas-
tic mixed-complementarity problem. A scalable matrix
splitting algorithm for solving large-scale stochastic prob-
lems is presented along with global convergence theory.
Preliminary computational tests show that computational
effort grows linearly with the size of the underlying distri-
bution. Also, sampled variants of the algorithms are often
seen to perform better. Further tests show that the num-
ber of major and minor iterations do not grow significantly
with the size of the network.

4. We use our model to derive insights from a six-node
spot-forward electricity market in which costs, prices, and
capacities are uncertain in the second period. We observe
that higher expected availability appears to result in higher
profits in settings where the quadratic costs are modest.
Furthermore, when transmission lines to a particular node
or zone are constrained, it is seen that both prices and prof-
its rise steeply in that region.

Endnotes
1. Note that throughout the paper we use the terms firms,
players, and generators interchangeably. The latter in par-
ticular is employed when referring to physical production
in the real-time market.
2. This calculation is obtainable through some simple
algebra.
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