
The Annals of Applied Probability
2011, Vol. 21, No. 2, 645–668
DOI: 10.1214/10-AAP707
© Institute of Mathematical Statistics, 2011

ON THE TRANSITION FROM HEAVY TRAFFIC TO HEAVY TAILS
FOR THE M/G/1 QUEUE: THE REGULARLY VARYING CASE

BY MARIANA OLVERA-CRAVIOTO, JOSE BLANCHET AND PETER GLYNN

Columbia University, Columbia University and Stanford University

Two of the most popular approximations for the distribution of the
steady-state waiting time, W∞, of the M/G/1 queue are the so-called heavy-
traffic approximation and heavy-tailed asymptotic, respectively. If the traffic
intensity, ρ, is close to 1 and the processing times have finite variance, the
heavy-traffic approximation states that the distribution of W∞ is roughly ex-
ponential at scale O((1 − ρ)−1), while the heavy tailed asymptotic describes
power law decay in the tail of the distribution of W∞ for a fixed traffic inten-
sity. In this paper, we assume a regularly varying processing time distribution
and obtain a sharp threshold in terms of the tail value, or equivalently in terms
of (1 − ρ), that describes the point at which the tail behavior transitions from
the heavy-traffic regime to the heavy-tailed asymptotic. We also provide new
approximations that are either uniform in the traffic intensity, or uniform on
the positive axis, that avoid the need to use different expressions on the two
regions defined by the threshold.

1. Introduction. A substantial literature has been developed over the last
forty years that recognizes the simplifications that arise in the analysis of queueing
systems in the presence of “heavy traffic.” The earliest such “heavy traffic” approx-
imation was that obtained by Kingman (1961, 1962) for the steady-state waiting
time W∞ for the G/G/1 queue. In particular, let Wn be the waiting time (exclusive
of service) of the nth customer for a first-in first-out (FIFO) single-server queue
(with an infinite capacity waiting room) fed by a renewal arrival process [with
i.i.d. inter-arrival times (χn :n ≥ 1)] and an independent stream of i.i.d. processing
times (Vn :n ≥ 0). If ρ � EV1/Eχ1 < 1, then Wn ⇒ W∞ as n → ∞, where W∞
can be approximated via

W∞
D≈ Varχ1 + VarV1

2(Eχ1 − EV1)
Exp(1)(1.1)

when ρ is close to 1. Here, Exp(1) is an exponential r.v. with mean one and
D≈

denotes “has approximately the same distribution as.” A precise statement of the
limit theorem supporting the heavy traffic approximation (1.1) is given by (2.4)
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below. The term “heavy traffic” arises as a consequence of the fact that long queues
tend to form when EV1 and Eχ1 are roughly balanced.

The modern approach to justifying (1.1) involves first showing that (Wn :n ≥ 0)

can be approximated in heavy traffic by a one-dimensional reflecting Brownian
motion (RBM) [see, e.g., Iglehart and Whitt (1970a, 1970b)] and then verifying
that the steady-state r.v. W∞ can be approximated by that of the RBM [Szczotka
(1990, 1999)]. Similar methods apply, in significant generality, to multi-station
queueing networks. For example, Reiman (1984) proves a functional limit theorem
that justifies approximating a single class multi-station queueing network by multi-
dimensional RBM. Recent work of Gamarnik and Zeevi (2006) establishes the
associated steady-state convergence. Harrison and Williams (1987) analyze the
multi-dimensional RBM and show that it has exponential tails.

On the other hand, if the processing times are heavy-tailed (e.g., regularly vary-
ing), there is a significant literature that establishes, for various models, that the
associated queueing system possesses a heavy-tailed steady-state. A representa-
tive result of this type states that when ρ < 1 for the G/G/1 FIFO queue described
above (with regularly varying processing times), we have

P(W∞ > x) ∼ λ

1 − ρ

∫ ∞
x

P (V1 > y)dy(1.2)

as x → ∞, where λ
�= 1/Eχ1 [see, e.g., Embrechts and Veraverbeke (1982)].

Corresponding heavy-tailed steady-state asymptotics also exist in the context of
queueing networks [see, e.g., Baccelli, Schlegel and Schmidt (1999) and Baccelli
and Foss (2004)].

At first, it may seem contradictory that the heavy-traffic theory typically predicts
exponential tails for the steady-state distribution, whereas regularly varying heavy-
tailed asymptotics predict power-law decay in the steady-state tail. Of course, the
key is to note that the two families of results involve different types of limits, one
as ρ → 1 (heavy traffic) and the other as x → ∞ (heavy tails). The interesting
mathematical issue here is therefore to send ρ to 1 and x → ∞ simultaneously,
and to determine the x-value (as a function of ρ) at which the steady-state dis-
tribution begins to “feel” the presence of the heavy tails in the processing times.
In particular, this paper develops a very explicit description, in the setting of the
M/G/1 queue (in which the arrival process is assumed Poisson), of where the tran-
sition from the exponential heavy-traffic approximation (1.1) to the heavy-tailed
approximation (1.2) occurs. As a corollary to our main results (Corollary 2.3) we
find that when the processing times are regularly varying, then the tail probability
P(W∞ > x) sharply transitions at

x∗ ≈ 1

1 − ρ
log

(
1

1 − ρ

)
EV 2

1

2EV1
(α − 2)(1.3)

from the approximation (1.1) to the approximation (1.2) (where α is the tail in-
dex of the regularly varying V1). Roughly speaking, to the left of x∗, (1.1) is



TRANSITION FROM HEAVY TRAFFIC TO HEAVY TAILS 647

valid whereas to the right of x∗, (1.2) is appropriate. A companion paper [Olvera-
Cravioto and Glynn (2010)] provides uniform approximations for P(W∞ > x) in
the general subexponential case, and shows how in the setting of Weibullian tails
one can identify an intermediate zone in which neither the heavy-traffic asymptotic
nor the heavy-tailed asymptotic hold.

This result ties together two significant queueing theory literatures, namely
heavy traffic theory and heavy-tailed approximations. As the first such result de-
scribing the transition from the heavy traffic regime to the heavy-tailed asymptotic,
it suggests the possibility of similar such results for more complex systems and
networks. Furthermore, one of our main results, Theorem 2.1, provides an approx-
imation for the tail probability P(W∞ > x) that is uniform across all values of ρ,
and that in numerical experiments seems to perform very well. This new uniform
approximation, which takes advantage of the Pollaczek–Khintchine formula for
the M/G/1 queue, provides a significant numerical improvement over the existing
heavy-traffic and heavy-tail approximations that are commonly used to approxi-
mate the tail of the r.v. W∞.

2. The main results. Let (Wn(ρ) :n ≥ 0) be the waiting time sequence for an
M/G/1 FIFO queue that is fed by a Poisson arrival process having arrival rate λ =
ρ/EV1 and independent i.i.d. processing times (Vn :n ≥ 0). We assume throughout
the remainder of this paper (unless otherwise noted) that V1 has a regularly varying
distribution with tail index α > 2, so that

P(V1 > x) ∼ x−αL(x)

as x → ∞, where L(·) is slowly varying [see page 412 of Asmussen (2003)].
If ρ < 1, Wn(ρ) ⇒ W∞(ρ) as n → ∞, where the Pollaczek–Khintchine for-

mula [see, e.g., page 237 of Asmussen (2003)] guarantees that

P
(
W∞(ρ) > ·) =

∞∑
n=0

(1 − ρ)ρnP (Sn > ·).(2.1)

Here, Sn = X1 + · · · + Xn (with S0 = 0), where the Xj ’s are i.i.d. with common
density g(·) = P(V1 > ·)/EV1. The heavy-tail result (1.2) translates, in the M/G/1
setting, into the asymptotic

P
(
W∞(ρ) > x

) ∼ ρ

1 − ρ
P (X1 > x),(2.2)

as x → ∞. It is straightforward [see, e.g., page 404 of Asmussen (2003)] to show
that (2.2) in turn implies that

P
(
W∞(ρ) > x

) ∼ λ

1 − ρ
· x1−α

α − 1
L(x)(2.3)

as x → ∞.
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Turning next to the heavy traffic limit theorem for W∞(ρ) [due to Kingman
(1961)], its precise statement (in our M/G/1 setting) is that

(1 − ρ)W∞(ρ) ⇒ EV 2
1

2EV1
Exp(1)(2.4)

as ρ ↗ 1, providing theoretical support for the approximation

P
(
W∞(ρ) > x

) ≈ exp
(−2(1 − ρ)EV1x/EV 2

1
)

(2.5)

when ρ is close to 1. To get a sense of the point x∗ = x∗(ρ) at which the heavy
traffic approximation (2.5) transitions into the heavy-tail approximation (2.3), note
that the point x∗ at which the exponential (2.5) crosses the power law tail (2.3)
must satisfy

2x∗(1 − ρ)
EV1

EV 2
1

≈ log(1 − ρ) + (α − 1) logx∗.(2.6)

This implies that x∗ ≈ κ(1−ρ)−1 log((1−ρ)−1), where κ = (α−2)EV 2
1 /(2EV1).

To make the above heuristic rigorous we look more closely at the Pollaczek–
Khintchine formula. First we note that the heavy-tail asymptotic (2.2) can be ob-
tained by simply substituting P(Sn > ·) by nP (X1 > ·), that is, by using the so-
called subexponential asymptotic for P(Sn > x). Such asymptotics are typically
stated for fixed values of n, but can be shown to hold for n → ∞ provided n grows
slowly enough compared to x [see, e.g., Borovkov (2000); Rozovskiı̆ (1989)]. In
other words, we can obtain the heavy-tail asymptotic from the first terms of (2.1),

N(x)∑
n=1

(1 − ρ)ρnP (Sn > x) ≈
N(x)∑
n=1

(1 − ρ)ρnnP (X1 > x) ∼ ρ

1 − ρ
P (X1 > x)

for some appropriately defined N(x). This raises the question of whether we can
also obtain the heavy-traffic asymptotic directly from (2.1), and the answer is yes.
For large n, say n ≥ x/EX1, P(Sn > x) = O(1), so by simply replacing P(Sn >

x) by one we obtain
∞∑

n=[x/EX1]
(1 − ρ)ρnP (Sn > x) ≈

∞∑
n=[x/EX1]

(1 − ρ)ρn = ρ[x/EX1].

Since as ρ ↗ 1, ρ[x/EX1] ∼ e−(1−ρ)x/EX1 = e−2(1−ρ)EV1x/EV 2
1 , we can recover the

heavy-traffic asymptotic from the last terms of (2.1).
This reasoning leads us to the observation that the transition of P(W∞ > x) oc-

curs at the level of the partial sums P(Sn > x). For the regularly varying case, the
transition from the subexponential asymptotic nP (X1 > x − nEX1) to the CLT
approximation 1 −�((x −nEX1)/

√
Var(X1)) [or its stable law counterpart when

Var(X1) = ∞] occurs smoothly, which allows us to approximate the Pollaczek–
Khintchine formula directly and obtain an expression that does not require ρ to
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be close to one. Theorem 2.1 below describes this (uniform in ρ) approximation,
and Theorem 2.2 gives an equivalent formulation in terms of more familiar asymp-
totic expressions. As corollaries, we obtain the result regarding the transition from
heavy-traffic to heavy-tail of P(W∞ > x), both in terms of ρ as a function of x

and x as a function of ρ.
We also point out that similar versions of our results should also hold for the

GI/GI/1 case. The added difficulty lies in the fact that although W∞(ρ) still has a
representation of the form

W∞(ρ) =
∞∑

n=1

(1 − θ)θnP (Y1 + · · · + Yn > x),

where the Yi ’s i.i.d regularly varying random variables [see Asmussen (2003),
Chapter X.9], the distribution of the Yi ’s and the geometric parameter θ are not
explicitly known. In particular, both of them depend on ρ, so a uniform in ρ ver-
sion of Theorem 3.1 and an asymptotic expression for θ(ρ) are required. Such
uniform in ρ results have been recently developed in Blanchet, Glynn and Lam
(2010). Proof techniques very similar to those given here can then be used to ob-
tain the GI/GI/1 equivalents of our results.

THEOREM 2.1. Suppose P(V1 > x) ∼ L(x)x−α with α > 2 and let μ =
EX1 = EV 2

1 /(2EV1). Define β = (2 ∧ (α − 1))−1, M(x) = 
(x − xβ)/μ�, and

S(ρ, x) =
M(x)∑
n=1

(1 − ρ)ρnnP
(
X1 > x − (n − 1)μ

)
.

Then,

sup
0<ρ<1

∣∣∣∣P(W∞(ρ) > x)

S(ρ, x) + ρx/μ
− 1

∣∣∣∣ → 0

as x → ∞. Alternatively,

sup
x≥0

∣∣∣∣P(W∞(ρ) > x)

S(ρ, x) + ρx/μ
− 1

∣∣∣∣ → 0

as ρ ↗ 1.

THEOREM 2.2. Suppose P(V1 > x) ∼ L(x)x−α with α > 2 and let μ =
EX1 = EV 2

1 /(2EV1) and γ (x,ρ) = 1 − ρx/μ − ρx/μ(1 − ρ)x/μ. Then,

sup
0<ρ<1

∣∣∣∣ P(W∞(ρ) > x)

(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ
− 1

∣∣∣∣ → 0

as x → ∞. Alternatively,

sup
x≥0

∣∣∣∣ P(W∞(ρ) > x)

(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ
− 1

∣∣∣∣ → 0

as ρ ↗ 1.
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From Theorem 2.2 we can derive the following corollary stating the different
regions where either the heavy-traffic approximation or the heavy-tail asymptotic
govern the tail behavior of the steady-state waiting time. Corollary 2.3 describes
the shape of the distribution of W∞(ρ) for a fixed value of ρ. On the other hand,
Corollary 2.4 can be of practical use in understanding the sensitivity of a system
to the traffic intensity, since for a fixed value of x it tells us how P(W∞(ρ) > x)

changes as ρ gets closer to one.

COROLLARY 2.3. Suppose P(V1 > x) ∼ L(x)x−α with α > 2 and let κ =
(α − 2)EV 2

1 /(2EV1). Suppose that y = y(ρ) satisfies

y(ρ) = cκ(1 − ρ)−1 log
(
(1 − ρ)−1)

for ρ < 1.

(a) If 0 < c < 1, then

sup
0≤x≤y

∣∣∣∣ P(W∞(ρ) > x)

exp(−2(1 − ρ)EV1x/EV 2
1 )

− 1
∣∣∣∣ → 0(2.7)

as ρ ↗ 1. Relation (2.7) continues to hold when c = 1, provided that
L(x)/(logx)α−1 → 0 as x → ∞.

(b) If c > 1, then

sup
x≥y

∣∣∣∣ P(W∞(ρ) > x)

(ρ/(1 − ρ))P (X1 > x)
− 1

∣∣∣∣ → 0(2.8)

as ρ ↗ 1. Relation (2.8) continues to hold when c = 1, provided that
L(x)/(logx)α−1 → ∞ as x → ∞.

The corresponding version in terms of ρ as a function of x is given below.

COROLLARY 2.4. Suppose P(V1 > x) ∼ L(x)x−α with α > 2 and let κ =
(α − 2)EV 2

1 /(2EV1). Suppose that ρ̂ = ρ̂(x) satisfies

ρ̂(x) = 1 − cκ(logx)/x.

(a) If 0 < c < 1, then

sup
ρ̂≤ρ<1

∣∣∣∣ P(W∞(ρ) > x)

exp(−2(1 − ρ)EV1x/EV 2
1 )

− 1
∣∣∣∣ → 0(2.9)

as x → ∞. Relation (2.9) continues to hold when c = 1, provided that
L(x)/ logx → 0 as x → ∞.
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(b) If c > 1, then

sup
0<ρ≤ρ̂

∣∣∣∣ P(W∞(ρ) > x)

(ρ/(1 − ρ))P (X1 > x)
− 1

∣∣∣∣ → 0(2.10)

as x → ∞. Relation (2.10) continues to hold when c = 1, provided that
L(x)/ logx → ∞ as x → ∞.

Note that Theorems 2.1 and 2.2 suggest different approximations for
P(W∞(ρ) > x). We tested both approximations and found that

H(ρ,x) = S(ρ, x) + ρx/μ

is better than its asymptotic counterpart and performs very well for most values
of x and ρ. In Section 4 we analyze how this approximation compares to using
the simpler heavy-traffic and heavy-tail asymptotics in the regions where they are
valid, and we give a couple of numerical examples.

It is instructive to contrast the behavior obtained in the above regularly vary-
ing setting with what occurs in the light-tailed setting. Suppose, in particu-
lar, that E exp(θV1) < ∞ for some θ > 0, and define θ∗(ρ) as the root of
ρE exp(θ∗(ρ)V1) = 1.

THEOREM 2.5. Suppose that E exp(θV1) < ∞ for some θ > 0.

(a) If y = y(ρ) = o((1 − ρ)−2), then

sup
0≤x≤y

∣∣∣∣ P(W∞(ρ) > x)

exp(−2(1 − ρ)EV1x/EV 2
1 )

− 1
∣∣∣∣ → 0

as ρ ↗ 1.
(b) For x ≥ 0,

P
(
W∞(ρ) > x(1 − ρ)−2) ∼ exp

(
−2x(1 − ρ)−1 EV1

EV 2
1

+ x
EV 3

1

3EV 2
1

− x

4

EV 2
1

EV1

)

as ρ ↗ 1.
(c) As ρ ↗ 1,

sup
x≥0

∣∣∣∣P(W∞(ρ) > x)

exp(−θ∗(ρ)x)
− 1

∣∣∣∣ → 0.

Note that in contrast to the heavy-tailed setting, the heavy traffic approximation
is now valid over a larger range, namely up to tail values of order o((1 − ρ)−2).
At tail values of order (1 − ρ)−2, the third moment of V1 enters the asymptotic for
P(W∞(ρ) > x) [see also Abate, Choudhury and Whitt (1995) and Blanchet and
Glynn (2007)]. Finally, part (c) shows that the Cramér–Lundberg tail asymptotic
[see, e.g., pages 365–369 of Asmussen (2003)] is globally valid in heavy traffic,
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showing the clear superiority of the Cramér–Lundberg asymptotic over the heavy
traffic approximation when ρ is close to 1. On the other hand, for regularly vary-
ing tails, any global approximation to P(W∞(ρ) > ·) must utilize both the heavy
traffic approximation and the appropriate tail asymptotic.

We close this section with a brief discussion of how the theory described in this
paper extends to the more general setting of geometric random sums. Specifically,
consider the random variable

Z(p) =
N(p)∑
i=1

Yi,

where (Yi : i ≥ 1) is a sequence of nonnegative nonlattice i.i.d. random variables
independent of the geometric r.v. N(p) having mass function

P
(
N(p) = k

) = (1 − p)pk−1

for k ≥ 1 [see Kalashnikov (1997) for various applied settings in which such geo-
metric random sums arise]. We assume that Y1 is regularly varying with finite
variance, so that there exists β > 2 and a slowly varying function L(·) for which

P(Y1 > x) ∼ x−βL(x)

as x → ∞. Put τ = (β − 1)EY1.

THEOREM 2.6. Let μ = EY1 and γ (x,p) = 1 − (1 − p)x/μ − (1 −
p)x/μpx/μ. Then,

sup
0<p<1

∣∣∣∣ P(Z(p) > x)

(1 − p)γ (x,p)P (Y1 > x)/p + (1 − p)x/μ
− 1

∣∣∣∣ → 0

as x → ∞. Alternatively,

sup
x>0

∣∣∣∣ P(Z(p) > x)

(1 − p)γ (x,p)P (Y1 > x)/p + (1 − p)x/μ
− 1

∣∣∣∣ → 0

as p ↓ 0.

COROLLARY 2.7. Suppose that y = y(p) satisfies

y(p) = cτp−1 log(1/p)

(a) If 0 < c < 1, then

sup
0≤x≤y

∣∣∣∣ P(Z(p) > x)

exp(−px/EY1)
− 1

∣∣∣∣ → 0(2.11)

as p ↓ 0. Relation (2.11) continues to hold when c = 1, provided that
L(x)/(logx)β → 0 as x → ∞.
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(b) If c > 1, then

sup
x≥y

∣∣∣∣P(Z(p) > x)

P (Y1 > x)/p
− 1

∣∣∣∣ → 0(2.12)

as p ↓ 0. Relation (2.12) continues to hold when c = 1, provided that
L(x)/(logx)β → ∞ as x → ∞.

3. Proofs. In this section, we prove Theorems 2.1, 2.2 and Corollary 2.3; the
proofs of Theorem 2.6 and Corollary 2.7 are essentially identical to those of The-
orem 2.2 and Corollary 2.3. The proof of Corollary 2.4 is very similar in spirit
to that of Corollary 2.3, the difference being that it follows from the uniform in
0 < ρ < 1 statement of Theorem 2.2 instead of the uniform in x > 0. Theorem 2.5
follows directly from Theorem 2 in Blanchet and Glynn (2007).

We now turn our attention to the proof of Theorem 2.1. Recall that

P
(
W∞(ρ) > x

) =
∞∑

n=0

(1 − ρ)ρnP (Sn > x),(3.1)

where the Xi’s are i.i.d. with common density g(·) = P(V1 > ·)/EV1 and Sn =
X1 + · · · + Xn.

Our analysis is based on the principle that we can approximate P(Sn > x) by the
heavy tail asymptotic nP (X1 > x − (n − 1)E[X]) uniformly in n throughout the
region of large deviations of Sn. Early results of this kind are due to Nagaev (1981),
Rozovskiı̆ (1989), Mikosch and Nagaev (1998), Borovkov (2000), and more re-
cently, Denisov, Dieker and Shneer (2008). The statement we present below is
taken from Borovkov and Borovkov (2008), Theorems 3.4.1 and 4.4.1.

THEOREM 3.1 (Borovkov). Let Y1, Y2, . . . be i.i.d. random variables having
EY = 0, F(t) = P(Y1 > t) and F(t) = t−βL(t) where L(·) is slowly varying. Set
Sn = Y1 + · · · + Yn, n ≥ 1.

(a) If β > 2 and EY 2 < ∞, define σ(n) = √
(β − 2)n logn.

(b) If β ∈ (1,2) and F(−t) ≤ cF (t) for t > 0 and some constant c > 0, define

σ(n) = F
−1

(1/n).

Then, there exists a function ϕ(t) ↓ 0 as t ↑ ∞ such that

sup
y≥tσ (n)

∣∣∣∣ P(Sn > y)

nP (Y1 > y)
− 1

∣∣∣∣ ≤ ϕ(t)

uniformly in n.

Below we give an application of Borovkov’s result to our particular setting.
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LEMMA 3.2. Let X1,X2, . . . be i.i.d. nonnegative random variables with μ =
E[X] < ∞, and P(X1 > t) = t−α+1L(t) where L(·) is slowly varying and α > 2.
Set Sn = X1 + · · · + Xn, n ≥ 1. For any (2 ∧ (α − 1))−1 < γ < 1 define Mγ (x) =

(x − xγ )/μ�. Then, there exists a function ϕ(t) ↓ 0 as t ↑ ∞ such that

sup
1≤n≤Mγ (x)

∣∣∣∣ P(Sn > x)

nP (X1 > x − (n − 1)μ)
− 1

∣∣∣∣ ≤ ϕ(x).

PROOF. Suppose first that α > 3 and let σ(n) = √
(α − 2)n logn. Since

P(Sn > x)

nP (X1 > x − (n − 1)μ)
= P(S∗

n > x − nμ)

nP (Y1 > x − nμ)
,

where Yi = Xi − μ and S∗
n = Y1 + · · · + Yn. Then the result will follow from

Theorem 3.1(a) once we show that (x − nμ)/σ(n) → ∞ uniformly for 1 ≤ n ≤
Mγ (x). To see this simply note that

x − nμ

σ(n)
≥ x − Mγ (x)μ

σ(Mγ (x))
∼

√
μ

α − 2
· xγ−1/2
√

logx
.

Since γ > 1/2, the above converges to infinity.
Suppose now that α ∈ (2,3) and note that P(Y1 ≤ −t) = 0 for t ≥ μ. Note also

that since F(t) = P(Y1 > t) is regularly varying with index α − 1, then σ(n) =
F

−1
(1/n) = n1/(α−1)L̃(n) for some slowly varying function L̃(·) [see Bingham,

Goldie and Teugels (1987)]. Then the result will follow from Theorem 3.1(b) once
we show that (x −nμ)/σ(n) → ∞ uniformly for 1 ≤ n ≤ Mγ (x). To see this note
that

x − nμ

σ(n)
≥ x − Mγ (x)μ

σ(Mγ (x))
∼ xγ

σ (x/μ)
∼ xγ−1/(α−1)

μ−1/(α−1)L̃(x)
,

and since γ > 1/(α − 1) the above converges to infinity.
The case α = 3 is rather technical and does not provide additional insights. We

refer the reader to the internet supplement Olvera-Cravioto, Blanchet and Glynn
(2010) for the details. �

We now give a lemma that will allow us to transform the statements of the main
results from being uniform in 0 < ρ < 1 to being uniform in x > 0, under the
limiting regimes x → ∞ and ρ ↗ 1, respectively.

LEMMA 3.3. Suppose that

sup
0<ρ<1

∣∣∣∣P(W∞(ρ) > x)

A(ρ, x)
− 1

∣∣∣∣ → 0

as x → ∞, where A(ρ,x) satisfies

sup
0<x<(1−ρ)−η

|A(ρ,x) − 1| → 0
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as ρ ↗ 1 for some 0 < η < 1. Then,

sup
x>0

∣∣∣∣P(W∞(ρ) > x)

A(ρ, x)
− 1

∣∣∣∣ → 0

as ρ ↗ 1.

PROOF. We argue by contradiction. Suppose that there exists an ε > 0 and a
function x : (0,1) → (0,∞) such that x(φ) ≥ (1 − φ)−η and∣∣∣∣P(W∞(φ) > x(φ))

A(φ, x(φ))
− 1

∣∣∣∣ > ε

for all 0 < φ < 1. Then,

sup
0<ρ<1

∣∣∣∣P(W∞(ρ) > x(φ))

A(ρ, x(φ))
− 1

∣∣∣∣ ≥
∣∣∣∣P(W∞(φ) > x(φ))

A(φ, x(φ))
− 1

∣∣∣∣ > ε.

But this cannot be since by assumption,

lim
φ↗1

sup
0<ρ<1

∣∣∣∣P(W∞(ρ) > x(φ))

A(ρ, x(φ))
− 1

∣∣∣∣ = 0.

It follows that

sup
x≥(1−ρ)−η

∣∣∣∣P(W∞(ρ) > x)

A(ρ, x)
− 1

∣∣∣∣ → 0

as ρ ↗ 1. For 0 < x < (1 − ρ)−η note that

lim
ρ↗1

sup
0<x<(1−ρ)−η

∣∣∣∣P(W∞(ρ) > x)

A(ρ, x)
− 1

∣∣∣∣
≤ lim

ρ↗1
sup

0<x<(1−ρ)−η

|P(W∞(ρ) > x) − 1|
A(ρ,x)

+ lim
ρ↗1

sup
0<x<(1−ρ)−η

|A(ρ,x) − 1|
A(ρ,x)

= lim
ρ↗1

sup
0<x<(1−ρ)−η

∣∣P (
W∞(ρ) > x

) − 1
∣∣.

The last limit is zero by the standard heavy traffic limit. �

Throughout the rest of this section let μ = EX1, β = (2 ∧ (α − 1))−1, M(x) =

(x − xβ)/μ�, and

S(ρ, x) =
M(x)∑
n=1

(1 − ρ)ρnnP
(
X1 > x − (n − 1)μ

)
.

PROOF OF THEOREM 2.1. We will prove the uniform in 0 < ρ < 1 asymp-
totic, since the statement regarding the uniformity in x > 0 will follow from
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Lemma 3.3 by noting that

sup
0<x<(1−ρ)−1/4

S(ρ, x) ≤ sup
0<x<(1−ρ)−1/4

(1 − ρ)M(x)(M(x) + 1)

2

≤ (1 − ρ)1/2

μ2 ,

which clearly converges to zero. Throughout the proof C > 0 is a generic constant.
Fix β < γ < 1 ∧ β(α − 1) and define Mγ (x) = 
(x − xγ )/μ�. Then, by

Lemma 3.2, there exists a function ϕ1(t) → 0 as t → ∞ such that

sup
1≤n≤Mγ (x)

∣∣∣∣ P(Sn > x)

nP (X1 > x − (n − 1)μ)
− 1

∣∣∣∣ ≤ ϕ1(x).

By (3.1) we have∣∣P (
W∞(ρ) > x

) − S(ρ, x) − ρx/μ
∣∣

≤ ϕ1(x)

Mγ (x)∑
n=1

(1 − ρ)ρnnP
(
X1 > x − (n − 1)μ

)

+
M(x)∑

n=Mγ (x)+1

(1 − ρ)ρnnP
(
X1 > x − (n − 1)μ

)

+

x/μ�∑

n=Mγ (x)+1

(1 − ρ)ρnP (Sn > x)

+
∣∣∣∣∣

∞∑
n=
x/μ�+1

(1 − ρ)ρnP (Sn > x) − ρx/μ

∣∣∣∣∣.
Clearly,

ϕ1(x)

Mγ (x)∑
n=1

(1 − ρ)ρnnP
(
X1 > x − (n − 1)μ

) ≤ ϕ1(x)S(ρ, x).(3.2)

Fix 0 < ε < min{α − 2, (β(α − 1) − γ )/β}. The second term is bounded by

M(x)∑
n=Mγ (x)+1

(1 − ρ)ρnnP
(
X1 > x − (n − 1)μ

)

≤ Cx(1 − ρ)

M(x)∑
n=Mγ (x)+1

ρn(
x − (n − 1)μ

)−α+1+ε
.
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Since g(n) = ρn(x − (n − 1)μ)−α+1+ε is convex in n,

x(1 − ρ)

M(x)∑
n=Mγ (x)+1

g(n)

≤ x(1 − ρ)
(
M(x) − Mγ (x)

)
max

{
g
(
Mγ (x) + 1

)
, g(M(x))

}
(3.3)

≤ C(1 − ρ)x1+γ max
{
ρ(x−xγ )/μx−γ (α−1−ε), ρ(x−xβ)/μ−1x−β(α−1−ε)}

≤ C(1 − ρ)x1+γ−β(α−1−ε)ρ(x−xγ )/μ,

where our choice of ε guarantees that γ − β(α − 1 − ε) < 0. Also, we have


x/μ�∑
n=Mγ (x)+1

(1 − ρ)ρnP (Sn > x) ≤ ρMγ (x)+1(
1 − ρ
x/μ�−Mγ (x))

(3.4)
≤ Cρ(x−xγ )/μxγ | logρ|.

To derive the last bound let K(x) = 
(x + xγ )/μ�. Then,∣∣∣∣∣
∞∑

n=
x/μ�+1

(1 − ρ)ρnP (Sn > x) − ρx/μ

∣∣∣∣∣
= ρx/μ − ρ
x/μ�+1 +

∞∑
n=
x/μ�+1

(1 − ρ)ρnP (Sn ≤ x)

≤ ρx/μ(1 − ρ) +
K(x)∑

n=
x/μ�+1

(1 − ρ)ρn +
∞∑

n=K(x)+1

(1 − ρ)ρnP (Sn ≤ x).

It is easy to check that

K(x)∑
n=
x/μ�+1

(1 − ρ)ρn ≤ Cρx/μxγ | logρ|.

For the tail of the sum let Yi = μ − Xi and S∗
n = Y1 + · · · + Yn. Let bn be the

scaling for which Zn = S∗
n/bn ⇒ Z, where Z is a stable random variable. Note

that bn = nβL0(n) for some slowly varying L0(·). It follows that for all n > K(x),

P(Sn ≤ x) = P

(
Zn ≥ nμ − x

bn

)
≤ P

(
Zn ≥ (K(x) + 1)μ − x

bK(x)+1

)
,

where

(K(x) + 1)μ − x

bK(x)+1
≥ μβxγ

(x + xγ )βL0((x − xγ )/μ)
≥ cxγ−β

L0(x)
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for some constant c > 0. It follows that

sup
n>K(x)

P (Sn ≤ x) ≤ sup
n>K(x)

P
(
Zn ≥ cxγ−β/L0(x)

) ≤ ϕ2(x)

for some ϕ2(t) → 0 as t → ∞. Hence,

∞∑
n=K(x)+1

(1 − ρ)ρnP (Sn ≤ x) ≤ ϕ2(x)

∞∑
n=K(x)+1

(1 − ρ)ρn ≤ ϕ2(x)ρx/μ.

We thus have that ∣∣∣∣∣
∞∑

n=
x/μ�+1

(1 − ρ)ρnP (Sn > x) − ρx/μ

∣∣∣∣∣
(3.5)

≤ ϕ2(x)ρx/μ + Cρx/μ| logρ|xγ .

Combining (3.2)–(3.5) gives∣∣P (
W∞(ρ) > x

) − S(ρ, x) − ρx/μ
∣∣

≤ ϕ1(x)S(ρ, x) + ϕ2(x)ρx/μ + Cρ(x−xγ )/μ| logρ|xυ,

where υ = max{1 + γ − β(α − 1 − ε), γ } ∈ (0,1). It only remains to show that
ρ(x−xγ )/μ| logρ|xυ = o(S(ρ, x) + ρx/μ) uniformly in 0 < ρ < 1. To see this let
ρ(x) = 1 − (xυ logx)−1, then

sup
ρ(x)≤ρ<1

ρ(x−xγ )/μ| logρ|xυ

S(ρ, x) + ρx/μ
≤ sup

ρ(x)≤ρ<1
e| logρ|xγ /μ| logρ|xυ

= e| logρ(x)|xγ /μ| logρ(x)|xυ

≤ C

logx
→ 0,

and since S(ρ, x) ≥ P(X1 > x)
∑
x/μ�

n=1 (1 − ρ)ρn,

sup
0<ρ<ρ(x)

ρ(x−xγ )/μ| logρ|xυ

S(ρ, x) + ρx/μ

≤ sup
0<ρ<ρ(x)

ρ(x−xγ )/μ| logρ|xυ

L(x)x−α+1ρ(1 − ρ
x/μ�)

≤ C sup
0<ρ<ρ(x)

ρ(x−xγ )/μ−1| logρ|xυ+α−1+ε

≤ C sup
t>(xυ logx)−1

exp
(
−

(
x − xγ

μ
− 1

)
t + log t + (υ + α − 1 + ε) logx

)
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= C exp
(
− x1−υ

μ logx

(
1 − 1

x1−γ
− μ

x

)
− log logx + (α − 1 + ε) logx

)

→ 0. �

We now prove Theorem 2.2.

PROOF OF THEOREM 2.2. Again, we only prove the statement regarding the
uniformity in 0 < ρ < 1, since the statement for x > 0 follows from Lemma 3.3
and the observation that, as ρ ↗ 1,

sup
0<x<(1−ρ)−1/4

ρ

1 − ρ

(
1 − ρx/μ − (1 − ρ)x

μ
ρx/μ

)
P(X1 > x)

≤ sup
0<x<(1−ρ)−1/4

ρ

1 − ρ

(
| logρ| x

μ
− (1 − ρ)x

μ
ρx/μ

)

= ρ

μ(1 − ρ)5/4

(| logρ| − (1 − ρ)e−| logρ|(1−ρ)−1/4/μ)
= O

(
(1 − ρ)1/2)

.

By Theorem 2.1 we only need to show that

sup
0<ρ<1

∣∣∣∣S(ρ, x) − (ρ/(1 − ρ))γ (x,ρ)P (X1 > x)

(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ

∣∣∣∣ → 0

as x → ∞. We start by noting that

S(ρ, x) − ρ

1 − ρ
γ (x,ρ)P (X1 > x)

=
M(x)∑
n=1

(1 − ρ)ρnn
(
P

(
X1 > x − (n − 1)μ

) − P(X1 > x)
)

+ P(X1 > x)

(
M(x)∑
n=1

(1 − ρ)ρnn − ρ

1 − ρ
γ (x,ρ)

)
.

Then, since ρ
1−ρ

γ (x,ρ) ≥ ∑
x/μ�−1
n=1 (1 − ρ)ρnn,∣∣∣∣S(ρ, x) − ρ

1 − ρ
γ (x,ρ)P (X1 > x)

∣∣∣∣
≤ P(X1 > x)

M(x)∑
n=1

(1 − ρ)ρnn

(
P(X1 > x − (n − 1)μ)

P (X1 > x)
− 1

)

+ P(X1 > x)

(
ρ

1 − ρ
γ (x,ρ) −

M(x)∑
n=1

(1 − ρ)ρnn

)
.
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The second term can be bounded as follows:

P(X1 > x)

(
ρ

1 − ρ
γ (x,ρ) −

M(x)∑
n=1

(1 − ρ)ρnn

)

≤ ρ

1 − ρ
P (X1 > x)

(
ρM(x) − ρx/μ)(

1 + (1 − ρ)x

μ

)
(3.6)

≤ C

1 − ρ
P (X1 > x)

(
ρ(x−xβ)/μ − ρx/μ+1)(

1 + (1 − ρ)x
)
,

where C > 0 is a generic constant. Fix 0 < ε < β(α − 2)/(α − 2 + β) and set
N(x) = 
(1 − ε)x/μ�. Then, for 1 ≤ n ≤ N(x),

P(X1 > x − (n − 1)μ)

P (X1 > x)
≤

(
x − (n − 1)μ

x

)−α+1

sup
1≤n≤N(x)

L(x − (n − 1)μ)

L(x)

≤
(

1 + (α − 1)ε−α−2 (n − 1)μ

x

)(
1 + ϕ1(x)

)
,

where ϕ1(x) = supε≤t≤1
L(tx)
L(x)

− 1 → 0 by properties of slowly varying functions.
Therefore, for 1 ≤ n ≤ N(x),

P(X1 > x − (n − 1)μ)

P (X1 > x)
− 1 ≤ C

(
n − 1

x
+ ϕ1(x)

)
.

It follows that

P(X1 > x)

N(x)∑
n=1

(1 − ρ)ρnn

(
P(X1 > x − (n − 1)μ)

P (X1 > x)
− 1

)

≤ CP(X1 > x)

(
1

x

N(x)∑
n=1

(1 − ρ)ρnn(n − 1) + ϕ1(x)
ρ

1 − ρ
γ (x,ρ)

)

≤ CP(X1 > x)

(
2ρ2

x(1 − ρ)2

(
1 − ρN(x) − (1 − ρ)N(x)ρN(x))(3.7)

+ ϕ1(x)
ρ

1 − ρ
γ (x,ρ)

)

≤ Cρ

1 − ρ
P (X1 > x)γ (x,ρ)

(
1

x(1 − ρ)
+ ϕ1(x)

)
.

For the terms N(x) < n ≤ M(x) we have

P(X1 > x)

M(x)∑
n=N(x)+1

(1 − ρ)ρnn

(
P(X1 > x − (n − 1)μ)

P (X1 > x)
− 1

)

≤ Cx(1 − ρ)ρN(x)+1
M(x)∑

n=N(x)+1

P
(
X1 > x − (n − 1)μ

)
(3.8)
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≤ Cx(1 − ρ)ρ(1−ε)x/μ
∫ x−μN(x)

x−μM(x)
P (X1 > t)dt

≤ Cx(1 − ρ)ρ(1−ε)x/μ(
x − μM(x)

)
P

(
X1 > x − μM(x)

)
≤ C(1 − ρ)ρ(1−ε)x/μx1+βP (X1 > xβ),

where for the third inequality we used Proposition 1.5.10 in Bingham, Goldie and
Teugels (1987). Combining (3.6)–(3.8) gives

∣∣∣∣S(ρ, x) − ρ

1 − ρ
(1 − ρx/μ)P (X1 > x)

∣∣∣∣
≤ C

1 − ρ
P (X1 > x)

(
ρ(x−xβ)/μ − ρx/μ+1)(

1 + (1 − ρ)x
)

+ Cρ

1 − ρ
P (X1 > x)γ (x,ρ)

(
1

x(1 − ρ)
+ ϕ1(x)

)

+ C(1 − ρ)ρ(1−ε)x/μx1+βP (X1 > xβ).

Let A(ρ,x) = ρ
1−ρ

γ (x,ρ)P (X1 > x) + ρx/μ and define ρ(x) = 1 − cμ(α −
2) logx/x, with (1−β)(α−2+ε)

(α−2)(1−ε)
< c < 1. Note that γ (x,ρ) ∼ 1 as x → ∞ uniformly

for 0 < ρ ≤ ρ(x). Then,

sup
0<ρ≤ρ(x)

1

A(ρ,x)

∣∣∣∣S(ρ, x) − ρ

1 − ρ
(1 − ρx/μ)P (X1 > x)

∣∣∣∣
≤ C sup

0<ρ≤ρ(x)

{
1

γ (x,ρ)

(
ρ(x−xβ)/μ−1 − ρx/μ)(

1 + (1 − ρ)x
) + 1

x(1 − ρ)

+ ϕ1(x) + (1 − ρ)2x1+βP (X1 > xβ)

ργ (x,ρ)P (X1 > x)
ρ(1−ε)x/μ

}

≤ C

{
ρ(x)(x−xβ)/μ−1(

1 + (
1 − ρ(x)

)
x
) + 1

x(1 − ρ(x))
+ ϕ1(x)

+ P(X1 > xβ)

P (X1 > x)
x1+β(

1 − ρ(x)
)2

ρ(x)(1−ε)x/μ−1
}

≤ C

{
logx

xc(α−2)
+ 1

logx
+ ϕ1(x) + P(X1 > xβ)

P (X1 > x)
· (logx)2

x1−β+c(α−2)(1−ε)

}
.

The first three terms in the expression above clearly converge to zero. To see that
the fourth one does as well use Potter’s theorem [Bingham, Goldie and Teugels
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(1987), page 25] to obtain

P(X1 > xβ)

P (X1 > x)
· (logx)2

x1−β+c(α−2)(1−ε)

≤ Aεx
(1−β)(α−1+ε) · (logx)2

x1−β+c(α−2)(1−ε)

for some constant Aε > 1. Our choice of ε and c guarantees that 1 − β + c(α −
2)(1 − ε) > (1 − β)(α − 1 + ε).

To analyze the supremum over ρ(x) ≤ ρ < 1 we first note that

ρ

(1 − ρ)2 γ (x,ρ) ≤

x/μ�+1∑

n=1

ρnn.

Then,

sup
ρ(x)≤ρ<1

1

A(ρ,x)

∣∣∣∣S(ρ, x) − ρ

1 − ρ
(1 − ρx/μ)P (X1 > x)

∣∣∣∣
≤ C sup

ρ(x)≤ρ<1

{
P(X1 > x)

1 − ρ

(
ρ−xβ/μ − ρ

)(
1 + (1 − ρ)x

)

+ ργ (x,ρ)P (X1 > x)

(1 − ρ)ρx/μ

(
1

x(1 − ρ)
+ ϕ1(x)

)

+ (1 − ρ)ρ−εx/μx1+βP (X1 > xβ)

}

≤ C sup
ρ(x)≤ρ<1

{
P(X1 > x)

1 − ρ
| logρ|xβ logx + ρ−εx/μxβ logxP (X1 > xβ)

+ P(X1 > x)

x

�x/μ�+1∑
n=1

ρn−x/μn
(
1 + x(1 − ρ)

)}

≤ C

{
P(X1 > x)xβ logx + ρ(x)−εx/μxβ logxP (X1 > xβ)

+ P(X1 > x)

�x/μ�+1∑
n=1

ρ(x)n−x/μ(1 + logx)

}
.

The first term clearly converges to zero. To see that the second and third terms
converge to zero as well note that

ρ(x)−εx/μxβ logxP (X1 > xβ) ≤ Cxεc(α−2)+β−β(α−1−ε) logx

≤ Cxε(α−2)−β(α−2−ε) logx
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and

P(X1 > x)

�x/μ�+1∑
n=1

ρ(x)n−x/μ logx ≤ Cx−α+ε (1 − ρ(x)�x/μ�+1)

ρ(x)x/μ(1 − ρ(x))
logx

≤ Cx−α+ε+1+c(α−2)

≤ Cx−1+ε.

Our choice of ε guarantees that both expressions above converge to zero. This
completes the proof. �

We end this section with the proof of Corollary 2.3.

PROOF OF COROLLARY 2.3. Let

y = y(ρ) = cμ(α − 2)(1 − ρ)−1 log
(
(1 − ρ)−1)

.

We start with the proof of part (a). We need to verify that for 0 < c ≤ 1

sup
0≤x≤y

∣∣∣∣(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ

exp(−(1 − ρ)x/μ)
− 1

∣∣∣∣ → 0

as ρ ↗ 1. Note that

sup
0≤x≤y

∣∣∣∣(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ

exp(−(1 − ρ)x/μ)
− 1

∣∣∣∣
≤ sup

0≤x≤y

∣∣∣∣exp
(

x logρ

μ
+ (1 − ρ)x

μ

)
− 1

∣∣∣∣(3.9)

+ sup
0≤x≤y

ργ (x,ρ)

(1 − ρ)
P (X1 > x) exp

(
(1 − ρ)x/μ

)
.(3.10)

We can bound (3.9) as follows:

sup
0≤x≤y

∣∣∣∣exp
(

x logρ

μ
+ (1 − ρ)x

μ

)
− 1

∣∣∣∣ ≤ sup
0≤x≤y

x| logρ + 1 − ρ|
μ

≤ Cy(1 − ρ)2

≤ Ct−1 log t,

where t = (1 − ρ)−1. Also, note that since ρx/μ ≥ 1 − | logρ|x/μ and | logρ| =
1 − ρ + O((1 − ρ)2) as ρ ↗ 1,

γ (x,ρ) = 1 − ρx/μ − ρx/μ(1 − ρ)x/μ

≤ (| logρ| − (1 − ρ)
)
x/μ + | logρ|(1 − ρ)(x/μ)2

≤ C(1 − ρ)2x2.
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Then (3.10) is bounded by

sup
0≤x≤y

ργ (x,ρ)

(1 − ρ)
P (X1 > x) exp

(
(1 − ρ)x/μ

)

≤ C sup
0≤x≤(1−ρ)−1/4

γ (x,ρ)

1 − ρ

+ sup
(1−ρ)−1/4≤x≤y

1

1 − ρ
P (X1 > x) exp

(
(1 − ρ)x/μ

)

≤ sup
0≤x≤(1−ρ)−1/4

C(1 − ρ)x2

+ sup
(1−ρ)−1/4≤x≤y

L(x)

1 − ρ
exp

(
(1 − ρ)x/μ − (α − 1) logx

)

≤ C(1 − ρ)1/2 + L(y)

1 − ρ
exp

(
(1 − ρ)y/μ − (α − 1) logy

)
≤ Ct−1/2 + CL(t log t) exp

(−(1 − c)(α − 2) log t − (α − 1) log log t
)
.

Clearly, if 0 < c < 1, then the two expressions above converge to zero as t → ∞.
If c = 1 and L(x)/(logx)α−1 → 0 as x → ∞, then

lim
ρ↗1

sup
0≤x≤y

∣∣∣∣(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ

exp(−(1 − ρ)x/μ)
− 1

∣∣∣∣
≤ C lim

t→∞L(t log t) exp
(−(α − 1) log log t

)

= C lim
t→∞

L(t log t)

(log(t log t))α−1 ·
(

log(t log t)

log t

)α−1

= 0.

We now move to part (b). We need to verify that for c ≥ 1

sup
x≥y

∣∣∣∣(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ

(ρ/(1 − ρ))P (X1 > x)
− 1

∣∣∣∣ → 0

as ρ ↗ 1. Note that

sup
x≥y

∣∣∣∣(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ

(ρ/(1 − ρ))P (X1 > x)
− 1

∣∣∣∣
≤ sup

x≥y
|γ (x,ρ) − 1| + sup

x≥y

(1 − ρ)ρx/μ

ρP (X1 > x)

≤ ρy/μ(
1 + (1 − ρ)y/μ

) + C sup
x≥y

1 − ρ

L(x)
exp

(
− x

μ
(1 − ρ) + (α − 1) logx

)
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≤ Cρy/μ(1 − ρ)y + C
1 − ρ

L(y)
exp

(
− y

μ
(1 − ρ) + (α − 1) logy

)

≤ Ct−c(α−2) log t

+ C

L(t log t)
exp

(−(c − 1)(α − 2) log t + (α − 1) log log t
)
,

where t = (1 − ρ)−1. Clearly, if c > 1 the above converges to zero. If c = 1 and
L(x)/(logx)α−1 → ∞ as x → ∞, then

lim
ρ↗1

sup
0≤x≤y

∣∣∣∣(ρ/(1 − ρ))γ (x,ρ)P (X1 > x) + ρx/μ

exp(−(1 − ρ)x/μ)
− 1

∣∣∣∣
≤ C lim

t→∞
1

L(t log t)
exp

(
(α − 1) log log t

)

= C lim
t→∞

(log(t log t))α−1

L(t log t)
·
(

log t

log(t log t)

)α−1

= 0. �

4. Numerical approximations. Theorems 2.1 and 2.2 suggest approximating
P(W∞(ρ) > x) either with

H(ρ,x) � S(ρ, x) + ρx/μ =
M(x)∑
n=1

(1 − ρ)ρnnP
(
X1 > x − (n − 1)μ

) + ρx/μ

or with

J (ρ, x) � ρ

1 − ρ
γ (ρ, x)P (X1 > x) + ρx/μ,

respectively.
We compared both approximations to simulated values of P(W∞(ρ) > x) and

found that H(ρ,x) tends to be better than J (ρ, x) and seems to perform very
well across all values of x for different choices of ρ. This is not surprising
given that H(ρ,x) more closely resembles the Pollaczek–Khintchine formula than
J (ρ, x).

When σ 2 = Var(X1) < ∞, the central limit theorem can be used to approximate
the tail of the Pollaczek–Khintchine formula in a way that σ 2 is incorporated into
the approximation. The term ρx/μ appearing in the definitions of H(ρ,x) and
J (ρ, x) can be replaced by

T (ρ, x) �
∞∑

n=1

(1 − ρ)ρn(
1 − �

(
(x − nμ)/

√
σ 2n

))
,

which can alternatively be written as T (ρ, x) = E[ρM(x,Z)], where Z ∼ N(0,1)

and M(x, z) = 
(
√

x/μ + (σz)2/(2μ)2 − (σz)/(2μ))2�. We do not give proofs
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FIG. 1. Pareto integrated tail with ρ = 0.95 and α = 3.1.

here, but it can be shown that provided σ 2 < ∞, Theorems 2.1 and 2.2 continue
to hold with ρx/μ replaced by T (ρ, x). This is relevant from the numerical stand-
point since the resulting approximations tend to perform better than those with the
simpler ρx/μ.

We plotted approximation H(ρ,x) against simulated values of P(W∞(ρ) > x).
Figures 1 and 2 correspond to queues having Pareto integrated tail distribution, that
is, P(X1 > x) = x−α+1 for x ≥ 1. For comparison purposes we also plotted the
heavy-traffic approximation,

Heavy-Traffic = exp
(−(1 − ρ)x/μ

)
,

and the heavy-tail asymptotic,

Heavy-Tail = ρ

1 − ρ
P (X1 > x).

The vertical line corresponds to the value

x̂(ρ) = μ(α − 2)(1 − ρ)−1 log
(
(1 − ρ)−1)

.

The simulated values of P(W∞(ρ) > x) were obtained using the conditional
Monte Carlo algorithm from Asmussen and Kroese (2006), and each point was
estimated using enough simulation runs to obtain a relative error of at most 0.05
with approximately 99% confidence.
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FIG. 2. Pareto integrated tail with ρ = 0.8 and α = 3.5.
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