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Abstract We revisit a classical problem in rare-event simulation, namely, efficient
estimation of the probability that the sample mean of n independent identically dis-
tributed light tailed (i.e. with finite moment generating function in a neighborhood
of the origin) random variables lies in a sufficiently regular closed convex set that
does not contain their mean. It is well known that the optimal exponential tilting
(OET), although logarithmically efficient, is not strongly efficient (typically, the
squared coefficient of variation of the estimator grows at rate n1/2). After discussing
some important differences between the optimal change of measure and OET (for
instance, in the one dimensional case the size of the overshoot is bounded for the
optimal importance sampler and of order O(n1/2) for OET) that indicate why OET
is not strongly efficient, we provide a state-dependent importance sampling that can
be proved to be strongly efficient. Our procedure is obtained based on computing the
optimal tilting at each step, which corresponds to the solution of the Isaacs equation
studied recently by Dupuis and Wang [8].
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1 Introduction

Let X,X1,X2, ... be a sequence of mean zero independent and identically dis-
tributed (iid) d-dimensional random variables (rv’s). Assume that A is a sufficiently
regular (see Section 5) convex set for which 0 /∈ A. We further assume that A

satisfies a technical condition, which is detailed in Section 5. We revisit a funda-
mental problem in the theory of rare-event simulation, namely that of computing
αn = P (Sn/n ∈ A) for n large, where Sn = X1 + X2 + ... + Xn. In particular, we
consider the setting in which X is light-tailed. The purpose of this paper is to pro-
vide the first simulation estimator for which it can be proven that the number of
simulation runs needed to compute αn to a given relative accuracy remains bounded
as a function of the parameter n.

To fix ideas, consider the one dimensional case in which A = (β,∞) for β > 0. It
is well known that the use of importance sampling, as implemented through optimal
exponential tilting (OET), provides an estimator that is “logarithmically efficient”
as n ↗ ∞ (in the sense that the squared coefficient of variation grows subexponen-
tially) [12]. Recall that OET involves an importance distribution in which each of
the summands is independently sampled from that member of the natural exponen-
tial family having mean β, see e.g., [12, 13]. In fact, it can be further shown that
OET provides the only iid importance sampling algorithm that achieves logarithmic
efficiency [2]. This might not be surprising, given that asymptotically, as n → ∞,
OET agrees with the conditional distribution of the Sk’s (k < n) given {Sn > nβ}
(see Proposition 2 below). It is a simple calculation to check that the conditional
distribution is in fact the ideal importance sampling change of measure since it cre-
ates an unbiased estimator with zero-variance. We will commonly refer to it as the
zero-variance change of measure.

However, it turns out that the squared coefficient of variation [ratio of second
moment of estimator to probability of interest squared, see Eq. (5)] associated with
OET does increase as n ↗ ∞, so that the number of samples required to compute
αn to a given relative accuracy increases as a function of n. In fact, in Section 2,
we prove that under mild conditions, the squared coefficient of variation grows at
rate O

(
n1/2

)
. The reason that OET becomes less efficient with the growth of n has

to do with the fact that OET fails to agree with the conditional distribution (zero-
variance change of measure) at scales finer than that of the Law of Large Numbers
(LLN). As one illustration of this phenomenon, Proposition 3 establishes that the
“overshoot” Sn−nβ > 0 is asymptotically exponentially distributed as n ↗ ∞ under
the conditional distribution. In particular the moments of the overshoot stay bounded
as n grows. However, due to the Central Limit Theorem (CLT), the OET produces
an overshoot of order n1/2. In other words, the OET tends to bias the increments
excessively when the random walk is relatively close to reaching the boundary β,
thereby inducing a large overshoot.

An algorithm having the property that the sample size required to compute αn to
a given relative accuracy is bounded as a function of n is called a “strongly efficient”
algorithm (equivalently estimator) [2, 10]. To produce a strongly efficient estimator,
we use “optimal state-dependent exponential tilting” (OSDET). In the one dimen-



Efficient Simulation of Light-Tailed Sums 229

sional case, this corresponds to dynamically updating the OET at each step in the
algorithm based on the current position Sk of the random walk (Sk : k ≥ 0). We ap-
ply OSDET up until we basically reach the boundary (at which point we turn-off
importance sampling) or the distance to the target is sufficiently large relative to the
remaining time horizon (at which point we simply apply OET computed from such
position until the end of the time horizon). It certainly seems intuitively clear that
OSDET will likely reduce the growth of the coefficient of variation as n ↗ ∞ rela-
tive to simply applying OET, but there is no reason to expect that one would obtain a
bounded coefficient of variation. What plays a crucial role is the fact that (under the
assumption that the target set A has a twice continuously differentiable boundary)
the dynamic tilting induced by OSDET induces a twice continuously differentiable
mapping given by the large deviations rate function. An additional polynomial decay
rate of order O

(
n−1/2

)
necessary to control the behavior of the squared coefficient

of variation arises thanks to the fact that the conditional expected value of a second
order term in the Taylor expansion of this mapping has exactly the right behavior to
control (after combining the contributions of all time steps) the previous polynomial
decay rate. This result is stated in Lemma 2 and used in Proposition 4.

Let us briefly connect our work with the game-theoretic approach introduced by
Dupuis and Wang in [8]. It turns out that the OSDET corresponds to applying im-
portance sampling according to the solution to the associated Isaacs equation (Sec-
tion 3.4 of [8]). They prove that if such a solution is continuously differentiable then
one has a logarithmically efficient estimator. In our setting the solution to the Isaacs
equation we work with is in fact twice continuously differentiable in the interior. By
applying OSDET in a region where the large deviations scaling is applicable (i.e.
before we basically reach the target level or the distance to the level is very large
relative to the remaining time horizon), we obtain strong efficiency. It is important to
note, however, that our sampler uses a small layer at the boundary to avoid sampling
at the point where the solution to the Isaacs equation fails to be twice continuously
differentiable. Our work then suggests a connection between the degree of smooth-
ness of the solution to the associated Isaacs equation and the efficiency strength of
the corresponding importance sampling estimator.

In previous works on importance sampling and large deviations settings for sam-
ple means, proofs of strong efficiency have been limited to systems with heavy tailed
characteristics [5] or Gaussian increments [4]. The contribution of our paper is to
construct an importance sampling algorithm that can be used in a general class of
light tailed distributions that is also provably strongly efficient.

Our proof of strong efficiency relies on the analysis of several martingales that
arise naturally from the description of the algorithm, and is of independent interest.
Given that OSDET achieves bounded relative error, it may not be surprising then
that OSDET also induces a bounded overshoot as n ↗ ∞.

The rest of the paper is organized as follows. Sections 2 to 4 concentrate on the
one dimensional case. Section 2 describes explicitly our assumptions and collects
some needed results from the theory of large deviations. Section 3 introduces the
algorithm explicitly and provides a heuristic analysis behind its efficiency. The rig-
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orous details are given in Section 4, where we also show that the overshoot under
OSDET remains bounded as n ↗ ∞. Section 5 treats the multidimensional case.

2 Large Deviations Results for Light Tailed Sums

In this section, we concentrate on the one dimensional case and present some auxil-
iary results from the theory of large deviations that will be useful for the description
and analysis of our algorithm.

We start with listing the assumptions underlying our development in Sections 2
to 4.

i) EX = 0 and Var(X) = σ 2

ii) The log-moment generating function (ψ (θ) : θ ∈ R), defined as ψ (θ) =
logE exp(θX), is assumed to be steep to the right in the sense that for each w > 0
there exists θw > 0 such that ψ ′ (θw) = w.

iii) We assume that infθ≥0 ψ ′′ (θ) > 0.
iv) The random variable (rv) X is nonlattice (i.e. the characteristic function has

modulus strictly less than one except at the origin).

Assumption i) is obviously introduced without loss of generality. The steepness
assumption is standard in the large deviations literature and it is useful to rule out
distributions with extremely light tails (in particular with compact support). As-
sumption iii) although satisfied by most models of practical interest beyond light-
tailed random variables with finite support (in particular, the condition allows Gaus-
sian, gamma random variables and mixtures thereof) is more technical and is ap-
plied only in Lemma 2. Nevertheless, such a condition certainly rules out tails that
are lighter than Gaussian. The last assumption is again common in the development
of exact asymptotics in large deviations, which are required in our setting because
we are concerned with strong efficiency rather than logarithmic efficiency.

We are now ready to describe some results from large deviations that will be
useful in our development. The so-called rate function plays a crucial role in the
theory of large deviations. In our context, we work with a variant of the standard
rate function, J (·), defined for w ≥ 0 by

J (w) � max
θ≥0

[θw −ψ (θ)]. (1)

The standard rate function is defined by optimizing θ ∈ (−∞,∞). Both J (·) and
the standard rate function agree on the positive real line. In particular, note that we
have for w ≥ 0

J (w) � wθw −ψ (θw) and J ′(w) = ψ ′−1(w) = θw. (2)

For w < 0 we have that J (w) ≡ 0 and that J (·) is continuously differentiable at
zero. The algorithmic implication of defining J (·) in this way, as we shall see, is
that no importance sampling is applied when one reaches the level above nβ. Note,
however, that J (·) is not twice continuously differentiable at zero.
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Finally, the natural exponential family (Fθ : θ ∈ R) generated by the distribution
F (·) = P (X ≤ ·) is defined via

dFθ = exp(θx −ψ (θ))dF. (3)

The distribution Fθ is also said to be “exponentially tilted” by the parameter θ . Let
Pθ (·) be the product probability measure generated by Fθ (for θ ∈ R) under which
the Xi’s are iid and let Eθ (·) be the corresponding expectation operator associated
with Pθ (·). We often use the notation EJ ′(w) (·), which just means Eθw (·).

We shall need the following elementary properties of the rate function.

Proposition 1. If Assumption ii) is in force, then

J (w) = σ 2w2/2+O
(
w3)

as w ↘ 0. Moreover, for each w ∈ (0,∞) we have

J (w +h) = J (w)+ θwh+O
(
h2)

as h −→ 0 (uniformly over w ∈ [ε,1/ε] for fixed ε > 0). In fact, for each w > 0, the
function J (w +·) is infinitely differentiable at zero and its Taylor series converges
in a neighborhood of the origin.

Proof. First it is clear from the formula (2) that on the positive line J (·) inherits the
smoothness properties of ψ(·), this gives the last two results of the above proposi-
tion. The first two results follow from a Taylor expansion of the function J (·) and
therefore by necessity a Taylor expansion of θw which is obtained using the inverse
function theorem. ��

Large deviations theory is intended to both address the question of how to com-
pute asymptotics for rare event probabilities and to describe the conditional behavior
of the underlying system given the occurrence of the rare event. The following result
is a celebrated large deviations asymptotic approximation due to Bahadur and Rao
[3] that will be useful in our development.

Theorem 1. Under assumptions i), ii) and iv) above,

P (Sn > nβ) = exp(−nJ (β))

θβ

√
2πnψ ′′ (θβ

) (1+o(1))

as n ↗ ∞ for fixed β > 0.

The following proposition provides an asymptotic description of the conditional
behavior of the process (Sk : 0 ≤ k ≤ n) given that Sn > βn (as n ↗ ∞) and provides
rigorous support for the claim that the asymptotic conditional distribution of the
increments given {Sn > nβ} is Pθβ (·), for a proof see, e.g., [6].
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Proposition 2. Suppose that i), ii) and iv) are in force. Then, for any positive inte-
gers k1 < k2 < ... < km < ∞ and for each xk1, ...,xkm , continuity points of F (·) ,

P
(
Xk1 ≤ xk1, ...,Xkm ≤ xkm

∣∣Sn > nβ
)−→ Fθβ

(
xk1

)
...Fθβ

(
xkm

)

as n ↗ ∞.

While the above result describes the behavior of a typical increment under the
conditioning, the proposition below provides an asymptotic description of the lim-
iting overshoot Sn −nβ > 0.

Proposition 3. Assume that i), ii) and iv) hold and put β > 0. Then, for all x > 0

lim
n→∞P (Sn −nβ > x|Sn > nβ) = exp

(−θβx
)

Proof. Note that from Theorem 1 we have that

lim
n→∞

P (Sn > nβ +x)

P (Sn > nβ)
= lim

n→∞P (Sn > nβ +x)enJ (β)θβ

√
2πnψ ′′(θβ).

Thus it remains to show that

lim
n→∞P (Sn > nβ +x)enJ (β)θβ

√
2πnψ ′′(θβ) = e−θβx .

Following the notation of [7], Theorem 3.7.4, define the following

Yi = Xi −β
√

ψ ′′(θβ)
, ψn = θβ

√
nψ ′′(θβ), Wn = 1√

n

n∑

i=1

Yi and Fn(y) = P(Wn ≤ y).

Then a simple calculation (see [7], page 111, for details) gives

P (Sn > nβ +x)enJ (β)θβ

√
2πnψ ′′(θβ) = ψn

√
2π

∫ ∞

θβx/ψn

e−ψnydFn(y).

One can now follow nearly the same procedure as in the proof of Theorem 3.7.4 of
[7], the only difference being the lower limit of integration. Due to the fact that our
lower limit of integration is θβx/ψn the limit of the previous display is e−θβx, as
desired. ��

The previous result implies that Pθβ (·) does not accurately describe the behav-
ior of the random walk, conditioned on {Sn > nβ}, at time n. In particular under

Pθβ (·), the CLT implies that n−1/2 (Sn −nβ)
D≈ N

(
0,ψ ′′ (θβ

))
and thus the over-

shoot is (Sn −nβ) = O
(
n1/2

)
in distribution. On the other hand, Proposition 3 in-

dicates that the conditional overshoot is of order O (1) (in distribution). Therefore,
Pθβ (·) may provide a poor description of the conditional distribution of the random
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walk at scales that are finer than linear (for instance at scales of order n1/2). As a
consequence, it is not surprising that the performance of Pθβ (·) as an importance
sampling distribution degrades when measured at a fine enough scale. In particular,
the estimator induced by Pθβ (·), namely

L = exp
(−θβSn +nψ

(
θβ

))
I (Sn > βn), (4)

is not strongly efficient (i.e., the squared coefficient of variation of the estimator
is unbounded as n ↗ ∞). More precisely, it follows that if cvn (L) denotes the
coefficient of variation of L, then by definition

(cvn (L))2 �
Varθβ (L)
(
Eθβ (L)

)2 = Eθβ

(
L2
)

P (Sn > nβ)2
−1. (5)

Under Assumptions i), ii) and iv) we have for a positive constant Cβ

Eθβ

(
L2)= Eθβ

[
e2nψ(θβ)−2θβSnI (Sn > nβ)

]
= E

[
enψ(θβ)−θβSnI (Sn > nβ)

]

= e−nJ (β)P (Sn > nβ)E
{
exp
[−θβ(Sn −nβ)

] |Sn > nβ
}

∼ Cβ√
n
e−2nJ (β)E

{
exp
[−θβ(Sn −nβ)

] |Sn > nβ
}= Cβ

2
√

n
e−2nJ (β).

where we use Theorem 1 for the approximation, and Proposition 3 for the final
equality. Using Theorem 1 once more we see that as n → ∞, (cvn (L))2 = O

(
n1/2

)
.

In our next section, we examine the form of the optimal change of measure and
propose an importance sampling distribution that improves upon Pθβ by achieving
a bounded squared coefficient of variation.

3 A Proposed Algorithm and Intuitive Analysis

The basic idea of our algorithm is that at each discrete time step (provided the ran-
dom walk is inside a compact set to be described later) one recomputes the OET
change of measure. There are two stopping criteria that must be introduced and that
we shall discuss in more detail.

The algorithm is explicitly defined as follows. The constant λ below can be cho-
sen arbitrarily as long as λ > 2β, (this is required in the proof of Proposition 5
below).

Algorithm 1
Set w = β > 1/n1/2, L = 1, s = 0, s̄ = 0, k = 0, and λ > 2β.
Repeat STEP 1 until n = k OR w ≤ 1/(n− k)1/2 OR w > λ.

STEP 1: Sample X from Fθw [defined by equations (2) and (3)] and set

L ←− exp(−θwX +ψ (θw))L,
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s ←− s +X,

k ←− k +1,

w ←− (nβ − s)/(n− k).

STEP 2: If k < n sample Xk+1, ...,Xn iid rv’s from Fθw and set

s̄ ←− Xk+1 + ...+Xn,

L ←− exp(−θws̄ + (n− k)ψ (θw))L.

STEP 3: Output Yn = L× I (s + s̄ > nβ)

The intuition behind the stopping conditions indicated in STEP 2, namely w ≤
1/(n − k)1/2 or w > λ, is the following. First, when w ≤ 1/(n − k)1/2 there is no
need for applying importance sampling sequentially until the end as the event of
interest is not rare any more (we have reached the Central Limit Theorem region).
It seems intuitive that if one replaces w ≤ 1/(n− k)1/2 simply by w ≤ 0 (i.e. stop
if we reach the boundary) then one still should obtain strong efficiency. Our analy-
sis, however, requires a stopping criterion that is slightly removed from the origin,
such as the one that we impose here. This criterion is used in the proof of Lemma
2 below and basically is imposed to deal with the fact that J (·) is not twice con-
tinuously differentiable at the origin. Now, whenever we have that w > λ, for some
large constant λ, then we are approaching a scaling for which the large deviations
asymptotics (which motivate the design of the algorithm) are no longer applicable
(i.e. a situation where the distance to the target is no longer linearly related to the
time to go). At that point, we simply apply the tilting once and for all up until the
end of the time horizon.

The estimator Yn obtained from the algorithm above can be expressed as follows.
First, define

Wj = (nβ −Sj )/(n− j) (6)

for 0 ≤ j ≤ n − 1, and Wn � 0. Next define the following stopping times τ
(n)
1 =

inf{0 ≤ k < n : Wk > λ}, τ
(n)
0 = inf{k ≥ 0 : nβ −Sk ≤ (n− k)−1/2}, and

τ (n) = τ
(n)
0 ∧ τ

(n)
1 ∧n. (7)

We define (allowing ourselves a slight abuse of notation) the change of measure
used at step j to be

θj � θWj
= J ′ (Wj

)
. (8)

Let us write

Z1,n = exp

⎛

⎝−
τ (n)−1∑

j=0

(
θjXj+1 −ψ

(
θj

))
⎞

⎠ ,
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Z2,n = exp
(
−θτ(n)

(
Sn −Sτ(n)

)+ (n− τ (n))ψ
(
θτ(n)

))
.

We can now define the OSDET (optimal state-dependent exponential tilting) esti-
mator resulting from Algorithm 1 as

Yn = Z1,nZ2,nI (Sn > nβ) (9)

where Xj follows the distribution Fθj
for 1 ≤ j ≤ τ (n) and Xj is sampled according

to the distribution Fθ
τ(n)

for τ (n) +1 ≤ j ≤ n.
The next section is devoted to the rigorous efficiency analysis of Yn. However,

before we provide the full details behind such analysis we will spend the rest of
this section explaining the main intuitive steps. It turns out that the most important
contribution comes from term Z1,n, so this object will be the focus of our discussion
here. A substantial portion of the technical development in the next section is dedi-
cated to showing that for any p ≥ 1 supn≥1 Ẽ

(
(n− τ (n))p

)
< ∞, where Ẽ (·) is used

throughout the rest of the paper to denote the expectation operator induced by the
importance sampling strategy described in Algorithm 1 (see Proposition 5 below).
This in turn is used to argue that the sum in the exponent in Z1,n has basically n−m

terms (where m is a constant).
The next results allows us to express the exponent in Z1,n in terms of a telescopic

sum involving the function J (·).
Lemma 1. For 0 ≤ j ≤ n − 2 let wj+1 (x) = (nβ − s −x)/(n − j − 1) and wj =
(nβ − s)/(n− j), if (n− j)−1/2 < wj < λ then

(n− j −1)J
(
wj+1 (x)

)− (n− j)J
(
wj

)

= −J ′ (wj

)
x +ψ

(
θj

)

+ (x −wj)
2

(n− j −1)

∫ 1

0

∫ 1

0
J ′′ (wj +vu(wj+1 (x)−wj)

)
ududv.

In addition,

J ′′ (wj

)−1 = EJ ′(wj )

(
Xj+1 −wj

)2 = VarJ ′(wj )

(
Xj+1

)
.

Remark: A convenient representation that we will use in the future is

∫ 1

0

∫ 1

0
J ′′ (wj +vu(wj+1 (x)−wj)

)
ududv (10)

= E
(
J ′′ (wj +V U(wj+1 (x)−wj)

)
U
)

where U and V are independent uniformly distributed random variables over [0,1].
Proof. The result is shown by looking at a Taylor expansion of J

(
wj+1(x)

)
about

the point wj . Recall that by definition J (·) is twice differentiable on R\{0} and
differentiable on R. Note that



236 Jose H. Blanchet, Kevin Leder, and Peter W. Glynn

wj+1(x) = wj + 1

n− j −1

(
wj −x

)
. (11)

On the other hand,

J
(
wj+1(x)

)−J (wj ) =
∫ 1

0
J ′(wj +u(wj+1 (x)−wj))(wj+1 (x)−wj)du (12)

and

J ′(wj +u(wj+1 (x)−wj))−J ′(wj ) (13)

=
∫ 1

0
J ′′ (wj +vu(wj+1 (x)−wj)

)
u(wj+1 (x)−wj)dv.

Note that the integral representation in the previous display is valid for any values
of wj , wj+1 (x) and u because J ′′ (·) is continuous except at the origin. Combining
(11), (12) and (13) we obtain that

J
(
wj+1(x)

)= J (wj )+ 1

n− j −1
(wj −x)J ′(wj )

+ (wj −x)2

(n− j −1)2

∫ 1

0

∫ 1

0
J ′′ (wj +vu(wj+1 (x)−wj)

)
ududv.

The second statement follows from the relationship between ψ and J . ��
We now provide an intuitive analysis of Zn,1. Using the previous result, the defi-

nition of θj in (8), and assuming

∫ 1

0

∫ 1

0
J ′′ (wj +vu(wj+1 (x)−wj)

)
ududv ≈ J ′′(wj )/2

we obtain (using formally τ (n) ≈ n−m for some positive integer m)

logZn,1 = −
τ (n)−1∑

j=0

(
θjXj+1 −ψ

(
θj

))

≈
n−m−1∑

j=0

(
(n− j −1)J

(
Wj+1

)− (n− j)J
(
Wj

))

− 1

2

n−m−1∑

j=0

J ′′ (Wj

)

(n− j −1)
(Xj+1 −Wj)

2

= −nJ (β)−mJ (Wn−m)− 1

2

n−m−1∑

j=0

J ′′ (Wj

)
(Xj+1 −Wj)

2

(n− j −1)
.

Under the sampler we have that Sn−m ≈ (n−m)β with high probability and there-
fore mJ (Wn−m) ≈ mJ (β). One then arrives at the following plausible upper bound
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(for some constant c ∈ (0,∞))

ẼZ2
n,1 ≤ cexp(−2nJ (β))n−1

× Ẽ exp

⎛

⎝−
n−m−1∑

j=0

(
J ′′ (Wj

)
(Xj+1 −Wj)

2

(n− j −1)
− 1

n− j −1

)⎞

⎠ .

The main issue then becomes understanding the behavior of the expectation

Ẽ exp

⎛

⎝−
n−m−1∑

j=0

(
J ′′ (Wj

)
(Xj+1 −Wj)

2

(n− j −1)
− 1

n− j −1

)⎞

⎠ . (14)

The crucial observation is that Wj ∈ ((n− j)−1/2,λ) throughout the course of the
algorithm and that the random variables

J ′′ (Wj

)
(Xj+1 −Wj)

2

(n− j −1)
− 1

n− j −1

are martingale differences with conditional variance of order O
(
1/(n− j −1)2

)
.

So, working backwards in time, we shall argue that (14) remains bounded as n ↗ ∞,
thereby concluding that ẼZ2

n,1 ≤ cP (Sn > nβ)2 for some constant c ∈ (0,∞).
It is important to note that the fact that J (·) is twice continuously differentiable

on (0,∞) seems crucial for the development.
The next section is devoted to the proof of the following result.

Theorem 2. For each p > 1,

sup
n≥1

ẼY
p
n

P (Sn > nβ)p
< ∞.

Note that the result stated in Theorem 2 is in fact stronger than just bounded
relative error for the estimator, since the result is stated for arbitrary p > 1. For a
discussion on the benefits of establishing this stronger result see [11].

4 Rigorous Efficiency Analysis

In order to provide the proof of Theorem 2 we need the following result which is a
companion to Lemma 1.

Lemma 2. In the context of Lemma 1 and equation (10), assume that 0 ≤ j ≤ n−2,
(n− j)−1/2 < wj ≤ λ. Let U and V be independent, uniformly distributed random
variables also independent of Xj+1 given wj . Set

ηj+1
(
Xj+1

)= V U
(
wj+1

(
Xj+1

)−wj

)= V U
wj −Xj+1

n− j −1
.
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Then, there exists a constant c (λ) ∈ (0,∞) such that
∣∣∣∣∣
EJ ′(wj )

(
J ′′ (wj +ηj+1

(
Xj+1

))
(Xj+1 −wj)

2U

(n− j −1)

)

− 1

2(n− j −1)

∣∣∣∣∣
≤ c (λ)

(n− j)2
.

Proof. Define η̃
(
Xj+1,wj

) .= wj +ηj+1(Xj+1). Then note that

∣∣∣∣EJ ′(wj )

(
J ′′ (η̃

(
Xj+1,wj

))
(Xj+1 −wj)

2U
)− 1

2

∣∣∣∣

=
∣∣∣EJ ′(wj )

((
J ′′ (η̃

(
Xj+1,wj

))−J ′′ (wj

))
U
(
Xj+1 −wj

)2)∣∣∣

≤ EJ ′(wj )

(∣∣J ′′ (η̃
(
Xj+1,wj

))−J ′′ (wj

)∣∣(Xj+1 −wj

)2)
.

Let κ > 0 fixed (to be chosen later) and write

EJ ′(wj )

(∣∣J ′′ (η̃
(
Xj+1,wj

))−J ′′ (wj

)∣∣(Xj+1 −wj

)2)

= EJ ′(wj )

(∣∣J ′′ (η̃
(
Xj+1,wj

))−J ′′ (wj

)∣∣(Xj+1 −wj

)2 ; η̃ (Xj+1,wj

)≤ 0
)

+EJ ′(wj )

(∣∣J ′′ (η̃
(
Xj+1,wj

))−J ′′ (wj

)∣∣ (Xj+1 −wj

)2 ; η̃ (Xj+1,wj

) ∈ (0,κ)
)

+EJ ′(wj )

(∣∣J ′′ (η̃
(
Xj+1,wj

))−J ′′ (wj

)∣∣ (Xj+1 −wj

)2 ; η̃ (Xj+1,wj

)
> κ
)
.

Let us write I1, I2 and I3 for the last three expectations in the previous display
respectively. We have for any positive even integer m, that on wj ∈ ((n− j)−1/2,λ)

I1 = J ′′ (wj

)
EJ ′(wj )

((
Xj+1 −wj

)2 ;wj +V U
wj −Xj+1

n− j −1
≤ 0

)

= J ′′ (wj

)
EJ ′(wj )

((
Xj+1 −wj

)2 ;V U
Xj+1 −wj

n− j −1
≥ wj

)

≤ J ′′ (wj

)
EJ ′(wj )

((
Xj+1 −wj

)2 ;V U
Xj+1 −wj

n− j −1
≥ 1

(n− j)1/2

)

= J ′′ (wj

)
EJ ′(wj )

((
Xj+1 −wj

)2 ;V U
(
Xj+1 −wj

)≥ (n− j −1)

(n− j)1/2

)

≤ J ′′ (wj

)
(n− j)m/2

(n− j −1)m
EJ ′(wj )

((
Xj+1 −wj

)m+2
)

≤ c (λ)

(n− j)m/2
.

In the penultimate inequality we have used E
(
Z2;Z/a > 1

) ≤ E
(
Z2+m/am

)
for

a > 0 any random variable Z, and positive, even integer m, and in the last line we
use the fact that wj ∈ ((n− j)−1/2,λ). Next, we have that
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I2 = EJ ′(wj )

(∣∣J ′′ (η̃
(
Xj+1,wj

))−J ′′ (wj

)∣∣(Xj+1 −wj

)2 ; η̃ (Xj+1,wj

) ∈ (0,κ)
)

≤ sup
0<s<κ

∣∣J ′′′ (s)
∣∣EJ ′(wj )

(∣∣ηj+1(Xj+1)
∣∣ (Xj+1 −wj

)2 ; η̃ (Xj+1,wj

) ∈ (0,κ)
)

≤ sup
0<s<κ

∣∣J ′′′ (s)
∣∣EJ ′(wj )

(∣
∣Xj+1 −wj

∣
∣3

n− j −1
; η̃ (Xj+1,wj

) ∈ (0,κ)

)

≤ c (λ)

n− j
.

for some constant c (λ) ∈ (0,∞) (this follows because J (·) is smooth on (0,κ)).
Finally, we can use the relationship J ′′(θ) = 1/ψ ′′ (J ′(θ)

)
to see that if κ > λ

I3 = EJ ′(wj )

(∣∣J ′′ (η̃
(
Xj+1,wj

))−J ′′ (wj

)∣∣(Xj+1 −wj

)2 ; η̃ (Xj+1,wj

)
> κ
)

≤ 1

infθ≥0 ψ ′′ (θ)
EJ ′(wj )

((
wj −Xj+1

)2 ;V U
wj −Xj+1

n− j −1
> κ −wj

)

≤ 1

infθ≥0 ψ ′′ (θ)
EJ ′(wj )

((
wj −Xj+1

)2 ;V U
wj −Xj+1

n− j −1
> κ −λ

)

≤ 1

infθ≥0 ψ ′′ (θ)

EJ ′(wj )

((
wj −Xj+1

)2+m
)

(κ −λ)m (n− j −1)m
≤ c (λ)

(n− j)m
,

where the previous inequality follows from Assumption 2 just as we did for the
previous to last line in the analysis of I1. Combining our estimates for I1, I2 and I3
we obtain the result. ��

We will now use the previous result to analyze the second moment of Yn under the
law induced by the importance sampling distribution P̃ associated with Algorithm
1. First we need to define the following terms. For 0 ≤ j ≤ n−2, define,

Dj+1
(
Xj+1,wj

)= E
[
J ′′ (wj +ηj+1

(
Xj+1

))
(Xj+1 −wj)

2U |Xj+1
]
.

Next, for 0 ≤ j ≤ n−2, dj+1
(
wj

)= EJ ′(wj )

(
Dj+1

(
Xj+1,wj

))
. Finally, write

Dj+1
(
Xj+1,wj

)= (Dj+1
(
Xj+1,wj

)−dj+1
(
wj

))
I
(
τ (n) > j

)
(15)

and note that the Dj+1
(
Xj+1,Wj

)
’s form a sequence of martingale differences. We

then have the following bound.

Proposition 4. There exists a constant m(λ) ∈ (0,∞) such that

Y
p
n ≤ m(λ)

exp(−pnJ (β))
(
n− τ (n) +1

)p/2

np/2
exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

2(n− j)

⎞

⎠ .

Proof. First note that Lemma 1 guarantees that given Wj = wj , for j ≤ n−2

−θjXj+1 +ψ
(
θj

)= (n− j −1)J
(
wj+1

(
Xj+1

))− (n− j)J
(
wj

)
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− Dj+1
(
Xj+1,wj

)

2(n− j −1)
.

Therefore, on τ (n) = n we have that

−
τ (n)−1∑

j=0

(
θjXj+1 −ψ

(
θj

))= −
n−2∑

j=0

(
θjXj+1 −ψ

(
θj

))− (θn−1Xn −ψ (θn−1))

= −nJ (β)−
n−2∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j −1)
+J (Wn−1)− (θn−1Xn −ψ (θn−1)) .

On the other hand,

J (Wn−1)− (Xnθn−1 −ψ (θn−1)) = θn−1 (Wn−1 −Xn) = −θn−1 (Sn −nβ) .

Therefore,

YnI
(
τ (n) = n

)≤ exp

⎛

⎝−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)

⎞

⎠I (Sn > nβ).

Similarly, on τ (n) < n we have

−
τ (n)−1∑

j=0

(
θjXj+1 −ψ

(
θj

))= −
(τ (n)−1)∧(n−2)∑

j=0

(
θjXj+1 −ψ

(
θj

))
(16)

= −nJ (β)+
(
n− τ (n)

)
J
(
Wτ(n)

)−
(τ (n)−1)∧(n−2)∑

j=0

Dj+1
(
Xj+1,Wj

)

2(n− j)
.

On the other hand, we can use the definition of J and θ to get the following equality
on τ (n) < n

(n− τ (n))ψ
(
θτ(n)

)− θτ(n)

(
Sn −Sτ(n)

)= −
(
(n− τ (n))J

(
Wτ(n)

)+ θτ(n) (Sn −nβ)
)
.

Recalling the definition of our estimator, Yn we obtain that

YnI (τ (n) < n) ≤ exp

⎛

⎝−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)

⎞

⎠I (Sn > nβ).

Therefore, we obtain that

Yn ≤ exp

⎛

⎝−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)

⎞

⎠I (Sn > nβ). (17)
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On the other hand, one can use the fact that Dj = 0 for j > τ(n) to see,

−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)
= −nJ (β)−

n−2∑

j=0

Dj+1
(
Xj+1,Wj

)

2(n− j)

−
(τ (n)−1)∧(n−2)∑

j=0

(
dj+1

(
Wj

)

2(n− j)
− 1

2(n− j)

)
−

(τ (n)−1)∧(n−2)∑

j=0

1

2(n− j)
.

We now use Lemma 2 to bound the penultimate term in the previous display,
∣∣
∣∣∣∣

(τ (n)−1)∧(n−2)∑

j=0

(
dj+1

(
Wj

)

2(n− j)
− 1

2(n− j)

)
∣∣
∣∣∣∣
≤ c (λ)

∞∑

j=1

j−2 < ∞. (18)

Next using standard bounds on harmonic numbers we have the following

(τ (n)−1)∧(n−2)∑

j=0

1

n− j
≥

n∑

j=1

1

j
−

n−τ (n)+1∑

j=1

1

j
≥ log(n)− log

(
n− τ (n) +1

)
− 1

2
. (19)

Putting the estimates from bounds (16), (18), (19) together into (17) we see that
there exists a constant m(λ) ∈ (0,∞) such that

Yn ≤ m(λ)I (Sn ≥ nβ)exp

⎡

⎣−nJ (β)−
n−2∑

j=0

Dj+1
(
Xj+1,Wj

)

2(n− j)

⎤

⎦
(

n− τ (n) +1

n

)1/2

.

The result then follows. ��
Recall that we use Ẽ (·) to denote the change of measure induced by Algorithm

1. The previous proposition indicates that

ẼY
p
n ≤ m(λ)e−pnJ (β)

np/2
Ẽ

⎛

⎝exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

2(n− j)

⎞

⎠
(
n− τ (n) +1

)p/2

⎞

⎠ .

Using the Cauchy-Schwarz inequality, we obtain

(
ẼY

p
n

)2 ≤ m(λ)e−2pnJ (β)

np
Ẽ
(
n− τ (n) +1

)p

Ẽ exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠ .

(20)

In order to verify strong efficiency of the algorithm it suffices to show that

Ẽ

⎛

⎝exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠

⎞

⎠= O (1) ,
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Ẽ
((

n− τ (n) +1
)p)= O (1)

as n ↗ ∞. We first establish the required property for Ẽ
((

n− τ (n) +1
)p)

.

Proposition 5. For any p ∈ (1,∞) we have that

sup
n≥1

Ẽ
((

n− τ (n)
)p)

< ∞.

Proof. By definition Ẽ[(n− τ (n))p] =∑n−1
k=1(n− k)pP̃ (τ (n) = k) and

P̃
(
τ (n) = k

)
≤ P̃

(
τ (n) > k −1,Wk ≥ λ

)
+ P̃

(
τ (n) > k −1,Wk ≤ 1/(n− k)1/2

)
.

Now, define the martingale difference D̃j = (Wj −Wj−1
)× I

(
τ (n) > j −1

)
(for

1 ≤ j ≤ n−1) and note that (recall that W0 = β)

P̃
(
τ (n) > k −1,Wk ≥ λ

)
= P̃

⎛

⎝τ (n) > k −1,

k∑

j=1

D̃j ≥ λ−β

⎞

⎠ ,

P̃
(
τ (n) > k −1,Wk ≤ (n− k)−1/2

)
= P̃

⎛

⎝τ (n) > k −1,

k∑

j=1

D̃j ≤ (n− k)−1/2 −β

⎞

⎠ .

We will show that there exists a constant m1 ∈ (0,∞) such that

P̃

⎛

⎝
k∑

j=1

D̃j ≥ λ−β

⎞

⎠≤ m1 exp
(−(n− k)1/3) . (21)

To see this, note that given Wk−1 = wk−1 we can write

D̃k =
(

wk−1 −Xk

n− k

)
I (τ (n) > k −1).

Thus, if η ∈ (0,∞) then Ẽ
(

exp
(
ηD̃k

)∣∣
∣D̃1, ..., D̃k−1

)
= exp

(
χk

( η
n−k

))
, where

χk

(
η

n− k

)
= ηwk−1I

(
τ (n) > k −1

)

n− k

+ψ

(
−ηI

(
τ (n) > k −1

)

n− k
+ θk−1

)

−ψ (θk−1) .

If η = (n − k)1/3, then because τ (n) > k − 1 (which implies Wk−1 ∈ (1/(n −
k)1/2,λ)), the smoothness of ψ , and ψ ′ (θk−1) = wk−1, we can use a Taylor ex-
pansion with remainder term to see that there exists a constant m2 (λ) ∈ (0,∞) such
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that

χk

(
η

n− k

)
≤ m2 (λ)

(n− k)4/3
.

Applying the previous considerations subsequently for j = k − 1,k − 2, ...,1 we
obtain that

Ẽ

⎛

⎝exp

⎛

⎝(n− k)1/3
k∑

j=1

D′
j

⎞

⎠

⎞

⎠≤ exp

⎛

⎝
k∑

j=1

m2 (λ)

(n− j)4/3

⎞

⎠= m1.

Chebyshev’s inequality then yields inequality (21) as indicated. A completely anal-

ogous estimate can be obtained for P̃
(∑k

j=1 D̃j ≤ (n− k)−1/2 −β
)
.

Therefore we conclude that

Ẽ
((

n− τ (n)
)p)=

n−1∑

k=1

(n− k)pP̃
(
τ (n) = k

)
≤ 2

n−1∑

k=1

(n− k)pm1 exp
(−(n− k)1/3) ,

which is clearly bounded as n ↗ ∞. ��
Finally, we turn to the remaining result required to establish strong efficiency.

Proposition 6. For each η > 0 and p > 1 we have that

sup
n≥1

Ẽ

⎛

⎝exp

⎛

⎝−p

n−2∑

j=0

ηDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠

⎞

⎠< ∞.

Proof. We have that for any η > 0, given Wj = wj , on τ (n) > j and 0 ≤ j ≤ n−2

Ẽ

(

e
− pηDj+1(Xj+1,wj )

(n−j)

∣∣
∣∣∣
X1, ...,Xj

)

= exp

(
ξj

(
− p

n− j
ηI
(
τ (n) > j

)
,wj

))
,

where ξj

(
θ,wj

)= log Ẽ exp
(
θDj+1

(
Xj+1,wj

))
.

From the definition of Dj+1, and the convexity of J (·) observe that ξj

(
θ,wj

)
<

∞ for θ < 0. Moreover, we have that ξ ′
j

(
0,wj

)= 0 and therefore on τ (n) > j (which

implies that (n− j)−1/2 ≤ wj ≤ λ) there exists m3 (λ) ∈ (0,∞) such that

ξj

(−pη

n− j

)
≤ p2η2

2(n− j)2
sup

−η/(n−j)≤θ≤0
ξ ′′
j (θ) ≤ p2η2m3 (λ)

2(n− j)2
.

Iterating the previous calculations for j = n−2,n−3, ...,0 we obtain that

Ẽ

⎛

⎝exp

⎛

⎝−p

n−2∑

j=0

ηDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠

⎞

⎠≤ exp

⎛

⎝
n−1∑

j=1

η2m3 (λ)

2(n− j)2

⎞

⎠= O (1)

as n ↗ ∞, which yields the result. ��
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Theorem 2 follows easily from the previous two propositions by recalling the
bound in display (20).

In the Introduction we emphasized the distinction between OET and the zero-
variance change of measure in the sense that the overshoot is controlled as n ↗ ∞
under the zero-variance change of measure but grows under OET. As the next result
shows, under our sampler the overshoot stays bounded in expectation.

Proposition 7.
sup
n≥1

Ẽ (|Sn −nβ|) < ∞.

Proof. We first write Ẽ |Sn −nβ| ≤ Ẽ|Sn −Sτ(n) |+ Ẽ|Sτ(n) −nβ|.
We analyze the latter term first, therefore note that

|Sτ(n) −nβ| ≤ |Sτ(n)−1 − (τ (n) −1)β|+ |Xτ(n) − (n− τ (n) +1)β|
≤ 2λ(n− τ (n) +1)+|Xτ(n) |,

where the second inequality follows from the definition of τ (n) and that λ > β. Of
course the expected value of n−τ (n) stays bounded as n ↗ ∞ thanks to Proposition
5. Therefore it remains to look at the expected value of Xτ(n) based on the value of
τ (n). In particular, we have that

Ẽ|Xτ(n) | =
n−1∑

j=0

Ẽ
(
|Xj+1|;τ (n) = j +1,τ (n) > j

)

≤
n−1∑

j=0

Ẽ
(
|Xj+1|2;τ (n) > j

)1/2
P̃
(
τ (n) = j +1

)1/2
.

It follows from steepness and the fact that τ (n) > j that there exists a constant
c0 (λ) ∈ (0,∞) such that Ẽ( |Xj+1|2 |τ (n) > j) ≤ c0 (λ).

As we established in the proof of Proposition 5, it follows that P̃ (τ (n) = j +1) ≤
m1 exp

(−(n− j)1/3
)

for some constant m1 ∈ (0,∞). Therefore, we obtain that

sup
n≥1

Ẽ|Xτ(n) | ≤ c0 (λ)1/2 m
1/2
1

∞∑

j=1

exp
(

− j1/3/2
)

< ∞ (22)

and thus, supn≥1 E
[|Sτ(n) −nβ|]< ∞.

The proof will be completed once we show that Ẽ
[|Sn −Sτ(n) |] stays bounded

with n. First, note that

Ẽ
(
|Sn −Sτ(n) |;τ (n)

0 ≤ τ
(n)
1

)
≤ (E|X1|) Ẽ(n− τ

(n)
0 ).

Observe E|X1| appears because from time τ
(n)
0 + 1 up to n the sampling is done

under the original / nominal distribution. Again we can use Proposition 5 to bound
the expectation of n− τ (n). Thus it suffices to consider
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Ẽ
(
|Sn −Sτ(n) |;τ (n)

0 > τ
(n)
1

)
.

Let us define,

μ(W
τ

(n)
1

)= Ẽ
(∣∣∣X

τ
(n)
1 +1

∣∣∣
∣∣W0, ...,Wτ

(n)
1

,τ
(n)
1

)
=
∫ ∞

−∞
|x|exp

(
θ
τ

(n)
1

x −ψ
(
θ
τ

(n)
1

))
dF(x).

Using the triangle inequality, conditioning and Cauchy-Schwarz we get the follow-
ing,

Ẽ
(
|Sn −Sτ(n) |;τ (n)

1 < τ
(n)
0

)
≤ Ẽ

⎛

⎜
⎝

n∑

j=τ
(n)
1 +1

∣∣Xj

∣∣ ;τ (n)
1 < τ

(n)
0

⎞

⎟
⎠

≤
n−1∑

k=1

n∑

j=k+1

Ẽ
(∣∣Xj

∣∣ ;τ (n)
1 = k

)
≤

n−1∑

k=1

(n− k)Ẽ
(
μ(W

τ
(n)
1

);τ (n)
1 = k

)

≤ Ẽ
(
μ(W

τ
(n)
1

)2
)1/2 n−1∑

k=1

(n− k)
(
P̃
(
τ

(n)
1 = k

))1/2
.

As we noted before, from the proof of Proposition 5, it follows that

sup
n≥1

n−1∑

k=1

(n− k)P̃
(
τ

(n)
1 = k

)1/2
< ∞.

It now remains to show that Ẽ(μ(W
τ

(n)
1

)2) stays bounded as n goes to infinity. Notice

that 0 ≤ W
τ

(n)
1

≤ 2λ+|X
τ

(n)
1

|. A similar analysis behind Eq. (22) then allows us to

conclude
sup
n≥1

Ẽ(W
τ

(n)
1

)2 < ∞. (23)

Observe that W
τ

(n)
1

= ∫∞
−∞ x exp[θ

τ
(n)
1

x −ψ(θ
τ

(n)
1

)]dF(x) therefore

μ
(
W

τ
(n)
1

)
= W

τ
(n)
1

+2
∫ 0

−∞
|x|exp

(
θ
τ

(n)
1

x −ψ
(
θ
τ

(n)
1

))
dF(x)

≤ W
τ

(n)
1

+2
∫ 0

−∞
|x|exp

(
−ψ

(
θ
τ

(n)
1

))
dF(x).

Due to strict convexity, the fact that ψ (0) = 0, and ψ ′ (0) = 0 we have that ψ (θ) ≥ 0
for θ ≥ 0, thus

μ(W
τ

(n)
1

) ≤ W
τ

(n)
1

+2E|X1|.
The proof is completed by combining the bound in the previous display with the

result from (23). ��
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5 The Multidimensional Case

A vector x ∈ Rd is always assumed to be a column vector, and we denote its trans-
pose by xT . Therefore the inner product of two vectors x,y is denoted by xT y. The
Hessian matrix of a function f : R

d → R is denoted by D2f . In this section we
impose the following assumptions:

[i]
(
X̃j : j ≥ 1

)
is a sequence of iid d-dimensional random vectors with mean

zero and continuous distribution.
[ii] Let A be a closed convex set for which 0 /∈ A.
[iii] Given φ ∈ R

d define �(φ) = logE exp
(
φT X̃j

)
, put I (z) = maxφ∈Rd (φT z−

�(φ)) and suppose that there exists ξ∗ ∈ A and φ∗ ∈ R
d such that

I (ξ∗) = φT∗ ξ∗ −�(φ∗) = inf
z∈A

I (z) . (24)

[iv] Assume there is a local change of coordinates T : R
d−1 ⊃ U → ∂A (where

U is an open set) so that the Hessian of I ◦T is well defined and positive definite at
T −1(ξ∗), see [1] for details.

[v] Define Xj = φT∗ X̃j and put ψ (θ) = logE exp
(
θXj

)
for θ ∈ R. Suppose that

ψ (·) satisfies Assumptions ii) and iii) from Section 2.
Assumption [iv] in particular requires ∂A to be twice continuously differentiable

at ξ∗. The geometric interpretation, explained in [9] and [1], is that the boundary of
∂A must be more flat than the level curve of I corresponding to the value I (ξ∗) at
ξ∗. If assumption [iv] is violated then our algorithm is still logarithmically efficient.
However, the relative error will grow at a polynomial rate which can be shown to be
not larger than that of OET.

Analogous to the one-dimensional setting we define the exponential family
(F̃φ : φ ∈ R

d) generated by the distribution F̃ (·) = P(X̃ ≤ ·) (inequality is taken
componentwise)

dF̃φ = exp
(
φT x −�(φ)

)
dF̃ .

Note that by the definition of φ∗ and ξ∗,

ξ∗ = E
[
X̃ exp

(
φT∗ X̃

)]

E
[
exp
(
φT∗ X̃

)] and thus φT∗ ξ∗ = E
[
φT∗ X̃ exp

(
φT∗ X̃

)]

E
[
exp
(
φT∗ X̃

)] .

We define β = φT∗ ξ∗ and use exactly the same notation as in Section 2 in the
context of equations (3), (1) and (2). So, we see that θβ = 1 and J (β) = I (ξ∗).
Moreover, since the analysis of the estimator will be reduced to the one dimensional
setting taking advantage of the random variables Xj ’s defined in Assumption [iv],
we also refer the reader to the definitions of Wj , the associated stopping time τ (n),
the change of measure θj and the likelihood ratio in equations (11), (7), (8) and (9).

Under Assumptions [i] to [v] we shall develop a strongly efficient estimator for

computing P
(
S̃n/n ∈ A

)
as n ↗ ∞ where S̃n = X̃1 + ...+ X̃n. First, let us recall

the following result from [9].
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Theorem 3. Under Assumptions [i] to [iv] there exists a constant c (A) such that

P
(
S̃n/n ∈ A

)∼ c (A)

n1/2
exp(−nJ (β)) (25)

as n ↗ ∞.

The previous result allows us to reduce, under assumptions [i] to [v], the multi-
dimensional case problem to the one dimensional case studied in Sections 3 and 4.
Note that Assumptions [ii] and [iv] are particularly important because they ensures
that the premultiplying constant in (25) is c (A)/n1/2 (i.e. the same order as in the
one dimensional case). The premultiplying factor can in fact take the form c(A)nγ

for −∞ < γ ≤ (d − 2)/2. Only with Assumptions [ii] and [iv] are we assured that
γ = −1/2, [9] addresses the issue of identifying γ for smooth Borel subsets of Rd .
If γ = 1/2 then modulo constants P(S̃n ∈ nA) behaves like P(Sn ≥ nβ). In order
for that to occur one must ensure that the boundary of A does not curve away too
sharply from the level set of I at the dominating point ξ∗, Assumption [iv] ensures
that the curvature of A with respect to I is sufficiently small.

We now provide an explicit description of the proposed algorithm.
Algorithm 2

Set w = β = φT∗ ξ∗ > 0, L = 1, s = 0, s̄ = 0, k = 0, and λ a large positive constant.
Repeat STEP 1 until n = k OR w ≤ (n− k)−1/2 OR w ≥ λ.

STEP 1: Sample X̃ from F̃θwφ∗ and set

L ←− exp
(−θwφT∗ X̃ +ψ (θw)

)
L,

s ←− s +X,

k ←− k +1,

w ←− (nβ −φT∗ s
)
/(n− k).

STEP 2: If k < n sample X̃k+1, ..., X̃n iid rv’s from F̃θwφ∗ and set

s̄ ←− X̃k+1 + ...+ X̃n,

L ←− exp
(−θwφT∗ s̄ + (n− k)ψ (θw)

)
L.

STEP 3: Output Zn = L× I (s + s̄ ∈ nA).

Theorem 4. Let Ẽ (·) be the expectation operator associated with the change of
measure described by Algorithm 2. Then, for each p > 1 we have

sup
n≥1

Ẽ
(
Z

p
n

)

P
(
S̃n/n ∈ A

)p < ∞.

Proof. Since I
(
S̃n ∈ nA

) ≤ I (Sn ≥ nβ) = I
(
Sn ≥ nφT∗ ξ∗

)
we obtain that the esti-

mator obtained by running Algorithm 2 is bounded by
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Yn = exp

⎛

⎝−
τ (n)−1∑

j=0

(
θjXj+1 −ψ

(
θj

))
⎞

⎠

× I (Sn ≥ nβ)exp
(
−θτ(n)

(
Sn −Sτ(n)

)+ (n− τ (n))ψ
(
θτ(n)

))
.

Therefore

sup
n≥1

ẼZ
p
n

P (S̃ ∈ nA)p
≤ sup

n≥1

ẼY
p
n

P (Sn ≥ nβ)p
sup
n≥1

P(Sn ≥ nβ)p

P (S̃ ∈ nA)p
.

The proof is completed by using Theorems 1 and 3 because supn≥1
P(Sn≥nβ)

P (S̃n∈nA)
< ∞.

��
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