
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Statistics and Probability Letters 81 (2011) 1482–1485

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A new proof of convergence of MCMC via the ergodic theorem
Søren Asmussen a,∗, Peter W. Glynn b

a Department of Mathematical Sciences, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
b Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-4026, USA

a r t i c l e i n f o

Article history:
Received 5 July 2010
Received in revised form 7 May 2011
Accepted 9 May 2011
Available online 27 May 2011

Keywords:
Markov chain Monte Carlo
Harris recurrence
η-irreducibility

a b s t r a c t

A key result underlying the theory of MCMC is that any η-irreducible Markov chain
having a transition density with respect to η and possessing a stationary distribution π
is automatically positive Harris recurrent. This paper provides a short self-contained proof
of this fact using the ergodic theorem in its standard form as the most advanced tool.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The use ofMarkov chainMonte Carlomethods (MCMC) has become a fundamental numerical tool inmodern statistics, as
well as in the study of many stochastic models arising in mathematical physics; see Asmussen and Glynn (2007), Gilks et al.
(1996), Kendall et al. (2005) and Robert and Casella (2004), for example. When applying this idea, one constructs a Markov
chain X = (Xn : n ≥ 0) having a prescribed stationary distribution π . By simulating a trajectory of X over {0, 1, . . . , n− 1},
the hope is that the time average n−1 n−1

j=0 f (Xj)will converge toπ f ,

S f (x)π(dx), where S is the state space. Thus, MCMC

permits one to numerically investigate the distribution π .
If X is an irreducible discrete state space Markov chain with stationary distribution π , it is well known that for all x

1
n

n−1
j=0

f (Xj) → π f Px-a.s. (1)

as n → ∞ for each f : S → R+, where Px(·) , P(·|X0 = x) for x ∈ S. Many statistical applications of MCMC involve,
however, distributionsπ that are continuous. A central theoretical question inMCMC is therefore the extension of the above
result to a general state space. Some key references for this are Tierney (1994), Roberts and Rosenthal (2004) and Robert
and Casella (2004); see also Chan and Geyer (1994). As in the discrete state space setting, some notion of irreducibility is
required. The Markov chain X is said to be η-irreducible, if η is a non-trivial (reference) measure for which η(B) > 0 implies
that K(x, B) > 0 for all x ∈ S, where

K(x, dy) ,
∞
n=1

2−nPx(Xn ∈ dy)

for x, y ∈ S. Typically, the key step for the general state space MCMC setting is to establish results of the following spirit
(note the ‘π-a.a. x’ rather than ‘all x’!):
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Theorem 1. Assume that X is an S-valued Markov chain having a stationary distribution π and being η-irreducible for some η.
Then for f : S → R+,

1
n

n−1
j=0

f (Xj) → π f Px-a.s.

as n → ∞, for π-a.a. x ∈ S.

Unfortunately, the existing proofs tend to rely on referencing a substantial body of advanced Markov chain theory (in
particular, material from Nummelin (1984) or Meyn and Tweedie (1993), and/or harmonic functions, and/or decomposition
into recurrent/transient classes which is a far more complicated topic when the state space is general rather than discrete).
The contribution of this paper is to offer an alternative (short) proof that as background knowledge requires only graduate
probability, with the most advanced result being the ergodic theorem in its standard form. In our view, the advantages of
this approach is that it is self-contained, that short proofs of the ergodic theorem can be found in standard intermediate-
level textbooks such as Breiman (1968) and Durrett (2010), and that the ergodic theorem has amuchwider scope and range
of applications than the specialized Markov chain results referred to above.

Specializing to the MCMC setting, η-irreducibility is not quite strong enough to guarantee (1) (see Example 1 at the end
of Section 3). However, (1) is known to hold subject to minor additional conditions. In particular:

Theorem 2. Assume that X is an S-valued Markov chain satisfying

Px(X1 ∈ dy) = p(x, y)η(dy) (2)

for each (x, y) ∈ S×S and somemeasure η and some jointly measurable transition density p : S×S → R+. If X has a stationary
distribution π , is η-irreducible and f : S → R+, then

1
n

n−1
j=0

f (Xj) → π f Px-a.s.

as n → ∞, for all x ∈ S.

Note that if S is discrete andη assigns positivemass to each state, (2) is immediate. Theη-irreducibility ofX is then equivalent
to the standard notion of irreducibility in the discrete setting. Note also that by specializing to functions f that are indicators,
it follows that whenever π(B) > 0, Px(Xn ∈ B infinitely often) = 1 for x ∈ S. This is precisely the definition of Harris
recurrence. Thus, Theorem 2 implies that X is a positive recurrent Harris chain.

A nice feature of Theorem 2 is that it does not require construction of any Lyapunov functions to establish positive Harris
recurrence. The assumed existence of a stationary distribution, which is natural in MCMC applications, dispenses with this
need.

The proof of Theorem 1 is given in Section 2. Typical MCMC algorithms do not satisfy (2). Rather, the one-step transition
kernel can often be written in the form

Px(X1 ∈ dy) = (1 − a(x))δx(dy) + a(x, y)q(x, y)η(dy), (3)

where δx(·) is a unit mass at x and a(x) and a(x, y) are non-negative. For example, this arises in the context of the
Metropolis–Hastings sampler with q(x, y) being the proposal density at y for a given x and a(x, y) representing the
probability of accepting proposal y. The key result is then:

Corollary 1. Assume that X is an S-valued Markov chain satisfying (3) for which a(x) > 0 for each x ∈ S. If X is η-irreducible
and has a stationary distribution π , then X is a positive recurrent Harris chain.

The proof is a simple translation of Theorem 2 and can be found in previous papers as well, but for the sake of self-
containedness, it is given in Section 3 together with the proof of Theorem 2.

2. Proof of Theorem 1

Let Pπ (·) ,

S π(dx)Px(·) and let Eπ (·) be the expectation operator corresponding to Pπ .

A: First, suppose that η = π . The ergodic theorem implies that for each f : S → R+,

1
n

n−1
i=0

f (Xi) → Z Pπ -a.s.

as n → ∞, where Z = Eπ [f (X0)|I ] and I is the invariant σ -field. We first establish that Z = Eπ f (X0).
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Note that we may assume that Eπ f (X0) < ∞ (for if this is not the case, we may work instead with fn = f ∧ n and then
send n → ∞). Put h(x) = ExZ . Note that

Eπ [Z |X0, . . . , Xn] → Z Pπ -a.s.
as n → ∞. Since Z is invariant, the left-hand side equals h(Xn)Pπ -a.s., so we may conclude that

h(Xn) → Z Pπ -a.s. (4)
as n → ∞. Suppose that Z ≠ Eπ f (X0)Pπ -a.s.. Then, there exists a, b ∈ R+ (with a < b) for whichπ(A1) > 0 andπ(A2) > 0,
where A1 = {x : h(x) ≤ a} and A2 = {x : h(x) ≥ b}.

Let τ1, τ2, . . . be i.i.d. Geometric
 1
2


random variables (rv’s) independent of X , and set T0 = 0 and Tn = τ1 + · · · + τn for

n ≥ 1. Note that (XTn : n ≥ 0) is an S-valued Markov chain having one-step transition kernel K and stationary distribution
π . Then,

1
n

n
i=1

I(XTi ∈ A1) =
1
n

n
i=1

[I(XTi ∈ A1) − Pπ (XTi ∈ A1|XTi−1)] +
1
n

n−1
i=0

K(XTi , A1) Pπ -a.s. (5)

Of course, since the rv’s in [] form a bounded sequence of martingale differences,

1
n

n
i=1

[I(XTi ∈ A1) − Pπ (XTi ∈ A1|XTi−1)] → 0. (6)

Pπ -a.s. as n → ∞. Also, because (XTi : i ≥ 0) is a stationary sequence under Pπ , a second application of the ergodic theorem
ensures that

1
n

n−1
i=0

K(XTi , A1) → Eπ [K(X0, A1)|I ] Pπ -a.s. (7)

as n → ∞. Since π(A1) > 0, the π-irreducibility of X guarantees that K(x, A1) > 0 for each x ∈ S. Consequently,
Eπ [K(X0, A1)|I ] > 0 Pπ -a.s., so that (5)–(7) yield the conclusion

lim
n→∞

1
n

n
i=1

I(XTi ∈ A1) > 0 Pπ -a.s.

and hence Pπ (h(Xn) ≤ a infinitely often) = 1. Similarly, we conclude that Pπ (h(Xn) ≥ b infinitely often) = 1. Since this
contradicts (4), it must be that Z = Eπ f (X0). Consequently, Pπ (N) = 0, where N =


n−1 n−1

i=0 f (Xi) 9 π f as n → ∞


.

B:Wenowextend to a general η. According to step A, it suffices to show that ifX is η-irreduciblewith an invariant probability
π , then X is π-irreducible.
Step 1: Note that if X is η-irreducible, it is q-irreducible, where q = ηK with K(x, dy) =


∞

n=1 2
−nPn(x, dy).

Step 2: Suppose that π(B) > 0. Then, the ergodic theorem implies that the event that Xn ∈ B i.o. has positive π-measure.
Step 3: We want to prove that q(B) > 0 (for then K(x, B) is clearly positive for all x because of the q-irreducibility). Suppose,
by way of contradiction, that q(B) = 0. Thus, for η-a.a. x, Px(Xn ∈ B for some n ≥ 0) = 0.
Step 4: Note that the η-irreducibility implies that for each x,

K(x, dy) = r(x, y)η(dy) + (1 − r(x))M(x, dy) where


r(x, dy)η(dy) > 0.

We can use this to construct a randomized stopping time L for which w(x) = Px(L < ∞) > 0 for all x and Px(XL ∈ ·) is
absolutely continuous w.r.t. η.
Step 5: Let Cn be the indicator that θnL < ∞ where θnL is L applied to the shifted post-n path of X . So, E[Cn | X0, . . . , Xn] =

w(Xn). As in the proof of Theorem 2,

1
n

n
i=1

(Ci − w(Xi−1))

is an average of bounded MG differences so it converges a.s. to zero under Pπ . On the other hand, the time average of the
w(Xi) converges Pπ -a.s. to E[w(X0)|I]. But w(X0) is a positive r.v., so it follows that the time average of the Ci has Pπ -a.s. a
positive lim inf. So, this implies that for π-a.a. x, the time average of the Ci has Px-a.s. a positive lim inf. Consequently, for
π-a.a. x,

Px(there exists a finite randomized stopping time N = N(x) s.t. θNL < ∞) = 1.
Step 6: For such an x, L∗

= N + θNL < ∞ Px-a.s. But

Px(Xn ∈ B for some n ≥ L∗) =


Px(XL∗ ∈ dy)Py(Xn ∈ B for some n ≥ 0) = 0

(by virtue of the fact that XL∗ is absolutely continuous w.r.t. η and Step 3). So, Px(Xn ∈ B i.o.) = 0 for all π-a.a. x. This
contradicts Step 2.
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3. Remaining proofs and an example

To prove Theorem 2, it remains to prove that Px(N) = 0 for x ∈ S. Let C = {x : Px(N) > 0}. If η(C) > 0, the
η-irreducibility of X ensures that K(x, C) > 0 for all x ∈ S. Since π is a stationary for K , an immediate implication would be

π(C) = (πK)(C) =


S
K(x, C) π(dx) > 0,

contradicting the fact that Pπ (N) = 0. So, η(C) = 0. But (2) implies that

Px(N) =


S
p(x, y)Py(N)η(dy) =


C
p(x, y)Py(N)η(dy) = 0

for each x ∈ S, proving the result.
Now consider the MCMC case (3). Put β0 = 0 and let βn be the first acceptance time after βn−1. If a(x) > 0 for each x ∈ S,

then (Xβn : n ≥ 0) is itself a well-defined S-valued Markov chain. Note that the transition kernel is given by

Px(Xβ1 ∈ dy) =
a(x, y)q(x, y)

a(x)
η(dy),

so that (Xβn : n ≥ 0) has a one-step transition density with respect to η. Furthermore, it is trivial that (Xn : n ≥ 0) is
η-irreducible if and only if (Xβn : n ≥ 0) is η-irreducible. Finally, note that if π is a stationary distribution for X , then π̃

defined by π̃(dy) = a(y)π(dy)/

S π(dz)a(z) is a probability and

S
π̃(dx)Px(Xβ1 ∈ dy) =


S π(dx)a(x, y)q(x, y)η(dy)

S π(dz)a(z)

=


S π(dx) (Px(X1 ∈ dy) − (1 − a(x))δx(dy))

S π(dz)a(z)

=
(π(dy) − (1 − a(y))π(dy))

S π(dz)a(z)
= π̃(dy),

so that π̃ is stationary for (Xβn : n ≥ 0). It follows that if (Xn : n ≥ 0) is η-irreducible and possesses a stationary distribution,
Theorem 2 applies to (Xβn : n ≥ 0), establishing the positive Harris recurrence of (Xβn : n ≥ 0). It is then immediate that
(Xn : n ≥ 0) is positive Harris recurrent.

Example 1. Let S = R and let X evolve as an autoregressive process with Gaussian increments in R/N, i.e. Xn+1 = αXn + εn
for Xn ∉ N where 0 < α < 1 and ε0, ε1, . . . are i.i.d. and standard Gaussian. If Xn = x ∈ N, let Xn+1 = x + 1 w.p. 1 − ax
and Xn+1 = εn w.p. ax > 0. The Gaussian distribution π with mean 0 and variance 1/(1 − α2) is stationary and the chain
is π-irreducible. However, if


∞

1 ax < ∞, the Borel–Cantelli lemma implies that starting from any X0 = x ∈ N there is
positive probability that Xn ∈ N for all n and so (1) fails for such x.

Examples of similar spirit appear elsewhere, e.g. Example 3 of Roberts and Rosenthal (2004).
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