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Developed by General Motors (GM), the Auto Choice Advisor website (http://www.autochoiceadvisor.com) recommends
vehicles to consumers based on their requirements and budget constraints. Through the website, GM has access to large
quantities of data that reflect consumer preferences. Motivated by the availability of such data, we formulate a nonparametric
approach to multiproduct pricing.

We consider a class of models of consumer purchasing behavior, each of which relates observed data on a consumer’s
requirements and budget constraint to subsequent purchasing tendencies. To price products, we aim at optimizing prices
with respect to a sample of consumer data. We offer a bound on the sample size required for the resulting prices to
be near-optimal with respect to the true distribution of consumers. The bound exhibits a dependence of O�n logn� on
the number n of products being priced, showing that—in terms of sample complexity—the approach is scalable to large
numbers of products.

With regards to computational complexity, we establish that computing optimal prices with respect to a sample of
consumer data is NP-complete in the strong sense. However, when prices are constrained by a price ladder—an ordering
of prices defined prior to price determination—the problem becomes one of maximizing a supermodular function with
real-valued variables. It is not yet known whether this problem is NP-hard. We provide a heuristic for our price-ladder-
constrained problem, together with encouraging computational results.

Finally, we apply our approach to a data set from the Auto Choice Advisor website. Our analysis provides insights into
the current pricing policy at GM and suggests enhancements that may lead to a more effective pricing strategy.
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1. Introduction
Availability of data on consumer preferences, together with
sophisticated analytical tools, enables increases in profit
through optimization of prices. In addition to airlines and
hotels, which have been traditional users of revenue man-
agement (McGill and Van Ryzin 1999, Weatherford and
Bodily 1992), many companies in retail and manufactur-
ing have started to employ advanced pricing strategies to
increase their bottom lines.

By identifying product features for which consumers
are willing to pay a premium, Ford has developed a pric-
ing strategy that encourages consumers to purchase more
expensive vehicles, resulting in a significant increase in
profit (Coy 2000). Dell uses a sophisticated pricing strat-
egy, quoting different prices to different market segments
for the same product. This strategy enables Dell to increase
its market share and profitability (McWilliams 2001). Using
pricing optimization software, ShopKo Stores identifies an
optimal markdown strategy for selling its line of nylon
track pants, enabling it to clear out its inventory by the
end of the selling season while maintaining a high profit

margin. The company has successfully applied the same
technology to other products as well (Merrick 2001).

In this paper, we develop a new approach to price
optimization that leverages data collected through opera-
tion of a website that hosts a “product recommendation
engine.” Our work is motivated by the availability of data
from the Auto Choice Advisor (ACA) website (http://www.
autochoiceadvisor.com) and an aim towards optimization of
General Motors (GM) vehicle prices. Developed by GM,
the ACA website recommends vehicles to consumers based
on their requirements and budget constraints. Through the
website, GM has access to large quantities of data that
reflect consumer preferences.

Table 1 provides an example of a record generated during
a visit to the ACA website. The system records a budget
and a list of recommended vehicles for each visitor. The
visitor specifies her budget explicitly. The list of vehicles
is generated based on requirements elicited by the website.
The vehicles in the list are ranked based on how well each
matches the visitor’s requirements, with the Honda Accord
Value Sedan being the best match in this example. Note that
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Table 1. An example of consumer preference data
collected by the ACA website.

Budget Recommended vehicles Rank

$18,000 Honda Accord Value Sedan 1st
Saturn L100 (GM) 2nd
Dodge Stratus SXT Sedan 3rd
Chevrolet Malibu Sedan (GM) 4th
Mitsubishi Lancer LS 5th

the website recommends vehicles with prices exceeding the
budget, provided that the vehicles meet other requirements.

The large quantities of data being generated by the ACA
website may offer an improved understanding of consumer
preferences, and thereby create an opportunity for GM to
increase profit by adjusting vehicle prices. In this paper, we
explore an approach to tapping this value.

1.1. Problem Formulation

We consider a market with N competing products. Our
objective is to set prices of n � N of the products, given
that the other N −n product prices remain fixed. We index
the former set of products by A= �1� 	 	 	 � n
 and the latter
by Ā= �n+ 1� 	 	 	 �N 
. The set A represents our products,
whereas Ā represents products offered by competitors. We
assume that the prices of competitors’ products are fixed at
dn+1� 	 	 	 � dN .

Information about a consumer is represented by a profile
�= �b�Z�, where b ∈�+ denotes the consumer’s budget,
and Z = �z1� 	 	 	 � z�� denotes the ordered list of recom-
mended products. We denote by � the set of all possible
consumer profiles and by � the Borel �-algebra generated
by this set. Let � be the probability distribution such that
if a consumer is selected uniformly at random from the set
of all consumers in the world, the probability that her pro-
file � is in a set X ∈ � is ��X�. We make the following
assumption on the distribution �.

Assumption 1.1. There exists B <� such that ��� ∈��
b� B
= 1.

We denote the vector of our product prices by p ∈�n
+.

We will model each consumer’s purchasing decision as
depending only on her profile � and the product prices p.
This purchasing behavior is captured by a choice func-
tion C� �n

+ ×�→ �0
 ∪ A ∪ Ā, where 0 denotes a deci-
sion to purchase no product. In particular, given prices p,
a consumer with profile � is assumed to purchase prod-
uct C�p���. For convenience, let p0 = 0, representing the
price of no purchase. Thus, the price paid by the consumer
can be written as pC�p��� if C�p��� ∈ �0
∪A, or dC�p��� if
C�p��� ∈ Ā.

The revenue we receive from a consumer with profile �
is denoted by

R�p���=


pC�p��� if C�p��� ∈A�
0 otherwise	

Our objective is to set prices of our products to maximize
expected revenue

p∗ ∈ argmax
p∈�n+

E�R�p����� (1.1)

where the expectation is taken with respect to �. We will
assume knowledge of the revenue function R, but not the
distribution �. As such, we cannot compute the expecta-
tion. Instead, we will make use of a set of sample customer
profiles �1� 	 	 	 ��M , and aim at setting prices to maximize
a sample estimate of the expectation:

�pM ∈ argmax
p∈�n+

1
M

M∑
j=1

R�p��j�	 (1.2)

In the following sections, we analyze the sample and com-
putational complexity of the proposed approach. In par-
ticular, we place a bound on the number M of samples
required, under certain assumptions, for �pM to nearly opti-
mize E�R�p���� and the computation required to accom-
plish this.

We impose three requirements on the choice function.
First, we assume that if a consumer makes a purchase, the
product is from her recommended list and priced under her
budget.

Assumption 1.2. For all p ∈ �n
+ and � = �b�Z� ∈ �,

C�p��� ∈ �0
 ∪ Z. Moreover, pC�p��� � b if C�p��� ∈
�0
∪A and dC�p��� � b if C�p��� ∈ Ā.

It follows from Assumptions 1.1 and 1.2 that to find the
optimal prices for our products, it suffices to consider only
price vectors in �0�B�n.

We make the following assumption on the choice func-
tion to ensure that R��� ·� is upper semicontinuous for each
� ∈ �, and therefore, that the maxima in (1.1) and (1.2)
are attained in �0�B�n.

Assumption 1.3. For all � ∈ �, the set
⋃

i∈A�p ∈
�n
+� C�p���= i� pi �  
 is closed for all  ∈�.

In words, the assumption is that the set of price vectors
resulting in a selection from among our products forms a
closed subset. Note that

⋃
i∈A�p ∈ �n

+� C�p��� = i� pi �
 
 is the set of prices that will lead to a selection from our
products and yield a revenue of at least  . In general, each
individual set �p ∈ �n

+� C�p��� = i� pi �  
 will not be
closed. However, we only require that the union of these
sets be closed.

For any two vectors x� y ∈�n, we write x∼ y if the ele-
ments of the two vectors share a common ordering; i.e., if
for all i, j , xi � xj implies yi � yj . The following assump-
tion allows for increasing prices of our unchosen products
and, within limits, the chosen product, without changing
the consumer’s choice. Note that 1�·� denotes an indica-
tor function that takes the value 1 if the condition in the
parentheses is true, and 0 otherwise.
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Assumption 1.4. For all � = �b�Z� ∈ � and p�p′ ∈ �n
+

such that p∼ p′ and p� p′, if 1�C�p��� ∈A�p′C�p��� � b,
then C�p′���=C�p���.

To interpret this assumption, first consider increases in
prices of unchosen products. These increases should not
make them any more desirable, and therefore they should
remain unchosen. For the chosen product, if R���p�= b,
then the assumption does not allow for a price increase.
However, when R���p� < b, there is some slack and the
price of the chosen product can be increased without chang-
ing its chosen status.

The following examples demonstrate that choice func-
tions of practical interest satisfy Assumptions 1.2–1.4.

Example 1.1 (The Rank Pricing Model). For any p ∈
�n
+, � = �b�Z� ∈�, let CRANK�p��� denote the highest-

ranked product in Z that meets the consumer’s budget.
Recall that the list Z = �z1� z2� 	 	 	 � z�� is sorted by the
degree to which each product matches the consumer’s
requirements, with z1 representing the highest-ranked
product.

The RANK PRICING Model leverages the special
ranked-list structure of our data set, and it will be the pri-
mary model that we will use to test the performance of our
algorithms in §5.

Clearly, CRANK satisfies Assumption 1.2. Moreover, as
product prices increase, the set of affordable products gets
smaller. So, if the original selection by the consumer
remains affordable, the same product will continue to have
the highest rank because the rank is independent of price.
Thus, this choice function also satisfies Assumption 1.4.

It remains to show that CRANK satisfies Assumption 1.3.
Fix � = �b�Z� ∈ � and  ∈ �. We wish to show that⋃

i∈A�p ∈ �n
+� C

RANK�p��� = i� pi �  
 is a closed sub-
set of �n

+. By relabeling if necessary, we may assume that
Z = �i1� i2� 	 	 	 � ik�. In addition, we can assume that  � b;
otherwise, the result is trivially true.

We will now show that it suffices to consider the case
when Z contains only our products, i.e., im ∈ A for all
m= 1�2� 	 	 	 � k. Because competitors’ prices remain fixed,
we can first eliminate all competitors’ products with prices
higher than b. Then, let l denote the smallest integer such
that il represents a competitors’ product with price under b.
If no such l exists, we are done. Otherwise, we can remove
all products il+1� 	 	 	 � ik because the consumer will never
purchase them. We can also effectively remove il because
it will not impact the set of prices leading to a selection of
our products. Thus, in every case, we can eliminate all com-
petitors’ products from our consideration. Note that when
l= 1, the set Z is effectively an empty set.

Under the RANK PRICING Model, the consumer will
choose im ∈Z if and only if its price is under the budget b
and the prices of the first m−1 products exceed b, i.e., for
all m= 1� 	 	 	 � k,

�p ∈�n
+� C

RANK�p���= im


= �p ∈�n
+� pim � b <min�pi1� 	 	 	 � pim−1



	

Let D1 = �p ∈ �n
+�  � pi1 � b
, and for m = 2� 	 	 	 � k,

let Dm be defined by

Dm = �p ∈�n
+�  � pim � b <min�pi1� 	 	 	 � pim−1



	

Note that the closure of Dm, denoted by �Dm, is given by

�Dm = �p ∈�n
+�  � pim � b�min�pi1� 	 	 	 � pim−1



	

It follows from the definition of Dm that

k⋃
m=1

Dm =
⋃
i∈A
�p ∈�n

+� C
RANK�p���= i� pi �  
	

Thus, it suffices to show that
⋃k

m=1Dm is a closed set. To
prove this result, we will show by induction that

k⋃
m=1

Dm =
k⋃

m=1

�Dm	

Clearly, this is true for k= 1 because D1 is closed by defi-
nition. Suppose that for � < k,

�⋃
m=1

Dm =
�⋃

m=1

�Dm	

By definition, we have

�D�+1\D�+1

= �p ∈�n
+�  � pi�+1

� b=min�pi1� 	 	 	 � pi�



⊆ �p ∈�n
+� b=min�pi1� 	 	 	 � pi�



=
�⋃

m=1

�p ∈�n
+� pim = b�min�pis � s �=m� 1� s � �



⊆
�⋃

m=1

�p ∈�n
+� pim = b�min�pi1� pi2� 	 	 	 � pim−1





⊆
�⋃

m=1

�Dm�

where the last inequality follows from the definition of �Dm.
Thus, it follows that

�D�+1 ∪
( �⋃
m=1

�Dm

)
=D�+1 ∪

( �⋃
m=1

�Dm

)
=

�+1⋃
m=1

Dm�

where the last equality follows from the inductive assump-
tion. This completes the proof. �

Example 1.2 (The Min Pricing Model). For any p ∈
�n
+, � = �b�Z� ∈ �, let C�p��� denote the cheapest

product in Z that meets the budget constraint b. The MIN
PRICING Model clearly satisfies Assumption 1.2.

Unfortunately, the MIN PRICING Model does not sat-
isfy Assumption 1.4, because the consumer’s selection may
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change from our products to the competitors’ as the prices
of our products increase.

Nonetheless, by removing the competitors’ products, we
can convert the MIN PRICING Model to an equivalent
one that satisfies Assumption 1.4. Consider any consumer
with a profile � = �b�Z�. Let u��� denote the price of
the cheapest competitors’ product in Z. If Z contains no
competitors’ product, we set u��� to b, i.e.,

u���=
{

min�di� i ∈Z ∩ Ā
 if Z ∩ Ā �= ��
b otherwise.

Because the competitors’ prices remained fixed, the con-
sumer will purchase our products if and only if our price
beats u���. Thus, for the purpose of optimizing the total
revenue from each consumer, we can remove all competi-
tors’ products from the profile �, provided that we replace
the budget b by min�b�u���
.

Once the competitors’ products are removed, the MIN
PRICING Model satisfies Assumption 1.4 because for any
two price vectors that have the same ordering, they both
have the same cheapest product.

Finally, using the same argument as in Example 1.1,
we can also show that the MIN PRICING Model satisfies
Assumption 1.3.

1.2. Literature Review

Our research contributes to the literature on multiproduct
pricing by identifying a new nonparametric formulation
that is motivated by consumer preference data collected
from the ACA website. To put our results in perspective,
let us briefly review related research in this area.

The literature on multiproduct pricing focuses on under-
standing interactions and substitutions among products,
and finding the prices that maximize profit in light of
these interdependencies and consumer preferences. Shocker
and Srinivasan (1979) and Sen (1982) provide reviews of
research in this area.

A dividing line separates research on modeling of
demand processes into two categories. One approach
involves postulating a demand function, which is taken to
be a function of price and product attributes. Such for-
mulations facilitate the study of how prices and attributes
influence sales. Most results revolve around the case of a
single differentiating attribute, such as a metric of quality.
Examples include the work of Smith (1986) and Oren et al.
(1984).

In each of the cases we have mentioned, a specific para-
metric form is imposed to model a demand process. There
is also research aimed at developing a general theory (Oren
et al. 1987), but to apply a theory of multiproduct pric-
ing in practice, a specific functional form is again required.
Selecting the appropriate parametric form—one that mod-
els salient features of the true demand function, yet is
simple enough to allow efficient computation—remains a
challenge.

Our nonparametric formulation relates closely to a seg-
ment of the literature that focuses on modeling consumer
purchasing behavior and on finding the optimal prices give
such models. In this line of research, each consumer asso-
ciates a utility with each product, and she will choose the
product that maximizes her utility subject to her budget
constraint (Mirman and Sibley 1980, Spence 1980). Given
the utility values, pricing problems are then formulated as
mixed-integer programming problems (Dobson and Kalish
1988, 1993; Green and Krieger 1985; Hanson and Martin
1990; McBride and Zufryden 1988). The integer program-
ming formulation is quite flexible, allowing for a wide
range of constraints. However, the integer programming
problems are NP-complete.

Our research revolves around a new kind of assump-
tions on consumer preferences, motivated by data from
the ACA website. We identify a class of relevant prob-
lems by imposing a constraint on the ordering of prices.
For each model of consumer behavior, we then develop an
efficient algorithm that computes approximately revenue-
maximizing prices based on the data.

In addition to providing a new formulation of multiprod-
uct pricing, our work is the first, to the best of our knowl-
edge, that focuses on consumer preference data collected
from e-commerce websites. Approaches to multiproduct
pricing generally assume that data on consumer preferences
are gathered through market research or conjoint analysis
(Dobson and Kalish 1988, 1993; McBride and Zufryden
1988). These methods of acquiring data are often expensive
and time consuming, limiting the size of the data set.

Through e-commerce websites, we can obtain preference
information on a large number of consumers. Thus, online
consumer preference data provides us with new opportu-
nities to understand consumer behavior and to customize
our product prices to meet consumer needs. Our research
identifies opportunities and challenges in using such data,
and suggests changes in the design of e-commerce websites
that may facilitate a more effective analysis of the data.

1.3. Contributions and Organization

Motivated by the availability of data on consumer prefer-
ences from e-commerce websites, this paper presents a non-
parametric formulation of multiproduct pricing. We offer
an original algorithm for solving a large class of problems.
We prove new theoretical results about the algorithm and
formulation. Finally, we present a case study using a real
data set generated from an e-commerce website of a large
automobile manufacturer. In this section, we discuss the
organization of the paper, and in doing so, we lay out the
algorithms, theory, and experimental results that make up
our contributions.

Our approach optimizes product prices based on data.
However, the data represent only a sample of all con-
sumers. To ensure that we have enough data for meaning-
ful optimization, we study sample size requirements in §2.
It turns out that the required number of samples exhibits
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a dependence of O�n logn� on the number of products n.
This suggests that our approach is scalable to problems
involving large numbers of products.

Section 3 assesses the computational complexity of our
optimization problem, showing that it is NP-complete in
the strong sense. Motivated by this result, we identify a
restricted class of problems by imposing a price ladder—
an ordering of prices—as a constraint in our optimization
process. The relevance of such a constrained model is moti-
vated by examples from the automotive industry. When this
constraint is imposed, our optimization problem becomes a
special case of supermodular function maximization. It is
not known whether this class of problems is NP-hard. Sec-
tion 4 presents a heuristic algorithm for our price-ladder-
constrained optimization problem.

In §5, we apply our algorithm to a real data set from the
ACA website, focusing on the RANK PRICING Model.
We provide additional background on the ACA website,
and contrast our approach with the current pricing method-
ology employed at GM. Our analysis provides insights into
the current pricing practice, and suggests improvements
that may lead to a more effective pricing strategy. Finally,
§6 presents our conclusions and discusses potential future
research.

2. Sample Complexity
Our formulation computes prices based on data. The data
represent only a sample of all consumers. For the results
to be meaningful, we need a sufficiently large sample size.
However, for our approach to be practical, the required
sample size must scale well with the number of prod-
ucts. We will show that the number of required samples is
O�n logn�, where n denotes the number of products. More-
over, this sample complexity bound is independent of the
underlying distribution from which the data is generated.

To prove this result, we will first establish an upper
bound on the covering number of the set of functions map-
ping consumer profiles to revenue, each element of the set
being identified by a price vector.

2.1. Covering Numbers of Revenue Functions

Consider a normed space �X��·��. An )-cover of a set
S ⊆X is a set T ⊆ X such that for each x ∈ S there
exists a y ∈ T with �x − y� < ). The )-covering number
N�)�S��·�� is the cardinality of the smallest )-cover of S.

Recall that � denotes the set of all possible consumer
profiles and � denotes the Borel �-algebra generated by
this set. For any probability measure , on the measurable
space �����, we define an L1 norm �·�1�, on the space of
�-measurable functions as follows:

�f �1�, =
∫
�f �y��,�dy�	

Let � = �R�p� ·� � p ∈ �0�B�n
 denote a collection of
revenue functions indexed by p ∈ �0�B�n. Recall that for

any p ∈ �0�B�n and � ∈�, R�p��� denotes that revenue
that is generated from a consumer with a profile � under
a price vector p. The following theorem provides an upper
bound on the covering number of � .

Theorem 2.1. Under Assumptions 1.2 and 1.4, for any
probability measure , on �����, and ) ∈ �0�B�,

� �)�� ��·�1�,��

(
2B�n+ 2�

)

)n

	

Proof. We begin by defining a set of U ⊂ �0�B� for which
T = �R�p� ·� � p ∈Un
 constitutes an )-cover of � . Let

U1 =
{
k
)

2

∣∣∣k= 0�1� 	 	 	 �
⌊

2B
)

⌋}
∪ �B
	

Note that this is simply a uniformly spaced grid. Define a
distribution function F � �+ → �0�1� as follows:

F �1�=,���= �b�Z� ∈� � b� 1
� ∀1� 0�

and let U2 ⊂ �0�B� be defined by

U2 =
{
F −1

(
k
)

2Bn

)∣∣∣k= 1� 	 	 	 �
⌊

2Bn
)

⌋}
�

where F −1� �=max�1 � F �1��  
 represents an inverse
of F . Note that F and F −1 are both nonincreasing func-
tions. The set U2 can be thought of as a grid that becomes
uniformly spaced when mapped to cumulative probabilities.

Let U =U1 ∪U2. Note that

�U ��
⌊

2B
)

⌋
+ 2+

⌊
2Bn
)

⌋
�

2B�n+ 2�
)

�

where the last inequality follows from the fact that ) < B.
The resulting set T has a cardinality

�T ��
(

2B�n+ 2�
)

)n

	

We now set out to establish that T constitutes an )-cover
of � . Consider an arbitrary vector p ∈ �0�B�n. Let �pi =
min�u ∈ U � u � pi
 for i = 1� 	 	 	 � n. Note that �pi is well
defined because B ∈ U . We will show that �R�p� ·� −
R� �p� ·��1�, < ), and the fact that T is an )-cover follows
from this. Note that by our construction of U , for all i ∈A,

�pi− �pi�<
)

2
and �F �pi�− F � �pi���

)

2Bn
	

For any i= �0
∪A∪ Ā, let Si denote the set of customer
profiles that will lead to a selection of product i under the
price vector p, i.e.,

Si = �� ∈�� C�p���= i
	

Note that the sets Si form a partition of �.
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Because p� �p and both p and �p have the same ordering,
it follows from Assumption 1.4 that for any i ∈ �0
∪ Ā and
� ∈ Si,

0=R�p���=R� �p����

which implies that

�R�p� ·�−R� �p� ·��1�, =
∑
i∈A

∫
Si

�R�p���−R� �p����,�d��	

For i ∈ A, let us partition the set Si into two parts: S1
i

and S2
i , where

S1
i =��∈Si� �pC�p����b
 and S2

i =��∈Si� �pC�p���>b
	

It follows from Assumption 1.4 once again that C�p���=
C� �p��� for all � ∈ S1

i . Thus, for any � ∈ S1
i ,

�R�p���−R� �p���� = �pi− �pi�<
)

2
�

which implies that

∑
i∈A

∫
S1
i

�R�p���−R� �p����,�d��

<
)

2

∑
i∈A
,�S1

i �=
)

2
,
(∪S1

i

)
�
)

2
�

where the equality follows from the fact that Si is disjoint.
Consider any � ∈ S2

i . By definition, we have pi � b < p̂i,
which implies that

,�S2
i ��,���� pi � b < �pi
�= F �pi�− F � �pi��

)

2Bn
	

Thus,

∑
i∈A

∫
S2
i

�R�p���−R� �p����,�d��� B
∑
i∈A
,�S2

i ��
)

2
�

where the first inequality follows from the fact that
�R�p��� − R� �p���� � B, and the last inequality follows
from the fact that A = �1�2� 	 	 	 � n
. Putting everything
together, we have

�R�p� ·�−R� �p� ·��1�,

=∑
i∈A

∫
Si

�R�p���−R� �p����,�d�� < )

2
+ )

2
= )	 �

2.2. Sample Complexity for Pricing Problems

Recall that we want to find

p∗ ∈ argmax
p∈�0�B�n

E��R�p�����

where the expectation is taken with respect to the
distribution �. Because � is not known explicitly, we

draw independent samples �1� 	 	 	 ��M according to �, and
instead compute

�pM ∈ argmax
p∈�0�B�n

1
M

M∑
j=1

R�p��j�	

We hope that the expected revenue under �pM ,

E��R� �pM�����
would be close to the optimal expected revenue,

E��R�p
∗�����

for a sufficiently large sample size M .
The following theorem relates covering numbers to rates

of uniform convergence. This result is adapted from Corol-
lary 1 in Haussler (1992).

Theorem 2.2. Consider the probability space �������.
Let �1� 	 	 	 ��M ∈ � be drawn independently according
to �. Let � be any set of �-measurable functions from �
to �0�B�. Then, for any ) ∈ �0�B�,
Pr
{
sup
f∈�

∣∣∣∣E��f �−
1
M

M∑
j=1

f ��j�

∣∣∣∣> )

}

� 4 sup
,

�

(
)

16
�� ��·�1�,

)
e−)

2M/128B2
�

where E��f �=
∫
f �y���dy� denotes the expectation of f

under the probability measure �, and , denotes an arbi-
trary probability measure on the measurable space �����.

The following theorem is an immediate corollary of The-
orems 2.1 and 2.2. The proof of this result is given in
Appendix A.

Theorem 2.3. Under Assumptions 1.1–1.4, for any 0 <
5< 1, 0< ) <B, if

M �
128B2

)2

(
ln

4
5
+ n ln

2B
)
+ n ln�n+ 2�

)
�

then

Pr��E��R�p
∗����−E��R� �pM�����> 2)
� 5

and

Pr
{∣∣∣∣E��R�p

∗����− 1
M

M∑
j=1

R� �pM��j�

∣∣∣∣> )

}
� 5	

The above result shows that the number of required sam-
ples increases with the number of products at the rate of
O�n lnn�. For a sufficiently large sample size M , the above
theorem also shows that the expected revenue under �pM is
close to the optimal expected revenue. This result implies
that our pricing policy �pM , which is computed from the
samples, when applied to the general population would per-
form well relative to the optimal policy p∗.

In addition to showing that the price vector �pM performs
well relative to the optimal vector p∗, it follows from The-
orem 2.3 that the optimal expected revenue is close to the
sample average revenue, �1/M�

∑M
j=1R� �pM��j�, for a suf-

ficiently large sample size M . Because we can compute the
sample average revenue, this result provides us with infor-
mation on the magnitude of the optimal expected revenue.
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3. Computational Complexity
Let �+ denote the set of nonnegative integers. The com-
putational problem we would like to solve is captured for-
mally by:

GENERAL PRICING
Instance:
• Finite sets of products A= �1� 	 	 	 � n
 and Ā= �n+1�

	 	 	 �N 
.
• Prices of competitor products dn+1� 	 	 	 � dN .
• A maximum budget B ∈�+.
• A revenue function R that is based on a choice func-

tion that satisfies Assumptions 1.2–1.4 and that can be eval-
uated in polynomial time.
• A set � = ��1� 	 	 	 ��M
, where �j = �bj�Zj�, bj ∈

�+, bj � B, and Zj is an ordered list of products in A∪ Ā.
Problem: Find a price vector

�pM ∈ argmax
p∈�0�B�n

M∑
j=1

R�p��j�	

In this section, we establish that GENERAL PRICING is
NP-complete in the strong sense. Therefore, unless P=NP,
there is no pseudopolynomial-time algorithm—that is, an
algorithm with a run time polynomial in N , M , and B—that
computes �pM .

In an effort to avoid dealing with an NP-complete prob-
lem, we consider in §3.2 modifying the formulation by
adding a price-ladder constraint. We explain why this mod-
ification results in a relevant model and discuss the new
optimization problem, which turns out to be a special case
of supermodular function maximization with real-valued
variables. Although many researchers have worked on it,
the question of whether or not supermodular function max-
imization is NP-hard remains an open problem.

3.1. NP-Completeness

As discussed in Example 1.1, for any set of competitor
products and prices, the revenue function RRANK of the
RANK PRICING Model is based on a choice function that
satisfies Assumptions 1.2–1.4. Further, it is easy to see
that RRANK can be evaluated in polynomial time. Hence,
the following computational problem is a special case of
GENERAL PRICING:

RANK PRICING
Instance:
• Finite sets of products A= �1� 	 	 	 � n
 and Ā= �n+1�

	 	 	 �N 
.
• Prices of competitor products dn+1� 	 	 	 � dN .
• A maximum budget B ∈�+.
• A set � = ��1� 	 	 	 ��M
, where �j = �bj�Zj�, bj ∈

�+, bj � B, and Zj is an ordered list of products in A∪ Ā.
Problem: Find a price vector

�pM ∈ argmax
p∈�0�B�n

M∑
j=1

RRANK�p��j�	

It is easy to see that GENERAL PRICING, and there-
fore RANK PRICING, is in NP. In this subsection, we will
establish that RANK PRICING, and therefore GENERAL
PRICING, is NP-complete in the strong sense.

Consider a class of RANK PRICING problems for
which:
• there are no competitor products,
• the maximum budget B is an integer, and
• each jth consumer’s budget bj is an integer.
Note that for each pricing problem in this specific class,

there is a vector �pM ∈ �n
+ ∩ �0�B�n that attains the maxi-

mum in

max
p∈�0�B�n

M∑
j=1

RRANK�p��j�	

Further, it is easy to obtain this integer-valued vector from
any optimal solution to the original continuous optimiza-
tion problem (in polynomial time). Hence, the optimization
problem can be replaced by

max
p∈�n+∩�0�B�n

M∑
j=1

RRANK�p��j�

without loss of generality. If this optimization problem can
be solved in polynomial time, so can the following binary
decision problem:

RANK PRICING DECISION
Instance:
• A finite set of products A= �1�2� 	 	 	 � n
.
• A maximum budget B ∈�+.
• A set � = ��1� 	 	 	 ��M
, where �j = �bj�Zj�,

bj ∈�+, bj � B, and Zj is an ordered list of products in A.
Question: Is there a price vector p ∈ �n

+ ∩ �0�B�n

such that

L�

M∑
j=1

RRANK�p��j��

where there are no competitor products?
Via a reduction from SIMPLE MAX CUT provided in

Appendix B, we obtain the following result.

Theorem 3.1. RANK PRICING DECISION is NP-com-
plete in the strong sense.

We have the following corollary.

Corollary 3.1. GENERAL PRICING and RANK PRIC-
ING are both NP-complete in the strong sense.

3.2. Price Ladders and Supermodularity

In an effort to avoid having to solve an NP-complete prob-
lem, we consider a version of GENERAL PRICING modi-
fied by introducing a price-ladder constraint—a constraint
on the ordering of prices. In particular, we will restrict the
price vector to a set �n ⊆�n

+ defined by

�n = �p ∈�n
+� p1 � p2 � · · ·� pn
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The constraint on the ordering of prices arises naturally
in many applications. In practice, marketing managers typ-
ically know the relative magnitude of the price for each
product. This knowledge comes from strategic considera-
tions, characteristics of the market for each product, and
other practical considerations. For example, a company
may offer two versions of a product: a basic model mar-
keted to a general population, and a premium version aimed
at more affluent markets. The premium model should have
a higher price than the basic model.

Price-ladder constraints occur in the automotive industry,
where a vehicle often comes with different trim packages.
For instance, consider a 2002 Saturn L-series, a compact
passenger vehicle offered by GM. The L-series comes in
three standard trim packages: L100, L200, and L300. The
L300 has more features than the L200, which in turn has
more features than the L100. In this case, the L300 should
have a higher price than the L200, whose price should
exceed that of the L100.

These examples describe a situation common to com-
panies with large product lines, suggesting the assumption
on the ordering of prices is reasonable in many settings.
With this assumption, marketing managers can influence
the optimal pricing policy by restricting the ordering among
prices of products. The restriction ensures that the price of
each product makes sense and meets other business con-
straints. In addition, we can consider multiple orderings of
the prices, with each ordering corresponding to possibly
different business constraints.

In certain situations, a natural ordering of prices may
not be available. For instance, consider a company that has
multiple product lines, and each product line has its own
price-ladder constraint. It is not clear how we can order the
prices of products from different product lines. In this case,
we can use as a starting point the ordering implied by the
current price of each product, and consider permutations of
this ordering.

Thus, we wish to solve instead the following constrained
optimization problems:

max
p∈�n

M∑
j=1

R�p��j�	

Note that �n is a sublattice of �n
+. The following lemma

identifies a special property of the revenue function when
restricted to �n.

Lemma 3.1. Consider any choice function C that satisfies
Assumptions 1.2 and 1.4 and its associated revenue func-
tion R. Then, for each � ∈ �, R�·��� is supermodular
when restricted to �n, i.e.,

R�p���+R�p′����R�p∧p′���+R�p∨p′���
∀p�p′ ∈�n� � ∈��

where p∧p′ = �p1∧p′1� 	 	 	 � pn∧p′n� and p∨p′ = �p1∨p′1�
	 	 	 � pn ∨p′n�.

Proof. Fix � ∈�. To simplify notation, for any p ∈�n,
we will denote C�p��� by C�p� and R�p��� by R�p�.
Note that p ∧ p′ � p, p′ � p ∨ p′, and all four vectors
have the same ordering. If C�p ∧ p′� ∈ �0
∪ Ā, it follows
from Assumption 1.4 that C�p ∧ p′� = C�p� = C�p′� =
C�p∨ p′�, and we are finished because the revenue under
all four price vectors will be zero.

So, suppose that C�p ∧ p′� = l ∈ A for some l. This
implies that either pl � b or p′l � b. We will consider the
case where pl � b because the proof for the case where
p′l � b is exactly the same by symmetry. Because C�p ∧
p′� = l and pl � b, it follows from Assumption 1.4 that
C�p�= l.

At this point, there are two cases to consider: p′l � b and
p′l > b.
Case 1. p′l � b. By Assumption 1.4 once again, we con-

clude that C�p′� = l as well. We also have pl ∨ p′l � b,
which implies that C�p ∨ p′�= l by Assumption 1.4, and
therefore,

l=C�p∧p′�=C�p�=C�p′�=C�p∨p′��
and we are finished because

pl+p′l = �pl ∧p′l�+ �pl ∨p′l�	
Case 2. p′l > b. In this case, we have pl � b < p′l.

Because C�p�=C�p∧p′�= l, it follows that

R�p�= pl = pl ∧p′l =R�p∧p′�	
To prove our desired result, it suffices to show that R�p′��
R�p ∨ p′�. We will prove this by showing that C�p′� =
C�p∨p′�.

Because p′1 � p′2 � · · ·� p′n and b < p′l, it follows from
Assumption 1.2 that

C�p′� ∈ �0
∪ Ā∪ �1�2� 	 	 	 � l− 1
	

If C�p′� ∈ �0
 ∪ Ā, we are finished because we would
have C�p′�= C�p ∨ p′� by Assumption 1.4. On the other
hand, if C�p′�= s ∈ �1�2� 	 	 	 � l− 1
 for some s, then we
have p′s � b. Moreover, we also have ps � pl � b, which
implies that ps ∨ p′s � b, and by Assumption 1.4, we con-
clude that C�p∨p′�= s. In all cases, we see that C�p′�=
C�p∨p′�. �

It follows from Lemma 3.1 that a function

�R�p�=
M∑
j=1

R�p��j� ∀p ∈�n�

is supermodular if the revenue function R is generated by
a choice function that satisfies Assumptions 1.2 and 1.4.
Hence, GENERAL PRICING becomes a problem of super-
modular function maximization once a price-ladder con-
straint is added. If decision variables are constrained to take
on binary values, there are polynomial-time algorithms for
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supermodular function maximization (Cunningham 1985;
Grötschel et al. 1981, 1988; Iwata et al. 2001; Schrijver
1971). The problem of optimizing supermodular functions
with real decision variables—as in our pricing problem—
has also been one of interest to the supermodular games
literature (Topkis 1998, Veinott 2002). Unfortunately, to the
best of our knowledge, it is not known whether this prob-
lem is NP-hard or whether it can be solved in polynomial
time. In the next section, we develop a heuristic algorithm
for this sort of optimization.

Because GENERAL PRICING is NP-complete without
the price-ladder constraint, we should expect that the cor-
responding objective is not supermodular. This is verified
by the following example.

Example 3.1. Consider the choice function CRANK of the
RANK PRICING Model from Example 1.1. Suppose that
A = �1�2
, Ā = �, and � = �b�Z�, with b = 3 and Z =
�1�2�. Let p = �1�5� ∈ �n and p′ = �4�2� � �n. Then,
p∧p′ = �1�2�, p∨p′ = �4�5�, and

RRANK�p���+RRANK�p′���

= 1+ 2> 1+ 0=RRANK�p∧p′���+RRANK�p∨p′���	

4. An Approximation Algorithm
In this section, we present a heuristic approximation algo-
rithm for price optimization subject to a price-ladder con-
straint, together with posterior performance bounds. Denote
the objective function by

�R�p�=
M∑
j=1

R�p��j� ∀p ∈�n	

Under Assumption 1.1, consumer budgets are bounded
by B. To find the maximum of �R, it suffices to consider
only vectors p ∈�n∩�0�B�n. Because we do not know how
to optimize the prices of all products simultaneously, our
heuristic will iteratively optimize the prices of individual
products, one at a time, while fixing the prices of others.
The heuristic will cycle through the products repeatedly.
To make this description more precise, define a function
T � �n ∩ �0�B�n→�n ∩ �0�B�n as follows:

T �p�= �T1�p�� T2�p�� 	 	 	 � Tn�p�� ∀p ∈�n ∩ �0�B�n�
where

Tn�p�= argmax
pn−1�xn

�R�p1� 	 	 	 � pn−1� xn��

and for i= n− 1� 	 	 	 �1,

Ti�p�= argmax
pi−1�xi�Ti+1�p�

�R�p1�			�pi−1�xi�Ti+1�p��			�Tn�p���

and we choose the greatest maximizer (no greater than B)
in case of ties. The function T computes the optimal price
for each product one at a time. Here, Ti�p� represents the
optimal price for the ith product, while the prices of other
products remain fixed at p1� 	 	 	 � pi−1� Ti+1�p�� 	 	 	 � Tn�p�.
The following lemma shows that T is a bounded nonde-
creasing mapping.

Lemma 4.1. For any p ∈�n ∩ �0�B�n,
0� T �p�� Be�

where e denotes the vector of all ones. Also, for any p�p′ ∈
�n ∩ �0�B�n, if p� p′, then T �p�� T �p′�.

Proof. The boundedness of T follows from the definition.
It remains to show that T is a nondecreasing mapping. Fix
p�p′ ∈�n ∩ �0�B�n with p� p′. Because �R is supermodu-
lar, p� p′, and

Tn�p�= argmax
pn−1�xn

�R�p1� 	 	 	 � pn−1� xn�

and

Tn�p
′�= argmax

p′n−1�x̄n

�R�p′1� 	 	 	 � p′n−1� x̄n��

it follows from a standard result in theory of supermod-
ular functions (Topkis 1998, Veinott 2002) that Tn�p� �
Tn�p

′�. By induction, we can show that T��p� � T��p
′�

for all �. �

Let p̄ ∈�n∩ �0�B�n denote the greatest maximizer of �R,
whose existence is ensured by the following lemma.

Lemma 4.2. Consider any choice function C that satis-
fies Assumptions 1.2–1.4 and its associated objective func-
tion �R. The set of maximizers of �R on �n ∩ �0�B�n is
a nonempty compact sublattice of �n

+ and has least and
greatest elements.

Proof. By Assumption 1.3, �R is upper semicontinuous,
and by Lemma 3.1, it is supermodular on �n ∩ �0�B�n.
Therefore, a maximizer of �R on �n ∩ �0�B�n exists, and
it follows from Topkis (1998) and Veinott (2002) that the
set of maximizers on �n ∩ �0�B�n is a nonempty closed
sublattice of �n

+. Because �n ∩ �0�B�n is nonempty and
bounded, the set of maximizers is also a nonempty com-
pact sublattice of �n

+. Therefore, it has least and greatest
elements. �

Define sequences of vectors �x�k� ∈ �n� k � 0� and
�y�k� ∈�n� k� 0� according to

x�k+1� = T �x�k�� and y�k+1� = T �y�k�� ∀k�
with x�0� = 0 and y�0� = Be. The following lemma estab-
lishes that each sequence converges to a fixed point of T .
These fixed points also provide bounds on p̄. A similar
result appears in the theory of supermodular games (Topkis
1998, Veinott 2002).

Lemma 4.3. There exist pL�pU ∈�n ∩ �0�B�n such that
lim
k→�

x�k� = pL � p̄� pU = lim
k→�

y�k�	

Moreover, both pL and pU are fixed points of T , i.e., for
p ∈ �pL�pU 
,
�R�p1� 	 	 	 � pn�

= max
pi−1�xi�pi+1

�R�p1� 	 	 	 � pi−1� xi� pi+1� 	 	 	 � pn� ∀ i	
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Proof. Boundedness of T implies that x�0� = 0 �

T �x�0��= x�1�, and it follows from the monotonicity of T
that

x�k� � x�k+1� ∀k� 0	

Thus, �x�k� ∈ �n� k � 0� is a bounded nondecreasing
sequence. Hence, it converges to a limit. A similar argu-
ment applies to the sequence �y�k� ∈�n� k � 0�. Because
x�0� � p̄ � y�0� and T �p̄�= p̄, it follows from Lemma 4.1
that pL � p̄� pU . �

The following corollary shows that for the RANK PRIC-
ING Model considered in Example 1.1, we can upper
bound the number of iterations required for convergence.

Corollary 4.1. For the RANK PRICING Model, the
sequences �x�k� ∈�n� k � 0� and �y�k� ∈�n� k � 0� con-
verge to their limits in at most nM iterations.

Proof. Because the competitors’ prices remain fixed, using
the same argument as in Example 1.1, we can assume with-
out loss of generality that each customer profile �j contains
only our products.

Let V = �bj � j = 1� 	 	 	 �M
 denote the set of consumers’
budgets. Consider any product whose price does not belong
to the set V . Under the RANK PRICING Model, we can
increase the product price to the next-highest budget in V
without sacrificing sales. Because T always chooses the
greatest maximizer, it follows that x�k�i � y

�k�
i ∈ V for all

k� 0 and i= 1� 	 	 	 � n.
In the proof of Lemma 4.3, we show that the sequence

�x�k� ∈ �n� k � 0� is nondecreasing. Thus, the value of
at least one coordinate must increase at each iteration.
Each coordinate changes its value at most M times because
�V ��M . The sequence therefore converges in at most
nM iterations. A similar argument applies to the sequence
�y�k� ∈�n� k� 0�. �

By Lemma 4.3, pL and pU bound p̄. If pL equals pU ,
then we get the optimal solution. However, we may obtain
pL < p̄ < pU , as the following example demonstrates.

Example 4.1. Consider a choice function CRANK for the
RANK PRICING Model in Example 1.1. In this example,
we have two products, A = �1�2
, Ā = �, and five cus-
tomer profiles: �j = �bj�Zj� for 1� j � 5, where

Z1 =Z2 =Z3 =Z4 =Z5 = �2�1�

for all j , and

b1 = 11� b2 = 21� b3 = 34� b4 = 44� b5 = 55	

Let �2 = �p ∈ �2
+� p1 � p2
. Table 2 shows the value of

�RRANK�bi� bj� for all �bi� bj� ∈�2. By definition, we have

RRANK�p��j�=



p2 if p2 � bj�

p1 if p1 � bj < p2

0 otherwise	

Because p1 � p2, it follows that

RRANK�p��j�=max
i=1�2

�pi1�pi � bj�
	

It follows from Table 2 that

pL = �b1� b3� < �b2� b4�= p̄ < �b3� b5�= pU 	

In our experience, the price vectors pL and pU perform
well, yielding a relatively high objective value. However,
we can increase the objective value by performing a local
search with pL as a starting point. To formalize this idea,
let w0 = pL. Because w0 = T �w0�, we will perturb w0 and
generate a new sequence by repeatedly applying the map-
ping T . Our heuristic will consider an ensemble of pertur-
bations, with each one corresponding to a small increase in
a coordinate of w0. To make this statement more precise,
let ri denote the perturbation of w0

i by some small constant
) > 0, i.e.,

ri =w0
i + ) ∀ i= 1� 	 	 	 � n�

and define wi ∈�n ∩ �0�B�n as follows:

wi
l =



w0
l if l < i�

ri if l= i�

w0
l ∨ ri if l > i	

The vector wi defines a perturbation of w0 in the ith coor-
dinate. For l > i, we require that wi

l = w0
l ∨ ri to ensure

that the perturbed vector wi maintains the same order-
ing of prices as w0. For each i, our heuristic generates a
sequence �T k�wi�� k� 0� by iteratively applying the map-
ping T . Let si denote the limit of the sequence, i.e., si =
limk→� T k�wi�. After we obtain s1� 	 	 	 � sn, we choose si

∗

such that

�R�si∗�= max
i=1�			�n

�R�si�	

If �R�si∗� > �R�w0�, we repeat the process with w0 = si
∗

as
a new starting point; otherwise, the algorithm terminates.

In general, ) can be chosen arbitrarily. However, in the
case of the RANK PRICING Model, we can design our per-
turbation mechanism that exploits its special property. Let

Table 2. Values of �RRANK�p1� p2� for Example 4.1.

�RRANK�p1� p2� b1 b2 b3 b4 b5

b1 55 95 ∗1241 121 99
b2 84 123 ∗1301 118
b3 102 122 ∗1231

b4 88 99
b5 55

1 Those pairs of �p1� p2� that correspond to either pL, p̄, or pU are
marked with an ∗.
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V = �bj � j = 1�2� 	 	 	 �M
. From the proof of Lemma 4.1,
we know that it suffices to only consider product prices that
belong to V . Thus, we can redefine ri as follows:

ri =min�v ∈ V � v >w0
i 
 ∀ i= 1� 	 	 	 � n	

In this case, ri represents the smallest budget that lies
above w0

i .
From our practical experience, the heuristic has worked

well. The sequence �T k�wi�� k � 0� converges quickly,
even though we cannot guarantee its convergence nor estab-
lish any theoretical bound on its convergence rate. The
initial choice of w0 = pL in the heuristic is somewhat arbi-
trary. Alternative starting points will lead to different per-
formance. However, w0 = pL seems to work well from our
experience, yielding a final price vector that results in high
revenue. Section 5 presents experimental results that vali-
date the performance of this methodology.

In the remainder of this section, we develop poste-
rior performance bounds for our approximation algorithm.
Let RL denote the revenue generated by pL given in
Lemma 4.3. Also, let pH denote the price vector obtained
from our heuristic approximation algorithm with pL as an
initial starting point, and let RH denote the associated rev-
enue. Further, let R∗ denote the optimal revenue, i.e., the
revenue generated by prices p̄.

The following lemma establishes an upper bound on
the optimal revenue. Recall that for any j , we have �j =
�bj�Zj�, where Zj denotes an ordered list of recommended
products.

Lemma 4.4. Let X ⊆ �1�2� 	 	 	 �M
 be defined by

X =
{
j� min

i∈Zj∩A
pLi � bj

}
	

Then,

RL �RH �R∗
�
∑
j∈X

bj 	

Proof. It follows from the definition of our heuristic that
RL � RH . Consider any j � X. This implies that bj <
mini∈Zj∩A p

L
i . Because pL � p̄ by Lemma 4.3, it follows

that bj <mini∈Zj∩A p̄i. It follows from Assumption 1.2 that
R�p̄��j�= 0.

Thus, R�p̄��j�= 0 for all j �X, which implies that

R∗ =
M∑
j=1

R�p̄��j�=
∑
j∈X

R�p̄��j��
∑
j∈X

bj�

where the last inequality follows from Assumption 1.2. �

Our next lemma offers a posterior performance guarantee
in terms of the ratio between pL and pU . The performance
of the heuristic increases as the ratio approaches 1.

Lemma 4.5.

min
i=1�			�n

{
pLi
pUi

}
�
RH

R∗ � 1�

where we define 0/0= 1.

The proof of this lemma makes use of the following
result, which relates the ratio between the revenue under
two sets of prices.

Lemma 4.6. Consider any choice function C that satisfies
Assumption 1.2 and 1.4 and its associated revenue func-
tion R. Then, for any � ∈ � and p�p′ ∈ �n such that
p� p′, we have

R�p���

R�p′���
� min

i=1�			�n

{
pi
p′i

}
	

Proof. Fix �= �b�Z� ∈�. To simplify notation, for any
p ∈ �n, we will denote C�p��� by C�p� and R�p���
by R�p�. If R�p� � R�p′�, then the result is trivially true
because p � p′. Therefore, it suffices to consider only the
case when R�p� <R�p′�.

Because 0 � R�p� < R�p′�, it must be the case that
C�p′� ∈A; otherwise, the revenue under p′ will be zero.

The fact that C�p′� ∈ A also implies that C�p� ∈ A. To
see this, suppose on the contrary that C�p� � A. Because
p ∼ p′ and p � p′, it follows from Assumption 1.4 that
C�p� = C�p′�, implying that C�p′� � A. Contradiction!
Therefore, C�p� ∈A.

Thus, under both price vectors p and p′, the consumer
chooses our products. This implies that

R�p�= pC�p� and R�p′�= p′C�p′�	

We will now prove that C�p�� C�p′�. Suppose on the
contrary that C�p� <C�p′�. Then, we have

pC�p� � p′C�p� � p′C�p′� � b�

where the first inequality follows from the fact that
p� p′. The second inequality follows from the fact that
p′1 � p′2 � · · ·� p′n and our assumption that C�p� < C�p′�.
The final inequality follows from Assumption 1.2 and the
fact that C�p′� ∈ A. The above inequality implies that
p′C�p� � b. Because C�p� ∈A, p∼ p′, and p� p′, it follows
from Assumption 1.4 that C�p� = C�p′�. Contradiction!
Therefore, C�p��C�p′�.

Putting everything together, we have

R�p�

R�p′�
= pC�p�

p′C�p′�
�
pC�p�

p′C�p�
� min

i=1�			�n

{
pi
p′i

}
�

where the first inequality follows from the fact that p′1 � p′2
� · · ·� p′n and C�p�� C�p′�. The final inequality follows
from the fact that C�p� ∈A and A= �1�2� 	 	 	 � n
	 �
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Here is the proof of Lemma 4.5.

Proof. It is easy to show that for any x1� 	 	 	 � xn ∈�+ and
y1� 	 	 	 � yn ∈�+,

min
i=1�			�n

xi
yi

�

∑n
i=1 xi∑n
i=1 yi

	

Because RL =∑M
j=1R�p

L��j� and R∗ =∑M
j=1R�p̄��j�, it

follows that

RL

R∗ � min
j=1�			�M

R�pL��j�

R�p̄��j�
� min

i=1�			�n

{
pLi
p̄i

}
� min

i=1�			�n

{
pLi
pUi

}
�

where the second inequality follows Lemma 4.6, and the
final inequality follows from the fact that pL � p̄ � pU by
Lemma 4.3. Because RL � RH by Lemma 4.4, the desired
result follows. �

5. A Case Study at General Motors
In this section, we discuss some work from Rusmevichien-
tong (2003) that involves the application of methods devel-
oped in this paper to data collected from the ACA website,
focusing on the RANK PRICING formulation with a price-
ladder constraint. This section presents only a summary of
experimental results. For more information on the applica-
tion of our model and new insights that are generated using
our algorithm, the reader is referred to Rusmevichientong
(2003).

We will discuss opportunities and challenges in pricing
vehicles using consumer preference data collected from the
ACA website, and contrast our approach with the existing
pricing practice at GM and traditional data sources. Our
analysis identifies opportunities to enhance the current pric-
ing strategy, and highlights the benefits of coordinating the
prices of all GM vehicles simultaneously.

This section is organized as follows. In §5.1, we pro-
vide a brief overview of the current pricing methodology
at GM, motivating the use of online data. Then, we present
experimental results in §5.2.

5.1. Current Pricing Methodology at
General Motors

When GM wants to determine the manufacturer’s suggested
retail price (MSRP) for a vehicle, it typically conducts a
“physical property clinic.” During the clinic, participants
compare the target vehicle with a sister GM vehicle and
up to six other competitive vehicles from the same seg-
ment. The participants conduct reviews of each vehicle,
rank the vehicles according to their preferences, and com-
plete a discrete-choice-based pricing exercise that assesses
relative values of each feature of the vehicle.

The data from the clinic provides an initial estimate of
the market share at different prices. The marketing and
finance groups then extrapolate the results to reflect the
whole segment, not just the vehicles used in the clinic.

The extrapolated demand is then compared to production
capacities and production targets. Given this information,
GM then tries to determine the vehicle price that most
effectively balances market demand, market competitive-
ness, and internal production constraints.

Because GM has opportunities to interact closely with
the participants, the data collected from the clinic are rich,
capturing detailed consumer preferences. However, the col-
lection of such data is expensive and time consuming, lim-
iting the size of the data set, with about 200–350 consumers
in a typical clinic.

Moreover, participants in a clinic only compare a tar-
get vehicle with about 6–7 other vehicles from a vehicle
segment that can have as many as 55 vehicles, as in the
mid-size vehicle market. Such a small comparison set may
not accurately capture the interdependencies among all rel-
evant vehicles.

In contrast, the ACA website has received over 450,000
visitors since its launch in January 2002. Moreover, the set
of recommended vehicles is generated based on consider-
ations of over 1,000 vehicles from the entire automotive
market, representing over 250 makes and models. The num-
ber of consumers and vehicles in this data set far exceeds
what is typically available from a clinic’s data, enabling us
to obtain a more accurate estimate of the demand and the
substitutability among all GM vehicles.

In addition, because a clinic is organized to determine a
price for a particular vehicle, it is often difficult to use such
data to coordinate the pricing strategy across the entire GM
product portfolio. To allow for coordination across prod-
ucts, we must understand the relationship among prices of
all vehicles; specifically, how a change in the price of one
vehicle affects the demand for all others.

5.2. Experimental Results

The data set used in our analysis consists of 83,813 con-
sumers, representing visitors to the ACA website from
1/1/02 until 9/30/02. We only consider those visitors who
spent at least three minutes at the website and specified
a budget of $60,000 or less. We impose these constraints
to rule out consumers who may not be truly interested in
purchasing vehicles.

We divide the data set into a training sample with 41,940
consumers and a validation sample with 41,873 consumers.
We compute the vehicle prices using data from the training
sample, and evaluate the performance of these prices on
the validation sample. The consumers in our data set can
be divided into three categories:

(1) Those consumers who only consider GM vehicles,
and thus only have GM vehicles in their recommended lists.
We will refer to these consumers as “GM Only.”

(2) Those consumers who are willing to consider both
GM and non-GM vehicles, and at least one GM vehicle
is “competitive.” This means that at least one GM vehicle
is ranked higher than all affordable non-GM vehicles. We
will refer to these consumers as “Both GM and non-GM.”
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(3) Those consumers who are willing to consider both
GM and non-GM vehicles, but for whom no GM vehicle
is “competitive.” Thus, either the list contains only non-
GM vehicles, or there exists an affordable non-GM vehicle
that is ranked higher than any other GM vehicles. We will
refer to these consumers as “non-GM Only.”

Recall that the competitors’ prices are assumed to be
fixed. Hence, we can identify affordable non-GM vehicles.
Moreover, under the RANK PRICING formulation, each
consumer chooses the highest-ranked vehicle that she can
afford. For our optimization, we can thus exclude con-
sumers who are “non-GM Only” because they will not pur-
chase any GM vehicle, regardless of its price. We only need
to consider those consumers who are either “GM Only”
or “Both GM and non-GM.” Table 3 shows the number of
consumers in each category and their average budgets in
the validation sample.

Although each consumer’s recommended list typically
has 10 recommendations, we use only the top five vehicles
because we feel that these vehicles most accurately reflect
the consumer preference and budget constraints. We have
a total of 1,121 vehicles, 301 of which are GM vehicles
and the remaining 820 represent competitors’ vehicles. We
assume that the prices of competitors’ vehicles remain con-
stant. Thus, the decision variables are the prices of 301 GM
vehicles.

The experiment compares three pricing policies: a
“rounded MSRP,” a greedy policy, and the coordinated
pricing policy generated by the algorithm discussed in §4.
The “rounded MSRP” of each vehicle corresponds to the
existing MSRP that has been rounded up to the nearest
$1,000.

We consider the rounded MSRP instead of the exist-
ing MSRP because each consumer who visits the ACA
website can specify her budget only in the increment of
$1,000. Consequently, the prices under our coordinated
pricing policy will also have increments of $1,000. How-
ever, the existing MSRPs of the vehicles vary continuously
in the increment of $1. To ensure a fair comparison with our
coordinated pricing policy, we thus round up the existing
MSRP of each vehicle to the nearest $1,000. If a vehicle
has an existing MSRP of $12,030, its rounded MSRP will
be $13,000. We round up the price because the consumers
who can afford this vehicle will have a budget of $13,000
or more.

Table 3. The number of consumers in each category
and their average budgets in the validation
sample.

Consumer Number of % of Avg. Stdev. of
category consumers total (%) budget ($) budget ($)

GM Only 13�116 31	32 30,716 11,016
Both GM and 8�847 21	13 21,343 11,546

non-GM
Non-GM Only 19�910 47	55 26,032 10,913

Total 41�873 100 26,509 11,580

Although we use rounded MSRPs to determine total rev-
enue, our coordinated pricing policy takes as a price-ladder
constraint the ordering implied by the existing MSRP of
each vehicle.

To determine the greedy price of the ith vehicle, we iden-
tify those consumers in the training sample in which the
ith vehicle appears in the recommended list. The greedy
price of the ith vehicle is the largest price that maximizes
revenue from these consumers, assuming that they will pur-
chase the ith vehicle if its price meets their budgets. More
formally, the greedy price of the ith vehicle, denoted by pGi ,
is defined by

pGi = argmax
xi�0

xi
∑
j�Zj i

1�xi � bj��

where we choose the greatest maximizer in case of ties. If
the ith vehicle does not appear in the recommended list of
any consumer, we set pGi to the rounded MSRP of the ith
vehicle.

We should note that the greedy prices typically fail to
satisfy the a priori price-ladder constraint. Moreover, the
computation of the greedy price ignores possible substitu-
tions among GM vehicles, implicitly assuming that those
consumers who consider the ith vehicle will not consider
any substitute. In the next section, we will show that by
taking into account substitutions among vehicles, as is done
in our coordinated pricing policy, we can develop a more
effective pricing strategy.

5.2.1. Overall Performance. Table 4 shows the aver-
age price of GM vehicles, the sales volume, and the total
revenue generated under the three pricing policies. To deter-
mine the sales volume, for each consumer we identify the
highest-ranked vehicle that she can afford under each pric-
ing policy. We then add up the number of GM vehicles sold
under each policy.

We see from the table that our coordinated pricing pol-
icy yields a 6% improvement in revenue over the rounded
MSRP and a 2% improvement in revenue over the greedy
policy. These improvements are significant as indicated by
the standard deviations. To determine the standard devia-
tion of revenue for each pricing policy, we compute the
revenue generated from each consumer in the validation
sample. We then estimate the sample standard deviation of
these revenues and multiply the result by

√
M , where M

denotes the number of consumers.

Table 4. Performance of various pricing policies on the
validation sample.

Avg. Volume Revenue Stdev.
Policy price (units) (millions) (millions)

Rounded MSRP $28,432 17,016 $399 $1.73
Greedy $30,764 18,147 $414 $1.58
Coordinated $28,807 18,243 $421 $1.74
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5.2.2. Deviation from Optimality. We wish to assess
the performance of our coordinated pricing policy relative
to the optimal policy. Because our coordinated pricing pol-
icy is computed using data from the training sample, there
are two dimensions in this assessment. We must evaluate
the effectiveness of our coordinated pricing policy on both
the training and the validation sample.

Let pL and pU denote the pricing policies defined in
Lemma 4.3. The policy pL is used in our heuristic to deter-
mine the coordinated pricing policy (see §4). These pricing
policies are computed using data from the training sample.

We will first determine the effectiveness of our coordi-
nated pricing policy on the training sample. It turns out that

min
i=1�			�301

pLi
pUi

= pL30

pU30

= $15�000
$60�000

= 0	25�

and it follows from Lemma 4.5 that, on the training sample,
the revenue generated from our coordinated pricing policy
differs from the optimal revenue by at most 75%.

By applying Lemma 4.4, we can significantly improve
the performance guarantee for our coordinated pricing pol-
icy. Let 	 denote those consumers in the training sample
who are in either the “GM Only” category or the “Both
GM and non-GM” category. Let X ⊆	 be defined by

X =
{
j ∈	� min

i∈Zj∩A
pLi � bj

}
	

It turns out that∑
j∈X

bj = $576�979�000	

Moreover, the revenue from our coordinated pricing policy
in the training sample is $422,351,000 and we have

$422�351�000
$576�979�000

� 0	7320	

It follows from Lemma 4.4 that, on the training sample,
our coordinated pricing policy is at least 73% effective; its
revenue differs from the optimal by at most 27%.

Unfortunately, because our coordinated pricing policy is
computed using data from the training sample, we cannot
apply Lemmas 4.4 and 4.5 to evaluate its performance on
the validation sample. However, we can establish a simple
performance guarantee by computing an upper bound on
the optimal revenue that can be generated from the vali-
dation sample. By definition, the optimal revenue cannot
exceed the sum of the budget of all consumers who are
either in the “GM Only” or the “Both GM and non-GM”
category. For the validation sample, this sum turns out to be
$591,694,000. Because the revenue from our coordinated
pricing policy on the validation sample is $421,290,000 and

$421�290�000
$591�694�000

� 0	7120�

it follows that, on the validation sample, the revenue from
our coordinated pricing policy differs from the optimal by
at most 29%.

6. Conclusion
Motivated by the availability of data on consumer pref-
erences from the ACA website, we developed a nonpara-
metric approach to multiproduct pricing. We consider a
class of models of consumer-purchasing behavior, each of
which relates observed data on a consumer’s requirements
and budget constraint to subsequent purchasing tendencies.
When we do not enforce a price ladder, we showed that
these problems are NP-complete in the strong sense. We
developed algorithms that address these optimization prob-
lems, given a price ladder.

We applied our algorithms to a real data set from the
ACA website, validating the performance of our algo-
rithms. Our analysis provides insights into the current pric-
ing policy at GM and suggests improvements that may lead
to a more effective pricing strategy. We showed that by
taking into account substitutions among vehicles and coor-
dinating the prices of all GM vehicles simultaneously, we
can find a pricing strategy that generates higher revenue.

Our work can be extended in many directions. One pos-
sibility is to consider a more complex model of consumer-
purchasing behavior, incorporating additional information
that may influence consumer-purchasing decisions. It is
also interesting to explore how we can incorporate produc-
tion constraints into our formulation, and to understand the
impact of competition on product prices. These extensions
would provide us with a more realistic model that better
reflects consumer-purchasing behavior and current business
environment.

As more consumers use the Internet, companies will have
access to ever larger quantities of data that reflect consumer
preferences. As our work has demonstrated, such data pro-
vides us with new opportunities to understand consumer
behavior and to optimize product prices. It is interesting to
explore other avenues for using this type of data.

Appendix A. Proof of Theorem 2.3
The proof of Theorem 2.3 makes use of the following
result. Because the proof of this result follows from ele-
mentary analysis, we omit the details.

Lemma A.1. For any set X, let f � g� X→�+ be any func-
tion such that

sup
x∈X

f �x� <� and sup
x∈X

g�x� <�	

Then,∣∣∣∣sup
x∈X

f �x�− sup
x∈X

g�x�

∣∣∣∣� sup
x∈X

�f �x�− g�x��	

The next lemma provides a simple bound on the dif-
ference between the expected revenue under �pM and the
optimal expected revenue.
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Lemma A.2. For any ) > 0, let P1�)��P2�)� ∈ �0�1� be
defined by

P1�)�≡ Pr��E��R�p
∗����−E��R� �pM�����> 2)
�

P2�)�≡ Pr
{∣∣∣∣E��R�p

∗����− 1
M

M∑
j=1

R� �pM��j�

∣∣∣∣> )

}
	

Then,

max�P1�)��P2�)�


� Pr
{

sup
p∈�0�B�n

∣∣∣∣E��R�p����−
1
M

M∑
j=1

R�p��j�

∣∣∣∣> )

}
	

Proof. Because

E��R�p
∗����= sup

p∈�0�B�n
E��R�p�����

it follows that

�E��R�p
∗����−E��R� �pM�����

=E��R�p
∗����−E��R� �pM����

=E��R�p
∗����− 1

M

M∑
j=1

R�p∗��j�

+ 1
M

M∑
j=1

R�p∗��j�−
1
M

M∑
j=1

R� �pM��j�

+ 1
M

M∑
j=1

R� �pM��j�−E��R� �pM����

�E��R�p
∗����− 1

M

M∑
j=1

R�p∗��j�

+ 1
M

M∑
j=1

R� �pM��j�−E��R� �pM����

� 2 sup
p∈�0�B�n

∣∣∣∣E��R�p����−
1
M

M∑
j=1

R�p��j�

∣∣∣∣�
where the first inequality follows from the fact that

1
M

M∑
j=1

R�p∗��j�� sup
p∈�0�B�n

1
M

M∑
j=1

R�p��j�=
1
M

M∑
j=1

R� �pM��j�	

Thus, it follows that

P1�)�� Pr
{
2 sup
p∈�0�B�n

∣∣∣∣E��R�p����−
1
M

M∑
j=1

R�p���

∣∣∣∣> 2)
}

= Pr
{

sup
p∈�0�B�n

∣∣∣∣E��R�p����−
1
M

M∑
j=1

R�p��j�

∣∣∣∣> )

}
	

To establish the remaining inequality, note that by
definition

E��R�p
∗����= sup

p∈�0�B�n
E��R�p�����

1
M

M∑
j=1

R� �pM��j�= sup
p∈�0�B�n

1
M

M∑
j=1

R�p��j��

and it follows from Lemma A.1 that∣∣∣∣E��R�p
∗����− 1

M

M∑
j=1

R� �pM��j�

∣∣∣∣
� sup

p∈�0�B�n

∣∣∣∣E��R�p����−
1
M

M∑
j=1

R�p��j�

∣∣∣∣	
Therefore,

P2�)��Pr
{

sup
p∈�0�B�n

∣∣∣∣E��R�p����−
1
M

M∑
j=1

R�p��j�

∣∣∣∣>)
}
	 �

Here is the proof of Theorem 2.3.

Proof. For M satisfying the bound in Theorem 2.3, it is
easy to verify that

4
(

2B�n+ 2�
)

)n

e−)
2M/128B2

� 5	

It follows from Theorem 2.2 that

Pr
{∣∣∣∣E��R�p

∗����− 1
M

M∑
j=1

R� �pM��j�

∣∣∣∣> )

}

� 4 sup
,

�

(
)

16
�� ��·�1�,

)
e−)

2M/128B2

= 4
(

2B�n+ 2�
)

)n

e−)
2M/128B2

� 5�

where the second inequality follows from Theorem 2.1. The
desired result follows from Lemma A.2. �

Appendix B. Proof of Theorem 3.1
Proof. The RANK PRICING DECISION Problem is in
NP because we simply need to guess a price vector and ver-
ify in polynomial time whether or not it satisfies the stated
condition of the problem. Moreover, by the definition of
the problem, it suffices to consider only price vectors p=
�pa� a ∈A� such that pa ∈ �b1� b2� 	 	 	 � bM
 for all a ∈A.

To show NP-completeness, we will present a reduction
from SIMPLE MAX CUT, a known NP-complete problem
(Garey and Johnson 1979). Here is the definition of the
SIMPLE MAX CUT Problem.

SIMPLE MAX CUT
Instance:
• A graph G= �V �E�.
• A positive integer K � �E�.
Question: Is there a partition of V into disjoint sets V1

and V2 such that the number of edges in E that have one
end point in V1 and one end point in V2 is at least K?

For each instance of the SIMPLE MAX CUT Problem,
we construct the following instance of the RANK PRIC-
ING DECISION Problem. Let the set of products A= V .
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Table 5. Values of RRANK
�u� v
 �pu�pv�.

�pu�pv� RRANK
�u� v
 �pu�pv�

�1�1� 4= 1+ 1+ 1+ 1
�1�2� 5= 1+ 1+ 1+ 2
�2�1� 5= 1+ 2+ 1+ 1
�2�2� 4= 0+ 2+ 0+ 2

For each edge e = �u� v
 ∈ E, we construct four customer
profiles: ��u�v


j for 1� j � 4, where

�
�u�v

1 = �1� �u� v��� �

�u�v

2 = �2� �u� v���

�
�u�v

3 = �1� �v�u��� and �

�u�v

4 = �2� �v�u��	

For any p ∈��V �
+ , define RRANK

�u� v
 �p� as

RRANK
�u� v
 �p�=RRANK

(
p��

�u�v

1

)+RRANK
(
p��

�u�v

2

)
+RRANK

(
p��

�u�v

3

)+RRANK
(
p��

�u�v

4

)
	

We design these ordered pairs so that RRANK
�u� v
 achieves the

maximum when pu �= pv, i.e., when the corresponding edge
e = �u� v
 has end points in different sets. Table 5 shows
the values of RRANK

�u� v
 �pu�pv� for pu�pv ∈ �1�2
.
Define the lower bound L= 4�E�+K. The corresponding

RANK PRICING DECISION Problem is to determine if
there exists a price vector �pv� v ∈ V � such that

4�E� +K �
∑

�u� v
∈E
RRANK
�u� v
 �p�	

We will show that the graph G= �V �E� has a valid cut
if and only if the corresponding RANK PRICING DECI-
SION Problem has a valid solution. Suppose that �V1� V2�
is a valid cut for the SIMPLE MAX CUT Problem. Let
��V1� V2� denote the set of edges with end points in the
different sets, i.e.,

��V1� V2�= ��u� v
 ∈E� u ∈ V1� v ∈ V2 or u ∈ V2� v ∈ V1
	

Define a price vector �pv� v ∈ V � as follows:

pv =
{

1 if v ∈ V1�

2 if v ∈ V2	

It follows from Table 5 that for any �u� v
 ∈E,

RRANK
�u� v
 �p�=

{
5 if �u� v
 ∈��V1� V2��

4 otherwise.

Hence,∑
�u� v
∈E

RRANK
�u� v
 �p�= 5���V1� V2�� + 4��E� − ���V1� V2���

= 4�E� + ���V1� V2��
� 4�E� +K�

where the last inequality follows from the fact that �V1� V2�
is a valid cut of the graph G. Hence, �pv� v ∈ V � repre-
sents a valid solution to the RANK PRICING DECISION
Problem.

On the other hand, suppose that �pv� v ∈ V � is a valid
solution to the RANK PRICING DECISION Problem.
Without loss of generality, we may assume that pv ∈ �1�2

for all v, because we can always construct another price
vector from p that has this property and remains a valid
solution to the RANK PRICING DECISION Problem. Let
� = ��u� v
 ∈ E� pu �= pv
. Because �pv� v ∈ V � is a valid
solution to the RANK PRICING DECISION Problem,

4�E� +K �
∑

�u� v
∈E
RRANK
�u� v
 �p�

= 5��� + 4��E� − ����
= 4�E� + ����

where the first equality follows from the definition of
RRANK
�u� v
 and Table 5. The above inequality implies that K �

���. If we define V1 = �v� pv = 1
 and V2 = �v� pv = 2
,
then V1 and V2 form a valid cut of G.

The above argument shows that the RANK PRICING
DECISION Problem is NP-complete. The only choices
of bjs used in the proof are 1s and 2s, RANK PRICING
DECISION is also NP-complete in the strong sense. �
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