

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Stanford University]
On: 20 July 2010
Access details: Access Details: [subscription number 917395611]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Stochastic Models
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597301

How to Deal with the Curse of Dimensionality of Likelihood Ratios in
Monte Carlo Simulation
Reuven Y. Rubinsteina; Peter W. Glynnb

a Faculty of Industrial Engineering and Management, Technion, Haifa, Israel b Department of
Management Science and Engineering, Stanford University, Stanford, Connecticut, USA

To cite this Article Rubinstein, Reuven Y. and Glynn, Peter W.(2009) 'How to Deal with the Curse of Dimensionality of
Likelihood Ratios in Monte Carlo Simulation', Stochastic Models, 25: 4, 547 — 568
To link to this Article: DOI: 10.1080/15326340903291248
URL: http://dx.doi.org/10.1080/15326340903291248

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597301
http://dx.doi.org/10.1080/15326340903291248
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Stochastic Models, 25:547–568, 2009
Copyright © Taylor & Francis Group, LLC
ISSN: 1532-6349 print/1532-4214 online
DOI: 10.1080/15326340903291248

HOW TO DEAL WITH THE CURSE OF DIMENSIONALITY
OF LIKELIHOOD RATIOS IN MONTE CARLO SIMULATION

Reuven Y. Rubinstein1 and Peter W. Glynn2

1Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
2Department of Management Science and Engineering, Stanford University,
Stanford, Connecticut, USA

� In this work we show how to resolve, at least partially, the curse of dimensionality of
likelihood ratios (LRs) while using importance sampling (IS) to estimate the performance of
high-dimensional Monte Carlo simulation problems. The curse of dimensionality, which is better
known as degeneracy properties of LR, is one of the central topics in Monte Carlo simulation.
The current state-of-the art with IS can be summarized as follows: do not use IS in high
dimensional problems because of the degeneracy properties of likelihood ratios. We present a
simple method, called the screening method, which typically allows substantial reduction of the
size of the LR before applying it. By doing so we not only automatically prevent the degeneracy
of the IS estimators, but obtain substantial variance reduction at the same time. The main
idea behind the screening algorithm is to identify (screen out) the most important parameters of
the IS estimator, the so-called bottleneck parameter vector, which for typical simulation problems,
are known to be of low dimension. As soon as the bottleneck parameter vector is identified, we
replace the standard IS estimator with the new low-dimension alternative, where the size of the
LR equals the size of the bottleneck parameter vector. Supportive numerical results are presented.

Keywords Cross-entropy; Rare-event probability estimation; Screening; Simulation.

Mathematics Subject Classification 60G99.

1. INTRODUCTION

The goal of this work is show how to overcome the curse of
dimensionality while using likelihood ratios in high-dimensional Monte
Carlo simulation problems. The curse of dimensionality, which is known
by the name of degeneracy properties of likelihood ratios, is one of the

Received June 2007; Accepted June 2009
Address correspondence to Reuven Y. Rubinstein, Department of Industrial Engineering and

Management, Technion University, Haifa, Israel; E-mail: ierrr01@ie.technion.ac.il

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

548 Rubinstein and Glynn

central topics in Monte Carlo simulation and is widely discussed in most
textbooks on Monte Carlo simulation[5]. To prevent degeneracy, several
heuristics have been introduced (see, for example, Ref.[3]), which did not
become popular in the Monte Carlo community because of their poor
performance. The current state-of-the art of Monte Carlo simulation can
be summarized as follows: do not use importance sampling (IS) for highly
dimensional problems because of the degeneracy properties of likelihood
ratios[5].

In this work we shall show how to overcome this difficulty at least
partially. In particular we present a novel method, called the screening
method, which allows substantial reduction of the size of the likelihood
ratios by identifying the most important parameters, called the bottleneck
parameters. By doing so we not only automatically prevent the degeneracy
of IS estimators, but in addition we obtain substantial variance reduction.

We shall deal here with estimating the following two expected values:

�(u) = �uS(X) (1)

and

�(u, �) = �uI�S(X)≥��, (2)

where

1. S(X) is quite an arbitrary non-negative sample function.
2. X = (X1, � � � ,Xn) is an n-dimensional random vector of independent

components.
3. � is a fixed parameter.
4. f (x,u),u = (u1, � � � ,un) is a parametric distribution from an exponen-

tial family[5]. For simplicity, we assume that each marginal pdf fr (x),
r = 1, � � � ,n is parameterized by a single parameter ur . Thus f (x,u) =∏n

r=1 fr (xr).

Note that in the former case (1), the screening method might be helpful if
S(X) is a high-dimensional noisy function. In such a case, screening might
lead to substantial variance reduction. Another example is estimating
systems unreliability with highly reliable components considered in
section 3. In the latter case (2), we assume that � is very large, say � is a
rare-event probability, say � ≤ 10−6.

It will follow from the article that our results can be extended
to dependent random variables and when each marginal pdf fr (x),
r = 1, � � � ,n is parameterized by several parameters.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 549

We next assume that S(X) is given such that �(�) → 0 as � → ∞. Since
for large � the direct estimator of �(�) is meaningless (�(u, �) is a rare-event
probability), we shall use the following IS estimator[5]:

�̂ = 1
N

N∑
i=1

I�S(Xi)≥��W (Xi ,u), (3)

where

W (Xi ,u) = f (Xi ,u)
g (Xi)

is the likelihood ratio (LR), Xi ∼ g (x) and g (x) is called the IS pdf.
It is common[5] to use a parametric IS f (x, v̂) instead of the

nonparametric IS pdf g (x), since finding a “good” g (x) is typically
very difficult for complex sample function S(X). Here v̂ is an optimal
parameter vector obtained from the solution of the conventional
programs, like the cross-entropy (CE) and the variance minimization
(VM)[4]. In particular, using the CE method v̂ can be derived from the
solution of the following stochastic program[4]:

max
v

D̂(u, v) = max
v

1
N

N∑
i=1

I�S(Xi)≥��W (Xi ,u,w) ln f (Xi ; v), (4)

where

W (Xi ,u, v) = f (Xi ,u)
f (Xi , v)

and w is an auxiliary parameter[4]. Similarly, the VM counterpart can be
written as

min
v

�̂(u, v) = min
v

1
N

N∑
i=1

I�S(Xi)≥��W (Xi ,u,w)W (Xi ,u, v)� (5)

Note that the sample X1, � � � ,XN in (4) and (5) is taken from the pdf
f (x,w). In this work we assume that the components of the random vector
X are independent. Thus, W (x,u, v) can be written as

W (x,u, v) = f (x,u)
f (x, v)

=
n∏

k=1

fk(xk ,uk)

fk(xk), vk)
�

As mentioned, the case where the components of X are dependent can be
treated similar. Note again, that a large vector size n causes the degeneracy
of W (x,u, v) and thus, poor performance of the estimator of �.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

550 Rubinstein and Glynn

Below we shall use the following facts:

1. We assume that the CE and VM programs (4) and (5) are convex
with respect to v. This follows directly from Proposition A.4.1 of Ref.[5],
provided f (x,u) is from the exponential family of distributions.

2. Let in addition v̂ be the optimal solution of the program (4). Then
it follows from Proposition A.4.2 of Ref.[5] that v̂k > uk , k = 1, � � � ,n
componentwise, provided S(x) is monotonically increasing function in
each component of the vector x, and similar for the program (5).

At this end, recall that for high-dimensional simulation models, the
programs (4) and (5) are useless, since the LR term W is the product
of a large number of marginal likelihoods, and the W terms will cause
degeneracy and large variance of the resulting IS estimator �̂. On the other
hand, importance sampling combined with screening, which involves only
a relatively small number of bottleneck elements (and thus a product of
a relatively small number of likelihoods), may not only lead to substantial
variance reduction, but will produce a stable IS estimator.

The bottleneck phenomenon often occurs when one needs to estimate
the probability of a nontypical event in the system, like a rare-event
probability. For example, if one observes a failure in a system with highly
reliable elements, then it is very likely that several elements (typically the
less reliable) forming a minimal cut in the model, all fail simultaneously.
Another example is the estimation of a buffer overflow probability in a
queueing network with light-tailed distributions, where we are interested
in the probability that the total number of customers in all queues exceeds
some large number. Again, if a buffer overflow occurs, it is quite likely that
it has been caused by a build-up in the bottleneck queue, which is the most
congested one in the network.

In general, large-dimensional, complex simulation models contain
both bottleneck and nonbottleneck parameters. The number of bottleneck
parameters is typically smaller than the number of nonbottleneck
parameters. Imagine a situation where the size (dimension) of the vector
u is large, say 100, and the number of bottleneck elements is only
about 10–15. Then, clearly, an importance sampling estimator based on
bottleneck elements alone will not only be much more accurate than its
standard importance sampling counterpart involving all 100 likelihood
ratios (containing both bottleneck and nonbottleneck ones), but in
contrast to the latter will not be degenerated.

The main idea behind the screening method is simple and can be
outlined as follows:

• The parameter set u is partitioned as u= [u(b),u(n)], where u(b) corresponds
to the bottleneck part and u(n) corresponds to the nonbottleneck part.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 551

• The IS density f (x, v) with v = [v(b),u(n)] changes only the bottleneck
parameters. Note that the vector v(b) is typically of much lower size than
the vector u(n).

• A screening algorithm below takes care of identifying the original
bottleneck parameter vector u(b).

• Either CE or VM method is applied for estimating the optimal
bottleneck parameter vector v(b).

Thus, the screening algorithm contains two stages. At the first stage,
we identify the set of the elements of the bottleneck parameter vector v(b),
while at the second one we estimate the actual values of the components
of v(b) by solving the convex programs (4) and (5).

Let B ⊂ �1, � � � ,n� denote the indices of the bottleneck parameters.
As soon as B is identified, in the first stage, and the corresponding
optimal parameter vector, v(b) is estimated in the second stage, via v̂(b), the
alternative to �̂, the so-called screening estimator of �, can be written as

�̂(b) = 1
N

N∑
i=1

I�S(Xi)≥��W (b)
(
X(b)

i ,u(b), v̂(b)
)
, (6)

where

W (b)
(
X(b)

i ,u(b), v̂(b)
) = f (b)

(
X(b)

i ,u(b)
)

f (b)
(
X(b)

i , v̂(b)
) ,

v̂(b) denotes the estimate of the bottleneck parameter vector v(b) and
f (b)(X(b)

i , v̂(b)) corresponds to the bottleneck part of the joint pdf f (x,u).
Consequently, because of the independence of the components, the

likelihood ratio term W (X) reduces to a product of |B| quotients of
marginal pdfs instead of the product of n such quotients. Note also that
as soon as the set B is defined the optimal parameter vector v̂(b) in (6) can
be obtained from the solution of the above standard convex programs (4)
and (5), provided the pair �u, v� is replaced by its bottleneck counterpart
�u(b), v(b)�.

The resulting screening estimators of v(b) obtained by using CE and VM
will be called the CE-SCR (screening) and VM-SCR estimators, respectively.
Observe that since the nonbottleneck parameters are redundant the
complexity properties of the estimator �̂(b) in (6) can be treated by
standard methods[1,4].

As we shall see from our numerical results below, VM-SCR typically
outperforms its counterpart CE-SCR in the sense that it has a smaller
relative error. In addition, we found that for large n, (n > 100), CE under
estimates the designed quantity �, while VM-SCR and CE-SCR still perform

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

552 Rubinstein and Glynn

reasonably well. Our explanation is that for large-size problems CE is
affected due to the degeneracy of the LRs.

Most of our simulation results will be carried out for the models
composed from bridges, each containing five elements. In particular, we
consider the sample function

S(Y) = max[�Y11 + · · · + Y1m�, � � � , �Yn1 + · · · + Ynm�], (7)

where each unit Yij , i = 1, � � � ,n; j = 1, � � � ,m presents a bridge defined as

Yij = min
{

�Xij1 + Xij4�, �Xij2 + Xij5�,
�Xij1 + Xij3 + Xij5�, �Xij2 + Xij3 + Xij4�

}

and the sample function

S(Y) = max[min�Y11, � � � ,Y1m�, � � � ,min�Yn1, � � � ,Ynm�], (8)

where

Yij = max
{

min�Xij1,Xij4�, min�Xij2,Xij5�,
min�Xij1,Xij3,Xij5�, min�Xij2,Xij3,Xij4�

}
�

Figure 1 corresponds to formula (8) and presents a network of size
n × m combined of bridges, each containing five elements.

Note that for Bernoulli random variables, the sample function S(X)
in (8) can be viewed as a structure function of a reliability model[2].

We consider separately the screening algorithm for general
distributions and for the Bernoulli ones. We shall also present case studies
with our algorithms to estimate rare-event probabilities associated with the
performance of a network taken from Fishman[2].

FIGURE 1 A network combined of bridges.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 553

In sections 2.2 and 3 we present our main algorithms and their
numerical results corresponding to general pdf’s and the Bernoulli pdf,
respectively. In section 4 some conclusions are derived.

2. THE SCREENING METHOD

We present below two separate screening algorithms: one for
estimating � in (1) and another for estimating � in (2).

Recall that for the CE method, the parameter vector v̂ (and v̂(b)) can
often be found analytically, in particular when the sampling distribution
comes from an exponential family parameterized by the mean. In contrast
to CE, finding v̂ (and v̂(b)) in VM typically involves a numerical procedure.
We shall present only the detailed algorithm based on CE-SCR. Its VM-SCR
counterpart is similar.

2.1. The Screening Algorithm for � = ���u[S(X)]
We shall use here the stochastic program (4) without likelihood ratio

terms W ’s and with I�S(X)≥�� replaced by S(X), that is the program

max
v

D̂(v) = max
v

1
N

N∑
i=1

S(Xi) ln f (Xi ; v)� (9)

Algorithm 2.1 (CE-SCR Screening Algorithm for Estimating �uS(X)).

1. Initialize the set of bottleneck elements to B0 = �1, � � � ,n�. Set t = 1.
2. Generate a sample X1, � � � ,XN from f (x;u) and deliver the CE solution

of the stochastic program (9). Denote the solution by v̂t = (v̂t1, � � � , v̂tn).
3. Calculate the relative perturbation for each element v̂ti , i = 1, � � � ,n as

�ti = v̂ti − ui

ui
� (10)

4. If �ti < �, where � is some threshold value, say � = 0�1 (note that
negative �ti automatically satisfies �ti < �), set v̂ti = ui , that is, identify
the ith element of the vector v as a nonbottleneck parameter. Otherwise
identify it as a bottleneck one. Let Bt be the set of bottleneck elements
at iteration t .

5. Repeat steps 2–4 several times, say d times, increasing each time t by 1,
and updating the set Bt until convergence.

6. Apply the standard CE program (9) to estimate the optimal parameter
vector v(b), with B = Bd . Denote the estimator of v(b) as ṽ(b).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

554 Rubinstein and Glynn

7. Apply smoothing[4], that is calculate

v̂(b)t = �ṽ(b)t + (1 − �)v̂(b)t−1, (11)

where �, (0 < � < 1) is called the smoothing parameter.
8. Deliver (6) (with I�S(X)≥�� replaced by S(X)) as the resulting estimator of

the performance measure �.

It can be readily shown in analogy to Proposition A.4.2 of Ref.[5] that
if each component of the random vector X is from the exponential family
parameterized by the mean and if S(x) is a monotonically increasing
function in each component of x on the interval [0,∞), then each element
of v(b) is at least as large as the corresponding one u(b).

Note also that

• In all our numerical studies, we observed that the sequence of sets
Bt , t = 1, � � � , d is a nondecreasing one.

• The smoothing step (11) can be viewed as a fine tuning one. It is
commonly used in iterative simulation-based algorithms[4].

It is important to note the following:

1. As mentioned, under the present assumptions (independent
components, each from a one-parameter exponential family
parameterized by the mean, and S(x) monotonically increasing in
each component), the components of v̂(b)t , t = 1, � � � , are at least as
large as the corresponding elements of u. Taking this into account,
Algorithm 2.1 always identifies all elements i corresponding to �i < 0
as nonbottleneck ones.

2. Recall that Steps 2–4 are purposely performed d times. This allows one
to better determine the nonbottleneck parameters, since it is likely that
they will fluctuate around their nominal value ui and therefore �i will
become negative or very small in one of the replications.

3. The advantage of Algorithm 2.1 compared to its gradient counterpart
is that identification of the bottleneck elements in the former is based
on the relative perturbations �i (see (10)) with respect to the known
original parameter values ui , while in the latter it is based on the
absolute value of the gradient itself. It is not difficult to see that the
former classifier, the so-called v̂-based classifier, is more natural to use
than the gradient-based one. In addition, we found numerically that it
identifies more accurately the actual bottleneck size.

2.1.1. Numerical Results
We now present numerical studies with Algorithm 2.1 for the

model (1), (7) consisting of n × m bridges.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 555

In our numerical results, we assume that the components Xijk of the
random vector X are independent each distributed Weib(�,u), that is, Xijk

has the density

f (x ; �, �) = ��−�x�−1e−(x/�)� ,

with � = u−1/� and u = uijk . Note Ref.[4] that a Weibull random variable
can be generated using the transformation �Z 1/�, where Z ∼ exp(1).
We also assume that only u is controllable, while � is fixed and equals 0.2.
We purposely selected some elements of u to be bottleneck ones, and set
�= 0�1.

Table 1 presents the performance of Algorithm 2.1 for the 1 × 1
(single bridge) model (7), with � = �uS(Y), where the sample function
S(Y) = Y11 and

Yij = min
{

�X111 + X114�, �X112 + X115�,
�X111 + X113 + X115�, �X112 + X113 + X114�

}
�

Here the u111 = 1 and u112 = 1 in f (x,u), bu = (u111, � � � ,u115)

are chosen to be the bottleneck parameters, whereas the remaining
(nonbottleneck) ones we set equal to 2. The notations in Table 1 are as
follows:

1. “Mean, max, and min �̂” denote the sample mean, maximum,
minimum, and minimal values of the 10 estimates of �̂.

2. “RE” denotes the sample relative error for �̂, averaged over the 10 runs.
3. Mean T denotes the average number of iterations based on 10 runs.
4. “CPU” denotes the average CPU time in seconds based on 10 runs.
5. N and N1 denote the sample size, while updating the parameter vector

v and estimating �, respectively.
6. “CMC” denotes the crude Monte Carlo.

TABLE 1 Performance of Algorithm 2.1 for the single bridge model
with samples N = N1 = 500

Method CMC CE VM CE-SCR VM-SCR

Mean 4.052 3.970 3.734 3.894 3.829
�̂ Max 8.102 4.327 4.201 4.345 4.132

Min 1.505 3.380 3.395 3.520 3.278
RE 0.5188 0.0704 0.0776 0.0755 0.0674
Mean T 0.0 3.0 3.0 3.0 3.0
Mean CPU 0.00 0.04 0.21 0.05 0.13

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

556 Rubinstein and Glynn

It follows from the results of Table 1 that for this relatively small model
both CE and VM perform similarly to their screening counterparts and
they outperform the CMC. We will further see that as complexity of the
models increases, VM-SCR outperforms its alternatives and in particular it
outperforms CE-SCR. Also note that for this model, both methods CE and
VM identified correctly the two bottleneck parameters.

Table 2 presents a typical dynamics of identifying the two bottleneck
parameters at the first stage of Algorithm 2.1 for the above single bridge
model having a total of five parameters. In Table 2, t denotes the
replication number at the first stage, while the rest of it comprises 0’s
and 1’s. Here 0 and 1 mean that an appropriate parameter is identified as
nonbottleneck and bottleneck one, respectively. One can see that after two
replications we have four bottleneck parameters left, after six replications
there are three bottleneck parameters left, and after seven replication the
process stabilizes identifying correctly the true two bottleneck parameters.

Table 3 presents a typical evolution of the sequence �v̂t� in the single
bridge model for the VM and VM-SCR methods at the second stage of
Algorithm 2.1.

One can clearly see that the bottleneck parameters decrease about three
times after the third iteration, while the nonbottleneck ones fluctuate about
their nominal value u = 2.

Table 4 presents performance of Algorithm 2.1 for the 3 × 10 model
with six bottlenecks corresponding to the elements u111,u112,u211,u212,u311,
and u312. We set u111 = u112 = u211 = u212 = u311 = u312 = 1, while the
remaining (nonbottlenecks) values are set equal 2. Note again that in this
case both CE and VM found exactly the true six bottlenecks.

It follows from the results of Table 4 that without screening even the
naive Monte Carlo outperforms the standard CE. However, using screening
one obtains substantial improvement of CE. Finally, VM-SCR outperforms
all its alternatives.

TABLE 2 Typical dynamics for identifying the bottleneck
parameters at the first stage of Algorithm 2.1 for the
bridge model

t u1 u2 u3 u4 u5

0 1 1 1 1 1
1 1 1 0 1 1
2 1 1 0 1 1
3 1 1 0 1 0
4 1 1 0 1 0
5 1 1 0 1 0
6 1 1 0 1 0
7 1 1 0 0 0

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 557

TABLE 3 Typical evolution of the sequence �v̂t � for the VM and
VM-SCR methods

t v̂1 v̂2 v̂3 v̂4 v̂5

VM
1.000 1.000 2.000 2.000 2.000

1 0.537 0.545 2.174 2.107 1.615
2 0.346 0.349 2.071 1.961 1.914
3 0.306 0.314 1.990 1.999 1.882

VM-SCR
1.000 1.000 2 2 2

1 0.555 0.599 2 2 2
2 0.375 0.402 2 2 2
3 0.315 0.322 2 2 2

2.2. The Two-Stage Screening Algorithm for Rare Events

Recall that at the first stage of our two-stage screening algorithm below,
we identify the set of the bottleneck parameter vector v(b), while at the
second one we estimate the actual values of the components of v(b) using
the convex programs (4) and (5).

The main idea of the first stage of our screening algorithm is to identify
the bottleneck parameter vector v(b) without involving the LR term W .
One may wonder how this can be possible if estimation of the rare-event
probability �(u) = �uI�S(X)≥�� by itself is essentially based on IS and, thus
on LRs. The trick is to execute the first stage (the screening part) by
replacing � with some �̂0, where �̂0 is the estimator of (1 −) quantile of
S(X) obtained by simulation under the original pdf f (x,u), when 	 ≥ 0�01.
For more details see Ref.[4].

As soon as �̂0 is found from simulation we proceed as follows:

1. Solve the programs (4) and (5) with the advantage that there is no need
for the LR terms W (X,u,w). For concreteness, we rewrite only (4) by

TABLE 4 Performance of Algorithm 2.1 for the 3 × 10 model with six
bottleneck elements and sample size N = N1 = 1000

Method CMC CE VM CE-SCR VM-SCR

Mean 16�16 16�11 14�84 16�12 15�67
�̂ Max 22�65 26�85 16�59 18�72 17�20

Min 11�13 7�007 12�59 14�63 14�80
RE 0�2036 0�3427 0�0745 0�0743 0�0489
Mean T 0�0 3�0 3�0 3�0 3�0
Mean CPU 0�00 0�49 68�36 0�73 27�54

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

558 Rubinstein and Glynn

omitting W ’s and by replacing � with �̂0. We have

max
v

D̂(v) = max
v

1
N

N∑
i=1

I�S(Xi)≥�̂0� ln f (Xi ; v), (12)

where the sample X1, � � � ,XN in (12) is taken from the original pdf
f (x,u). Denote the solution by of (12) by v̂. If not stated otherwise,
we refer to CE program (12) below.

2. Identify the bottleneck parameter vector v(b) by applying a simple
classification procedure, which divides the optimal n-dimensional
vector v̂ into two parts, namely, as v̂ = (v̂(b), v̂(n)). The classification is
performed based on the relative perturbation (10), which is the core of
the screening algorithm below.

Algorithm 2.2 (CE-SCR Screening Algorithm for Rare Events).

1. The same as in Algorithm 2.1.
2. Generate a sample X1, � � � ,XN from f (x;u) and compute �̂0, the

(1−)-sample quantile of the sample performances S(Xi).
3. Generate a different sample X1, � � � ,XN from f (x;u) and deliver the

CE solution of the stochastic program (12), with � = �0. Denote
the solution by v̂t = (v̂t1, � � � , v̂tn). Note that v̂t is a parameter vector
from f (x; v̂t).

4–8. The same as Steps 3–7 in Algorithm 2.1.
9. Deliver (6) as the resulting estimator of the rare-event probability �.

2.2.1. Numerical Results
We next present numerical studies with Algorithm 2.2 for the

model (7) composed from bridges and the random variables Xijk are
distributed exp(uijk), which is the same as Weib(�,uijk), but with � = 1.

As before, we purposely selected in advance that elements of our model
to be bottlenecks. Recall that for the exponential pdf u exp(−ux), x ≥ 0)
the u values corresponding to the bottleneck elements should be smaller
than for the nonbottleneck ones.

Table 5 presents the performance of Algorithm 2.2 for the 2 × 2 model
with eight bottlenecks using � = 0�1, � = 6 and the sample sizes N = 50,000
and N1 = 500,000. In particular, we set the six bottlenecks, which
are u111,u112,u121,u122,u211,u212,u221,u222 equal 1, while the remaining
12 elements we set equal to 4. Note that for this simple model, both
methods CE and VM identified correctly (at the first stage) the eight
bottleneck parameters.

It follows from the results of Table 5 that for this relatively small
model both CE and VM perform similarly to their screening counterparts.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 559

TABLE 5 Performance of Algorithm 2.2 for the 2 × 2 model. We set
� = 0�1, � = 6, N = 50,000, N1 = 500,000

Method CE VM CE-SCR VM-SCR

Mean 2.918E-08 2.956E-08 2.881E-08 2.814E-08
�̂ Max 3.933E-08 3.686E-08 3.563E-08 3.289E-08

Min 2.464E-08 2.648E-08 2.540E-08 2.447E-08
RE 0.16609 0.10193 0.10861 0.07682
Mean T 8.0 9.1 8.0 10.4
Mean CPU 6.03 9.31 6.56 9.12

We will further see that as the complexity of the model increases VM-SCR
outperforms its three alternatives and in particular its CE-SCR counterpart.

Table 6 represents a typical dynamics of identifying the bottleneck
parameters at the first stage of Algorithm 2.2 for the above 2 × 2 model
with 20 parameters, eight of which are bottlenecks. Similar to Table 2,
the 0’s and 1’s in Table 6 mean that an appropriate parameter u is
identified as nonbottleneck and bottleneck one, respectively, and t denotes
the replication number at the first stage of the algorithm. It is readily seen
that after the first replication, we have 13 bottleneck parameters, after the
second one – 11 bottleneck parameters, and after the third replication
the process stabilizes delivering the eight true bottleneck parameters.

Table 7 presents typical evolution of the sequence �(�̂t , v̂t)� for the
elements of the first bridge of the above 2 × 2 model for the VM and
VM-SCR methods.

TABLE 6 A typical dynamics for identifying the bottleneck parameters at the first stage
of Algorithm 2.2

r u111 u112 u113 u114 u115 u121 u122 u123 u124 u125

0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 0 0
2 1 1 0 0 0 1 1 0 0 0
3 1 1 0 0 0 1 1 0 0 0
4 1 1 0 0 0 1 1 0 0 0
5 1 1 0 0 0 1 1 0 0 0

r u211 u212 u213 u214 u215 u221 u222 u223 u224 u225

0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 0 1 1
2 1 1 1 0 0 1 1 0 1 1
3 1 1 0 0 0 1 1 0 0 0
4 1 1 0 0 0 1 1 0 0 0
5 1 1 0 0 0 1 1 0 0 0

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

560 Rubinstein and Glynn

TABLE 7 Typical evolution of the sequence �(�̂t , v̂t)� for the VM and
VM-SCR methods

t �̂t v̄111 v̄112 v̄113 v̄114 v̄115

VM
0 1.000 1.000 4.000 4.000 4.000
1 2.331 0.759 0.771 3.944 3.719 3.839
2 2.993 0.635 0.613 3.940 3.681 3.734
3 3.559 0.524 0.517 4.060 3.297 3.608
4 4.176 0.443 0.415 3.370 3.353 3.909
5 4.863 0.334 0.332 3.689 3.965 4.250
6 5.574 0.378 0.365 3.827 3.167 4.188
7 6.000 0.357 0.358 3.881 4.235 4.929
8 6.000 0.285 0.271 4.011 2.982 4.194
9 6.000 0.287 0.301 3.249 2.879 3.409

VM-SCR
0 1.000 1.000 4.000 4.000 4.000
1 2.357 0.760 0.771 4.000 4.000 4.000
2 2.958 0.638 0.605 4.000 4.000 4.000
3 3.541 0.506 0.491 4.000 4.000 4.000
4 4.055 0.486 0.447 4.000 4.000 4.000
5 4.532 0.402 0.371 4.000 4.000 4.000
6 5.010 0.348 0.317 4.000 4.000 4.000
7 5.551 0.375 0.347 4.000 4.000 4.000
8 6.000 0.285 0.298 4.000 4.000 4.000
9 6.000 0.288 0.254 4.000 4.000 4.000

10 6.000 0.278 0.277 4.000 4.000 4.000

It follows from the results of Table 7 that the bottleneck elements
decrease more than three times, while the nonbottleneck ones fluctuate
about their nominal values equal 4.

We next proceed with some larger models. For these models we
purposely chose the following six parameters: u111,u112,u211,u212,u311,u312

as bottleneck ones, while the remaining as nonbottleneck ones.
Table 8 presents the performance of Algorithm 2.2 for the 3 × 5

model, where we set u111 = u211 = u311 = 1�5, u112 = u212 = u312 = 1, while

TABLE 8 Performance of Algorithm 2.2 for the 3 × 5 model. We set
� = 0�05, � = 6, 	 = 0�001, N = 500,000, and N1 = 500,000

Method CE VM CE-SCR VM-SCR

Mean 1.062E-07 8.728E-08 8.011E-08 8.061E-08
�̂ Max 2.629E-07 1.711E-07 9.372E-08 9.874E-08

Min 7.428E-08 3.502E-08 6.363E-08 6.283E-08
RE 0.53069 0.49580 0.15226 0.14253
Mean T 6.0 6.9 6.0 7.3
Mean CPU 148.49 231.92 146.73 214.09

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 561

the remaining (nonbottleneck) ones we set equal to 2. We also set �= 0�05,
� = 6, and the sample size N = N1 = 500,000.

In this case, CE and VM identified at the first stage 56 and 44
bottleneck parameters, respectively, out of the total of 75 parameters. The
reason for that is the bottleneck elements are not so evident as in the
previous 2 × 2 model.

It follows that in this case, both CE-SCR and VM-SCR have similar
relative error (accuracy) and they both outperform their CE and VM
counterparts, respectively.

Table 9 presents the performance of Algorithm 2.2 for the 3 × 10
model with the above six bottlenecks, which were set to 1, that is we set
u111 = u211 = u311 = u112 = u212 = u312 = 1, while the remaining ones were
set to 4. We also set � = 0�1, � = 6, N = N1 = 400,000. In this case, both
CE and VM found the true six bottlenecks.

Note that VM-SCR is the most accurate among its three alternatives,
and that CE under estimates �. Thus, for this relatively large model
with 150 elements, CE (without screening) is affected by the degeneracy
of the LR.

We next consider a network from Ref.[2] depicted in Figure 2.
In particular, we consider estimation of the rare-event probability �(u) =
�uI�S(X)≥�� with the performance S(X) being the shortest path from node
1 to 20, X ∼ exp(u), where u and � are fixed in advance. Note that we
use Dijkstra’s algorithm for calculating the shortest path in the network.
Also note that in using full enumeration we found that the total number
of feasible paths in the network equals 830. Also note that in this case the
bottleneck elements are not available in advance.

Table 10 presents the performance of Algorithm 2.2 for the model
in Figure 2 with � = 10, N = 50,000, and N1 = 100,000. We set all 20
parameters equal to 1 and selected 	 = 0�01 and � = 0�05. For this model,
CE and VM identified at the first stage of Algorithm 2.2, 26, and 24
bottleneck elements (out of the total of 30 elements in the network),
respectively.

TABLE 9 Performance of Algorithm 2.2 for the 3 × 10 model with
six bottlenecks. We set � = 0�1, � = 6, N = 400,000, N1 = 400,000

Method CE VM CE-SCR VM-SCR

Mean 2.440E-08 5.343E-08 5.288E-08 5.175E-08
�̂ Max 5.825E-08 7.180E-08 8.384E-08 6.932E-08

Min 4.148E-15 2.763E-08 2.746E-08 4.326E-08
RE 1.05557 0.28452 0.32857 0.15232
Mean T 6.0 6.0 7.4 8.9
Mean CPU 247.15 482.36 303.92 531.27

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

562 Rubinstein and Glynn

FIGURE 2 A network.

It follows from above that all four approaches perform similarly.
The reason why screening does not help much here is that in this case
the number of bottlenecks found is close to the total number of elements.
According to our nomenclature, this model can be viewed as one with no
evident parameters.

While updating the parameter vector v̂(b) at the second stage of
Algorithm 2.2 with the above model, we found that six elements
of v̂(b) corresponding to the parameters u1,u2,u3,u28,u29,u30 have changed
the most. Taking this into consideration, we can easily modify some
of the initial unity parameters of the network in such a way that
the above network could be viewed as one with evident bottlenecks.
In particular, one could keep, for example, all six initial bottleneck

TABLE 10 Performance of Algorithm 2.2 for the model in Figure 2 with
all initial parameters equal 1, � = 0�05. � = 10, N = 50,000, N1 = 100,000

Method CE VM CE-SCR VM-SCR

Mean 1.233E-08 1.234E-08 1.134E-08 1.341E-08
�̂ Max 2.076E-08 1.629E-08 1.669E-08 2.142E-08

Min 8.640E-09 8.997E-09 9.118E-09 9.529E-09
RE 0.33293 0.20606 0.20532 0.29083
Mean T 7.0 8.1 7.0 8.7
Mean CPU 36.32 45.44 36.45 48.07

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 563

TABLE 11 Performance of Algorithm 2.2 for the model in Figure 2
with � = 0�1, � = 2000, N = 100,000, N1 = 300,000

Method CE VM CE-SCR VM-SCR

Mean 7.415E-09 4.013E-09 4.045E-09 4.331E-09
�̂ Max 4.628E-08 6.138E-09 4.991E-09 5.387E-09

Min 9.744E-11 2.784E-09 3.065E-09 3.257E-09
RE 1.85189 0.24994 0.15102 0.19062
Mean T 9.6 12.6 9.4 15.8
Mean CPU 109.85 260.44 109.80 215.28

parameters u1,u2,u3,u28,u29,u30 equal to 1, while increasing the remaining
(nonbottleneck) ones.

Table 11 presents data for such a case. In particular, it presents data
similar to Table 10 but with Weib(�,u−1/�) pdf instead of exp(u) pdf.
As before we assume that only u is controllable, while all �’s are equal
to 1/4. In addition, we set u1 = u2 = u3 = u28 = u29 = u30 = 1, while the
remaining 24 ones we set equal to 4. For this model, we found that both
CE and VM correctly identified the above six bottleneck elements.

As expected, for this model (with more evident bottlenecks), both
screening versions, CE-SCR and VM-SCR outperform their nonscreening
ones.

3. SCREENING FOR BERNOULLI MODELS

Note that for Bernoulli random variables, and in particular, while
estimating systems unreliability with highly reliable components, that is
estimating the following rare-event probability

� = 1 − �S(X) = �I�S(X)=0�, (13)

where S(X) is called the structure function, one needs to modify the
first stage of Algorithm 2.2. The main reason is that since most of the
components of the Bernoulli vector u are close to 1 (the system consists
of highly reliable components) it is useless to run Algorithm 2.2 by
generating a sample directly from the original pdf f (x,u) = Bern(u).
Consider, for example, the toy example of estimating � = 1 − �u(X),
where X ∼ Bern(u) and u = 0�999. By taking a sample of size N = 1, 000
from such Bern(0�999), we would get on average only one 0, while the rest
would be 1’s.

To overcome this difficulty, we shall introduce an auxiliary Bernoulli
parameter vector p0 (for Bernoulli pdf we shall use the notation p
instead of v, as in the previous section), which will play the role similar
to �0 in �(�0) = �uI�S(X)≥�0�. This can be done, for example, as follows.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

564 Rubinstein and Glynn

Set, say to 0.85 the values of p0 corresponding to u, which are greater
than 0.85; set the remaining elements of p0 equal to the corresponding
elements of u. Thus, the elements of the original vector u, which are
greater than 0.85 are set in p0 automatically to 0.85, while the remaining
ones are adopted by p0 without any change. It is readily seen that by doing
so �(p0) = �uI�S(X)≥p0� will not be a rare-event probability anymore, and
thus, while estimating �(p0) we shall generate enough 0’s and 1’s.

Algorithm 3.1 (CE-SCR Algorithm for the Bernoulli Distribution).

1. Select p0 as follows: set to 0.85 the values of p0 corresponding to u,
which are greater than 0.85; set the remaining elements of p0 equal
to the corresponding elements of u.

2. The same as Step 1 in Algorithm 2.1.
3. Generate a sample X1, � � � ,XN from the Bernoulli pdf f (x, p̂t−1) =

Ber(p̂t−1) and deliver the solution of the stochastic program (see (12))

max
p

D̂(p) = max
p

1
N

N∑
i=1

I�S(Xi)=0�W (b)
(
X(b)

i ;u(b), p̂(b)
t−1

)
ln f

(
X(b)

i ;p
)
�

(14)

Denote the solution by p̂t = (p̂t1, � � � , p̂tk). Note also that in contrast to
(12), W (Xi ,u,p0) = 1 only for the elements of p0 which were set equal
to u.

4. Calculate the relative perturbation for each element p̂tr , r = 1, � � � , k as

�tr = ur − p̂tr
ur

� (15)

5–8. The same as Steps 4–7 in Algorithm 2.1.
9. Estimate � in (13) (see also (6)) as

�̂(b) = 1
N

N∑
i=1

I�S(Xi)=0�W (b)
(
X(b)

i ;u(b), p̂(b)
)
�

3.1. Numerical Results

We start with the numerical results corresponding to the reliability
system for the model in Figure 1 when the sample function S(X) is defined
in (8). Similar to the tables in section 2.2, we consider here models
with more evident and less evident bottlenecks. Clearly, in the first case
the reference Bernoulli parameters in the bottleneck elements must be
chosen smaller than the remaining ones, while in the second case the

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 565

bottleneck elements must be chosen quite close to the remaining ones.
As in section 2.2:

1. We set � = 0�7 and performed 10 independent runs.
2. We automatically set all Bernoulli reference parameters p

corresponding to � > 0 back to their nominal values u, that is, we view
them as nonbottleneck ones.

Table 12 presents the performance of Algorithm 3.1, for the 2 × 2
model, where we set N = 10,000, N1 = 50,000, 	 = 0�01, � = 0�1; uijk =
0�97 for k = 1, 2 and all (i , j) = 1, 2, and we set uijk = 0�99 for k = 3, 4, 5
and all (i , j) = 1, 2. We view such a model as the one with evident
bottleneck elements. Clearly, in this case there are eight bottleneck
elements, corresponding to uijk = 0�99. All eight bottleneck elements were
identified correctly by both CE and VM methods.

Table 13 presents a typical evolution of the sequence �p̂t� in the first
bridge of the above 2 × 2 model for the VM and VM-SCR methods at the
second stage of Algorithm 3.1.

One can clearly see that the bottleneck parameters corresponding to
u = 0�99 decrease about two times already after the third iteration, while
the nonbottleneck ones fluctuate about their nominal value u = 0�99.

We next present simulation results for larger models, namely, for 3 × 5
and 3 × 10 ones, where we set ui11 = ui12 = 0�95 for i = 1, 2, 3, while the
rest we set equal to 0.99. We also set 	 = 0�01 and � = 0�1. Clearly, both
models have the same six bottlenecks, which were correct by the CE and
VM methods.

Table 14 presents the performance of the Algorithm 3.1 for the 3 × 5
model with N = 50,000 and N1 = 250,000 samples.

Table 15 presents similar data for 3 × 10 model. We set N = 100,000,
N1 = 300,000.

It follows that both VM-SCR and CE-SCR perform accurately and they
both outperform substantially (in the RE sense) their standard VM and CE
counterparts.

TABLE 12 Performance of Algorithm 3.1 for the 2 × 2 model with evident
bottlenecks. We set N = 10,000, N1 = 50,000, 	 = 0�01, � = 0�1

Method CMC CE VM CE-SCR VM-SCR

Mean 2.000E-6 2.798E-6 3.264E-6 3.244E-6 3.202E-6
�̂ Max 2.000E-5 3.572E-6 3.431E-6 3.339E-6 3.328E-6

Min 0.000E+0 1.601E-6 3.080E-6 3.150E-6 3.089E-6
RE 3.16228 0.29473 0.02927 0.01960 0.02511
Mean T 0.0 8.0 8.0 8.0 8.0
Mean CPU 0.00 1.54 10.03 1.33 5.87

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

566 Rubinstein and Glynn

TABLE 13 Typical evolution of sequence �p̂t �

VM

u111 u112 u113 u114 u115

0.970 0.970 0.990 0.990 0.990

t p111 p112 p113 p114 p115
1 0.820 0.820 0.840 0.840 0.840
2 0.557 0.561 0.968 0.894 0.884
3 0.551 0.509 0.977 0.941 0.939
4 0.528 0.520 0.970 0.941 0.962
5 0.505 0.503 0.987 0.974 0.988
6 0.496 0.496 0.940 0.983 0.986
7 0.495 0.495 0.977 0.990 0.985
8 0.491 0.493 0.985 0.993 0.987

VM-SCR

u111 u112 u113 u114 u115

0.970 0.970 0.990 0.990 0.990

t p111 p112 p113 p114 p115
0 0.760 0.760 0.990 0.990 0.990
2 0.492 0.489 0.990 0.990 0.990
3 0.617 0.616 0.990 0.990 0.990
4 0.528 0.528 0.990 0.990 0.990
5 0.503 0.506 0.990 0.990 0.990
6 0.593 0.591 0.990 0.990 0.990
7 0.532 0.536 0.990 0.990 0.990
8 0.506 0.508 0.990 0.990 0.990

TABLE 14 Performance of Algorithm 3.1 for the 3 × 5 model with
N = 50,000 and N1 = 250,000 samples

Method CE VM CE-SCR VM-SCR

Mean 2.983E-08 3.450E-08 2.257E-08 2.146E-08
�̂ Max 5.147E-08 6.816E-08 3.327E-08 2.206E-08

Min 2.129E-08 2.643E-08 1.862E-08 2.106E-08
RE 0.31565 0.35840 0.17860 0.01513
Mean T 8.0 8.0 8.0 8.0
Mean CPU 25.35 371.14 28.64 182.04

TABLE 15 Performance of Algorithm 3.1 for the 3 × 10 model with
samples N = 100,000, N1 = 300,000

Method CE VM CE-SCR VM-SCR

Mean 4.583E-08 5.909E-08 4.096E-08 4.699E-08
�̂ Max 1.412E-07 1.079E-07 4.545E-08 5.671E-08

Min 1.156E-09 4.423E-08 3.025E-08 3.689E-08
RE 0.82762 0.33868 0.11162 0.16357
Mean T 8.0 8.0 8.0 8.0
Mean CPU 99.80 1699.48 106.48 1065.15

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

How to Deal With the Curse of Dimensionality 567

TABLE 16 Performance of Algorithm 3.1 with equal initial parameters
u = 0�999, N = 10,000, 	 = 0�01, N1 = 50,000, � = 0�7, and � = 0�01

Method CMC CE VM CE-SCR VM-SCR

Mean 0.000E+0 2.232E-6 2.073E-6 1.000E-6 2.048E-6
�̂ Max 0.000E+0 3.858E-6 2.184E-6 1.000E-6 2.164E-6

Min 0.000E+0 1.008E-6 1.996E-6 1.000E-6 1.968E-6
RE NaN 0.45903 0.03720 0.00005 0.04300
Mean T 0.0 8.0 8.0 8.0 8.0
Mean CPU 0.00 8.18 27.96 9.17 19.67

We finally consider again the model from Ref.[2] depicted in Figure 2.
Table 16 presents the performance of Algorithm 3.1 with all equal

initial parameters u, which were chosen u = 0�999. We set N = 10,000,
N1 = 50,000, � = 0�7, 	 = 0�01 and � = 0�01. While updating the parameter
vector p̂(b) at the second stage of Algorithm 3.1, we found that the six
elements of p̂(b) corresponding to the parameters u1,u2,u3,u28,u29,u30

changed the most and were correctly identified by the VM method. Note
that CE identified only three bottlenecks. Because of this CE-SCR performs
poorly as Table 16 shows.

Taking this into consideration that six parameters u1,u2,u3,u28,u29,u30

changed most we can easily modify the initial parameter vector u of the
network in such a way that the above network could be viewed as one
with evident bottlenecks. In particular, one can, for example, increase all
six initial bottleneck parameters u1,u2,u3,u28,u29,u30, while keeping the
remaining (nonbottleneck) ones equal as before 0.999.

Table 17 presents data for such a case. In particular, it presents data
similar to Table 16 where we set the six bottlenecks from the previous
experiment equal to 0.97, while we keep the remaining 24 parameters
equal to 0.999. In this case, CE identified 13 bottlenecks, while VM
identified correctly 22 ones. The results of Table 17 are self-explanatory.

TABLE 17 Performance of Algorithm 3.1 with less evident bottlenecks.
N = 10,000, 	 = 0�01, N1 = 50,000, � = 0�7, � = 0�01

Method CMC CE VM CE-SCR VM-SCR

Mean 6.000E-5 4.353E-5 5.436E-5 5.436E-5 5.442E-5
�̂ Max 1.000E-4 5.527E-5 5.593E-5 5.758E-5 5.731E-5

Min 2.000E-5 2.700E-5 5.233E-5 5.225E-5 5.204E-5
RE 0.49690 0.32695 0.02323 0.03037 0.03092
Mean T 0.0 8.0 8.0 8.0 8.0
Mean CPU 0.00 11.93 16.18 9.88 12.93

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

568 Rubinstein and Glynn

4. CONCLUSIONS

In this work we showed how to overcome the curse of dimensionality
of likelihood ratios in high-dimensional Monte Carlo simulation problems,
caused by their degeneracy properties[5]. In particular, we presented a
method, called the screening method, which allows substantial reduction
of the size of the likelihood ratios by identifying the most important
parameters, called the bottleneck parameters. By doing so we not only
automatically prevent the degeneracy of IS estimators, but in addition we
obtain substantial variance reduction.

Our extensive numerical studies clearly indicate that

1. For models with quite evident bottlenecks, the two-stage screening
algorithms are quite efficient for both CE-SCR and VM-SCR versions,
provided 0�05 ≤ � ≤ 0�1. The VM-SCR version is typically the most
efficient one and its relative efficiency increases with the size of the
model.

2. For models with less evident bottlenecks, the VM-SCR version is still
typically the most accurate one, provided � ≈ 0�01. The effect of
screening is, however, not as dramatic as for models with evident
bottlenecks.

3. As the size of the models increases, the efficiency of VM-SCR relative
to its three counterparts, CE, VM, and CE-SCR, increases. For large-size
models, like n ≥ 150, we found that

(a) Both CE and VM performs poorly because of the degeneracy of the
LRs. Typically, the degeneracy of VM occurs for larger size models
than for CE.

(b) Both CE-SCR and VM-SCR perform nicely.
(c) Although CE-SCR is faster, VM-SCR is typically more accurate.

ACKNOWLEDGMENT

This research was supported by the Binational Science Foundation.

REFERENCES

1. Asmussen, S.; Glynn, P. Stochastic Simulation; Springer: New York, 2007.
2. Fishman, G. Monte Carlo; Springer: New York, 1995.
3. Liu, J.S. Monte Carlo Strategies in Scientific Computing; Springer: New York, 2001.
4. Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method: A Unified Approach to Combinatorial

Optimization, Monte-Carlo Simulation and Machine Learning; Springer: New York, 2004.
5. Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 2nd Ed.; Wiley: New York,

2007.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
S
t
a
n
f
o
r
d

U
n
i
v
e
r
s
i
t
y
]

A
t
:

0
4
:
4
9

2
0

J
u
l
y

2
0
1
0

