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LAWS OF LARGE NUMBERS AND FUNCTIONAL CENTRAL LIMIT
THEOREMS FOR GENERALIZED SEMI-MARKOV PROCESSES

Peter W. Glynn � Department of Management Science and Engineering,
Stanford University, Stanford, California, USA

Peter J. Haas � IBM Almaden Research Center, San Jose, California, USA

� Because of the fundamental role played by generalized semi-Markov processes (GSMPs) in the
modeling and analysis of complex discrete-event stochastic systems, it is important to understand
the conditions under which a GSMP exhibits stable long-run behavior. To this end, we review
existing work on strong laws of large numbers (SLLNs) and functional central limit theorems
(FCLTs) for GSMPs; our discussion highlights the role played by the theory of both martingales
and regenerative processes. We also sharpen previous limit theorems for finite-state irreducible
GSMPs by establishing a SLLN and FCLT under the “natural” requirements of finite first
(resp., second) moments on the clock-setting distribution functions. These moment conditions are
comparable to the minimal conditions required in the setting of ordinary semi-Markov processes
(SMPs). Corresponding discrete-time results for the underlying Markov chain of a GSMP are also
provided. In contrast to the SMP setting, limit theorems for finite-state GSMPs require additional
structural assumptions beyond irreducibility, due to the presence of multiple clocks. In our new
limit theorems, the structural assumption takes the form of a “positive density” condition for
specified clock-setting distributions. As part of our analysis, we show that finite moments for
new clock readings imply finite moments for the od-regenerative cycles of both the GSMP and its
underlying chain.

Keywords Central limit theorem; Discrete-event stochastic systems; Generalized
semi-Markov processes; Law of large numbers; Markov chains; Stability; Stochastic
simulation.

1. INTRODUCTION

A wide variety of manufacturing, computer, transportation, telecommu-
nication, and work-flow systems can usefully be viewed as discrete-event
stochastic systems. Such systems evolve over continuous time and make
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202 Glynn and Haas

stochastic state transitions when events associated with the occupied state
occur; the state transitions occur only at an increasing sequence of random
times. The underlying stochastic process of a discrete-event system records
the state as it evolves over continuous time and has piecewise-constant
sample paths.

The usual model for the underlying process of a complex discrete-
event stochastic system is the generalized semi-Markov process (GSMP); see,
for example, Refs.[7,19,23,26,27,30]. In a GSMP, events associated with a state
compete to trigger the next state transition and each set of trigger events
has its own probability distribution for determining the new state. At
each state transition, new events may be scheduled. For each of these
new events, a clock indicating the time until the event is scheduled to
occur is set according to a probability distribution that depends on the
current state, the new state, and the set of events that trigger the state
transition. These clocks, along with the speeds at which the clocks run
down, determine when the next state transition occurs and which of the
scheduled events actually trigger this state transition. A GSMP �X (t) :
t ≥ 0�—here X (t) denotes the state of the system at (real-valued) time
t—is formally defined in terms of a general state space Markov chain
�(Sn ,Cn) : n ≥ 0� that records the state of the system, together with the
clock readings, at successive state transitions. The GSMP model either
subsumes or is closely related to a number of important applied probability
models such as continuous time Markov chains, semi-Markov processes,
Markovian and non-Markovian multiclass networks of queues (Ref.[27]), and
stochastic Petri nets (Ref.[18]).

Given the central role played by the GSMP model in both theory and
applications, it is fundamentally important to understand the conditions
under which a GSMP �X (t) : t ≥ 0� exhibits stable long-run behavior.
Strong laws of large numbers (SLLNs) and central limit theorems (CLTs)
formalize this notion of stability. These limit theorems also provide
approximations for cumulative-reward distributions, confidence intervals
for statistical estimators, and efficiency criteria for simulation algorithms.

In more detail, an SLLN asserts the existence of time-average
limits of the form r (f ) = limt→∞(1/t)

∫ t
0 f (X (u))du, where f is a real-

valued function. If such an SLLN holds, then the quantity r̂ (t) =
(1/t)

∫ t
0 f (X (u))du is a strongly consistent estimator for r ( f ). Viewing

R(t) = ∫ t
0 f (X (u))du as the cumulative “reward” earned by the system in

the interval [0, t ], the SLLN also asserts that R(t) can be approximated by
the quantity r (f )t when t is large. Central limit theorems (CLTs) serve to
illuminate the rate of convergence in the SLLN, to quantify the precision
of r̂ (t) as an estimator of r ( f ), and to provide approximations for the
distribution of the cumulative reward R(t) at large values of t . The ordinary
form of the CLT asserts that under appropriate regularity conditions, the
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Laws of Large Numbers and FCLTs for GSMPs 203

quantity r̂ (t)—suitably normalized—converges in distribution to a standard
normal random variable. An ordinary CLT often can be strengthened to
a functional central limit theorem (FCLT); see, for example, Refs.[3,6]. Roughly
speaking, a stochastic process with time-average limit r obeys a FCLT if
the associated cumulative (i.e., time-integrated) process—centered about
the deterministic function g (t) = rt and suitably compressed in space and
time—converges in distribution to a standard Brownian motion as the
degree of compression increases. A variety of estimation methods such as
the method of batch means (with a fixed number of batches) are known
to yield asymptotically valid confidence intervals for r (f ) when a FCLT
holds (Ref.[11]). Moreover, FCLT’s can be used to approximate pathwise
properties of the reward process �R(t) : t ≥ 0� over finite time intervals via
those of Brownian motion; see Ref.[3]. Also of interest are “discrete time”
SLLNs and FCLTs for processes of the form � f̃ (Sn ,Cn) : n ≥ 0�.

In this paper we review existing results on SLLNs and FCLTs for
GSMPs. Our discussion highlights the role played by the theory of both
martingales and regenerative processes. We also sharpen previous results by
establishing a SLLN and FCLT for finite-state GSMPs under the “natural”
conditions of irreducibility and finite first (resp., second) moments on the
clock-setting distribution functions. These conditions are comparable to
the minimal conditions under which SLLNs and FCLTs hold for ordinary
semi-Markov processes (SMPs), namely, irreducibility and finite first (resp.,
second) moments for the holding-time distribution; see Ref.[9]. (Such
conditions are “minimal” in that if we allow them to be violated, then
we can easily find SMP models for which the conclusion of the SLLN or
FCLT fails to hold.) In contrast to the case of ordinary SMPs, our new
limit theorems for GSMPs impose a positive-density condition on the clock-
setting distributions. Although this particular condition is by no means
necessary, some such condition is needed in the face of the additional
complexity caused by the presence of multiple clocks; indeed, we show that
in the absence of such a condition the SLLN and FCLT can fail to hold.

2. GENERALIZED SEMI-MARKOV PROCESSES

We briefly review the notation for, and definition of, a GSMP. Following
Ref.[27], let E = �e1, e2, � � � , eM � be a finite set of events and S be a finite set
of states. For s ∈ S , let s �→ E(s) be a mapping from S to the nonempty
subsets of E ; here E(s) denotes the set of all events that can potentially
occur when the process is in state s. An event e ∈ E(s) is said to be active
in state s. When the process is in state s, the occurrence of one or more
active events triggers a state transition. Denote by p(s ′; s,E ∗) the probability
that the new state is s ′ given that the events in the set E ∗ (⊆E(s)) occur
simultaneously in state s. A “clock” is associated with each event. The clock
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204 Glynn and Haas

reading for an active event indicates the remaining time until the event
is scheduled to occur. These clocks, along with the speeds at which the
clocks run down, determine which of the active events actually trigger the
next state transition. Denote by r (s, e) (≥0) the speed (finite, deterministic
rate) at which the clock associated with event e runs down when the state
is s; we assume that, for each s ∈ S , we have r (s, e) > 0 for some e ∈ E(s).
Typically in applications, all speeds for active events are equal to 1; zero
speeds can be used to model preemptive-resume behavior. Let C(s) be the
set of possible clock-reading vectors when the state is s:

C(s) = {
c = (c1, � � � , cM ) : ci ∈ [0,∞) and ci > 0

if and only if ei ∈ E(s)
}
�

Here the ith component of a clock-reading vector c = (c1, � � � , cM ) is the
clock reading associated with event ei . Beginning in state s with clock-
reading vector c = (c1, � � � , cM ) ∈ C(s), the time t ∗(s, c) to the next state
transition is given by

t ∗(s, c) = min
�i:ei∈E(s)�

ci/r (s, ei), (1)

where ci/r (s, ei) is taken to be +∞ when r (s, ei) = 0. The set of events
E ∗(s, c) that trigger the next state transition is given by

E ∗(s, c) = �ei ∈ E(s) : ci − t ∗(s, c)r (s, ei) = 0��

At a transition from state s to state s ′ triggered by the simultaneous
occurrence of the events in the set E ∗, a finite clock reading is generated
for each new event e ′ ∈ N (s ′; s,E ∗) = E(s ′) − (E(s) − E ∗). Denote the clock-
setting distribution function (that is, the distribution function of such a new
clock reading) by F (·; s ′, e ′, s,E ∗). We assume that F (0; s ′, e ′, s,E ∗) = 0, so
that new clock readings are a.s. positive, and that limx→∞ F (x ; s ′, e ′, s,E ∗) =
1, so that each new clock reading is a.s. finite. For each old event e ′ ∈
O(s ′; s,E ∗) = E(s ′) ∩ (

E(s) − E ∗), the old clock reading is kept after the
state transition. For e ′ ∈ (E(s) − E ∗) − E(s ′), event e ′ is cancelled and the
clock reading is discarded. When E ∗ is a singleton set of the form E ∗ =
�e∗�, we write p(s ′; s, e∗) = p(s ′; s, �e∗�), O(s ′; s, e∗) = O(s ′; s, �e∗�), and so
forth. The GSMP is a continuous-time stochastic process �X (t) : t ≥ 0� that
records the state of the system as it evolves.

Formal definition of the process �X (t) : t ≥ 0� is in terms of a general
state space Markov chain �(Sn ,Cn) : n ≥ 0� that describes the process at
successive state-transition times. Heuristically, Sn represents the state and
Cn = (Cn,1, � � � ,Cn,M ) represents the clock-reading vector just after the nth
state transition; see Ref.[27] for a formal definition of the chain. The chain
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Laws of Large Numbers and FCLTs for GSMPs 205

takes values in the set � = ⋃
s∈S(�s� × C(s)). Denote by � the initial

distribution of the chain; for a (measurable) subset B ⊆ �, the quantity �(B)
represents the probability that (S0,C0) ∈ B. We use the notations P� and E�

to denote probabilities and expected values associated with the chain, the
idea being to emphasize the dependence on the initial distribution �; when
the initial state of the underlying chain is equal to some (s, c) ∈ � with
probability 1, we write P(s,c) and E(s,c). The symbol P n denotes the n-step
transition kernel of the chain: P n((s, c),A) = P(s,c)�(Sn ,Cn) ∈ A� for (s, c) ∈ �

and A ⊆ �; when n = 1 we simply write P to denote the 1-step transition
kernel.

We construct a continuous time process �X (t) : t ≥ 0� from the
chain �(Sn ,Cn) : n ≥ 0� in the following manner. Let �n (n ≥ 0) be the
(nonnegative, real-valued) time of the nth state transition: �0 = 0 and

�n =
n−1∑
j=0

t ∗(Sj ,Cj)

for n ≥ 1. Because S is finite, an argument as in Theorem 3.13 of Ref.[18],
Ch. 3, shows that P��supn≥0 �n = ∞� = 1. Set

X (t) = SN (t), (2)

where

N (t) = sup�n ≥ 0 : �n ≤ t�� (3)

The stochastic process �X (t) : t ≥ 0� defined by (2) is the GSMP. By
construction, the GSMP takes values in the set S and has piecewise
constant, right-continuous sample paths.

Example 2.1 (Patrolling Repairman). Following Ref.[27], consider a
group of N (≥2) machines under the care of a single patrolling repairman
who walks round the group of machines in a strictly defined order:
1, 2, � � � ,N , 1, 2, � � � . The repairman repairs and restarts a machine that
is stopped and passes a machine that is running. For machine j , the
successive times between completion of repair and the next stoppage are
i.i.d. as a positive random variable Lj with finite second moment and a
continuous distribution function. The time for the repairman to walk from
machine j to the next machine and inspect it (before effecting repair or
proceeding) is a positive constant Wj . The successive times to repair and
restart machine j are i.i.d. as a positive random variable Rj with finite
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206 Glynn and Haas

second moment. Set

X (t) = (
Z1(t), � � � ,ZN (t),M (t),N (t)

)
,

where

Zj(t) =
{
1 if machine j is awaiting repair at time t ;
0 otherwise,

M (t) =
{
j if machine j is under repair at time t ;
0 if no machine is under repair at time t ,

and N (t) = j if, at time t , machine j is the next machine to be visited by
the repairman. The process �X (t) : t ≥ 0� can be specified as a GSMP with
unit speeds, finite state space S ⊂ �0, 1�N × �0, 1, � � � ,N � × �1, 2, � � � ,N �,
and event set E = �e1, e2, � � � , eN+2�, where ej = “stoppage of machine j” for
1 ≤ j ≤ N , eN+1 = “completion of repair,” and eN+2 = “arrival of repairman
at a machine.” The set E(s) of active events is defined as follows. For
s = (z1, z2, � � � , zN ,m,n) ∈ S , event ej ∈ E(s) (where 1 ≤ j ≤ N ) if and only
if zj = 0 and m �= j , event eN+1 ∈ E(s) if and only if m > 0, and event
eN+2 ∈ E(s) if and only if m = 0. Each state-transition probability is equal
to 0 or 1. For example, if e∗ = ej (with 1 ≤ j ≤ N ), then p(s ′; s, e∗) = 1
when s = (z1, � � � , zj−1, 0, zj+1, � � � , zN ,m,n) and s ′ = (z1, � � � , zj−1, 1, zj+1, � � � , zN ,
m,n), and p(s ′; s, e∗)= 0 otherwise. The clock-setting distribution function
F (x ; s ′, e ′, s, e∗) is defined as follows. If e ′ = ej (1 ≤ j ≤ N ), then F (x ;
s ′, e ′, s, e∗) = P �Lj ≤ x�; if e ′ = eN+1 and s ′ = (z1, � � � , zN ,m,n), then F (x ; s ′,
e ′, s, e∗) = P �Rm ≤ x�; if e ′ = eN+2 and s ′ = (z1, � � � , zN , 0,n), then F (x ;
s ′, e ′, s, e∗) = 1[0,x](Wn−1). (Here 1A denotes the indicator function for the
set A and Wn−1 is taken as WN when n = 1.) See Ref.[27], pp. 29–31, for
further details.

When E(s) is a singleton set for each s ∈ S , so that there is exactly
one event active at any time point, the GSMP reduces to an ordinary
SMP as defined, for example, in Ref.[4]. The limit theory considered in
this paper simplifies considerably under this restriction. Alternatively, when
each clock-setting distribution is of the form F (x ; s ′, e ′, s,E ∗) ≡ 1 − e−�(e ′)x ,
then the GSMP coincides (Ref.[18], Sec. 3.4) with a continuous-time Markov
chain, and the well known limit theory for such chains applies.

3. A SURVEY OF LIMIT THEORY FOR GSMPs

In this section we give an overview of previous work on SLLNs and
FCLTs for GSMPs and their underlying Markov chains.
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Laws of Large Numbers and FCLTs for GSMPs 207

3.1. Strong Laws of Large Numbers

A SLLN for a GSMP gives conditions under which there exists a finite
constant r (f ), independent of the initial distribution �, such that

lim
t→∞

1
t

∫ t

0
f (X (u))du = r ( f ) a.s. (4)

for a specified function f . Similarly, a discrete-time SLLN for the
underlying chain of a GSMP gives conditions under which

lim
n→∞

1
n

n−1∑
j=0

f̃ (Sj ,Cj) = r̃ ( f̃ ) a.s. (5)

SLLNs have been obtained for GSMPs either by directly exploiting limit
theorems for Harris recurrent Markov chains or by appealing to the theory
of regenerative processes. We describe these two approaches below.

3.1.1. Direct Approach via Harris-Chain Theory
One approach to obtaining an SLLN in discrete time is to apply results

for Harris recurrent Markov chains to the underlying chain of a GSMP.
To this end, we review some pertinent terminology for a general Markov
chain �Zn :n ≥ 0� taking values in a (possibly uncountably infinite) state
space � ; see Ref.[24] for details. Such a chain is 	-irreducible if 	 is a
nontrivial measure on subsets of � and, for each z ∈ � and subset A⊆ � with
	(A)> 0, there exists n ≥ 1—possibly depending on both z and A—such
that P n(z,A) > 0. (Here P n is the n-step transition kernel for the chain.) A
	-irreducible chain is Harris recurrent if Pz�Zn ∈ A i.o.� = 1 for all z ∈ � and
A ⊆ � with 	(A) > 0. Recall that a probability distribution 
0 is invariant
with respect to �Zn : n ≥ 0� if and only if

∫
P (z,A) 
0(dz) = 
0(A) for each

A ⊆ � . A Harris recurrent chain admits an invariant distribution 
0 that
is unique up to constant multiples. If 
0(�) < ∞, then 
(·) = 
0(·)/
0(�)
is the unique invariant probability distribution for the chain. A Harris
recurrent chain that admits such a probability distribution is called positive
Harris recurrent. Given an invariant probability distribution 
 together with
a real-valued function f defined on � , we often write 
( f ) = ∫

f (z) 
(dz) =
E
[f (Z0)]. Observe that 
( f ) is well defined and finite if and only if 
(|f |) <
∞, where |f |(z) = |f (z)| for z ∈ � .

If �Zn : n ≥ 0� is positive Harris recurrent with invariant distribution

, then limn→∞(1/n)

∑n−1
i=0 f (Zn) = 
(f ) a.s. for any f : � �→ � such that


(|f |) < ∞. The idea behind the proof of this assertion—see Ref.[24],
Sec. 17.1, for details—is to apply the SLLN for stationary sequences
(Ref.[5]) to establish the desired result when the initial distribution is 
.
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208 Glynn and Haas

The result can then be extended to arbitrary initial conditions by showing
that (i) any bounded “harmonic” function—that is any bounded function h
satisfying

∫
P (x , dy)h(y) = h(x) for all x ∈ �—must be constant when �Zn :

n ≥ 0� is Harris recurrent, and (ii) the function h(x) = Px�limn→∞(1/n)∑n−1
i=0 f (Zn) = 
(f )� is harmonic.
Thus the main challenge in establishing an SLLN is to show that

�Zn : n ≥ 0� is positive Harris recurrent. Stochastic Lyapunov functions
provide an effective tool for this purpose. Following Ref.[24], we say that a
subset B ⊆ � is petite with respect to the chain if there exists a probability
distribution q on the nonnegative integers and a nontrivial measure � on
subsets of � such that

inf
z∈B

∞∑
n=0

q(n)P n(z,A) ≥ �(A)

for A ⊆ � . For real-valued functions f and g defined on � , write f = O(g )
if supz∈� |f (z)|/|g (z)|< ∞. (Here we take 0/0 = 0.) The following result is
given in Ref.[24].

Proposition 3.1.1.1. Let �Zn : n ≥ 0� be a 	-irreducible Markov chain.
Suppose that there exists a petite set B, an integer m ≥ 1, a function v : � �→
[0,∞) and a function g : � �→ [1,∞) such that

Ez[v(Zm) − v(Z0)] ≤ −g (z) (6)

for all z ∈ � − B, and

sup
z∈B

Ez[v(Zm) − v(Z0)] < ∞� (7)

Then

(i) �Zn : n ≥ 0� is positive Harris recurrent with recurrence measure 	 and hence
admits an invariant probability measure 
; and

(ii) 
(|f |) < ∞ for any function f : � �→ � such that f = O(g ).

The function v is the stochastic Lyapunov function, and v(z) can be
viewed as the “distance” between state z and the set B. The quantity
Ez[v(Zm) − v(Z0)] in (6) and (7) is called the m -step expected drift of the
chain. Thus, the condition in (6) asserts that the m -step expected drift is
strictly negative whenever the chain lies outside of B; the exact “rate of
drift” is specified by the function g .

Proposition 3.1.1.2 below is proved in Ref.[17] and can be used to apply
the foregoing results in the GSMP setting. To prepare for the proposition,
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Laws of Large Numbers and FCLTs for GSMPs 209

we introduce some notation and terminology. For a GSMP with state space
S and event set E and for s, s ′ ∈ S and e ∈ E , write s

e→ s ′ if p(s ′; s, e)r (s, e) >
0 and write s → s ′ if s

e→ s ′ for some e ∈ E(s). Also write s � s ′ if either s →
s ′ or there exist states s1, s2, � � � , sn ∈ S (n ≥ 1) such that s → s1 → · · · →
sn → s ′.

Definition 3.1.1.1. A GSMP is irreducible if s � s ′ for each s, s ′ ∈ S .

Recall that a nonnegative function G is a component of a distribution
function F if G is not identically equal to 0 and G ≤ F . If G is a component
of F and G is absolutely continuous, so that G has a density function g ,
then we say that g is a density component of F .

Assumption PD(q), defined below, encapsulates the key conditions
used in Proposition 3.1.1.2 and elsewhere.

Definition 3.1.1.2. Assumption PD(q) holds for a specified GSMP and real
number q ≥ 0 if

(i) the state space S of the GSMP is finite;
(ii) the GSMP is irreducible;
(iii) all speeds of the GSMP are positive; and
(iv) there exists x̄ ∈ (0,∞) such that each clock-setting distribution

function F (·; s ′, e ′, s,E ∗) of the GSMP has finite qth moment and a
density component that is positive and continuous on (0, x̄).

Observe that when Assumption PD(q) holds for some q ≥ 0, there can
be at most a finite number of state transitions at which two or more events
occur simultaneously. Also observe that if Assumption PD(q) holds for
some q ≥ 0, then Assumption PD(r ) holds for r ∈ [0, q).

For 0 < u ≤ ∞, Let 	u be the unique measure on Borel subsets of �
such that

	u

(
�s� × [0, a1] × [0, a2] × · · · × [0, aM ]) =

∏
�i:ei∈E(s)�

min(ai ,u) (8)

for all s ∈ S and a1, a2, � � � , aM ≥ 0. If, for example, a set B ⊆ � is of the
form B = �s� × A with E(s) = E , then 	u(B) is equal to the Lebesgue
measure of the set A ∩ [0,u)M . For b > 0, denote by Hb the set of all states
(s, c) ∈ � such that each clock reading is bounded above by b:

Hb = (
S × [0, b]M ) ∩ �� (9)

Finally, for s ∈ S , c = (c1, c2, � � � , cM ) ∈ C(s), and q ≥ 0, set

hq(s, c) = 1 + max
1≤i≤M

cqi � (10)
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Proposition 3.1.1.2. Suppose that Assumption PD(0) holds. Then

(i) the underlying chain �(Sn ,Cn) : n ≥ 0� is 	u-irreducible for some 0 < u ≤
∞; and

(ii) the set Hb defined by (9) is petite with respect to �(Sn ,Cn) : n ≥ 0� for each
b > 0.

If, moreover, Assumption PD(q) holds for some q ≥ 1, then for all sufficiently large
values of b

(iii) the function hq defined by (10) satisfies

sup
(s,c)∈Hb

E(s,c)[hq(SM ,CM ) − hq(S0,C0)] < ∞

and
(iv) there exists � > 0 such that

E(s,c)[hq(SM ,CM ) − hq(S0,C0)] ≤ −�hq−1(s, c) (11)

for (s, c) ∈ � − Hb.

Henderson and Glynn[21] have extended the result in
Proposition 3.1.1.2(i) to GSMPs with infinite state space. Following Ref.[17],
we can combine the foregoing results to obtain a discrete-time SLLN.

Theorem 3.1.1.1. Suppose that Assumption PD(u + 1) holds for some u ≥ 0.
Then the underlying chain �(Sn ,Cn) : n ≥ 0� is positive Harris recurrent and hence
admits an invariant probability measure 
. Moreover, if f̃ : � �→ � satisfies f̃ =
O(hu), then 
(|f̃ |) < ∞ and

lim
n→∞

1
n

n−1∑
j=0

f̃ (Sj ,Cj) = 
( f̃ ) a.s.

To obtain a SLLN in continuous time for a specified function f :
S �→ �, recall the definition of the function t ∗ from (1) and set f̃ (s, c) =
f (s)t ∗(s, c) for (s, c) ∈ � or, more concisely, f̃ = ft ∗. Observe that

1
t

∫ t

0
f
(
X (u)

)
du =

(
1/N (t)

) ∑N (t)−1
i=0 f̃ (Sn ,Cn) + R1(t)(

1/N (t)
) ∑N (t)−1

i=0 t ∗(Sn ,Cn) + R2(t)
(12)

for t ≥ 0, where R1(t) and R2(t) are remainder terms and N (t) is defined as
in (3). Observe that f̃ = O(h1) and t ∗ = O(h1), so that, with probability 1,
limn→∞(1/n)

∑n−1
j=0 f̃ (Sj ,Cj) = 
( f̃ ) and limn→∞(1/n)

∑n−1
j=0 t ∗(Sj ,Cj) =
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(t ∗) when the conditions of Theorem 3.1.1.1 hold. Under these
conditions, it can be shown (Refs.[10,18]) that N (t) → ∞ a.s. and that
R1(t) and R2(t) become negligible relative to the other terms, thereby
establishing the following result (Ref.[17]).

Theorem 3.1.1.2. Suppose that Assumption PD(2) holds. Then the chain
�(Sn ,Cn) : n ≥ 0� is positive Harris recurrent and hence admits an invariant
probability measure 
. Moreover,

lim
t→∞

1
t

∫ t

0
f
(
X (u)

)
du = 
(ft ∗)


(t ∗)
a.s.

for any function f : S �→ �.

3.1.2. Approach via Regenerative-Process Theory
An alternative approach to establishing SLLNs in discrete and

continuous time rests on properties of regenerative processes and
their extensions. Informally, a continuous-time process �X (t) : t ≥ 0� is
regenerative if it admits a sequence of random time points, called
regeneration points, at which the process “probabilistically restarts.” The
regeneration points serve to decompose sample paths of the process into
i.i.d. cycles. It is convenient to work with a slightly more general class of
processes, defined below.

Definition 3.1.2.1. The stochastic process �X (t) : t ≥ 0� with state space
S is an od-regenerative process in continuous time if there exists an increasing
sequence 0 ≤ T0 < T1 < T2 < · · · of a.s. finite random times such that, for
k ≥ 1, the post-Tk process �X (Tk + t) : t ≥ 0; k+l : l ≥ 1�

(i) is distributed as the post-T0 process �X (T0 + t) : t ≥ 0; l : l ≥ 1�, and
(ii) is independent of the pre-Tk−1 process �X (t) : 0 ≤ t < Tk−1;

1, � � � , k−1�,

where j = Tj − Tj−1 for j ≥ 1.

The od-regeneration points serve to decompose sample paths of �X (t) :
t ≥ 0� into one-dependent stationary cycles. The random variable k
defined above is the length of the kth cycle. A classical regenerative process
is a special case of an od-regenerative process in which the cycles are not
only identically distributed, but are also mutually independent. Thorough
discussions of od-regenerative and related processes can be found, for
example, in Refs.[1,8,18,28,29].

When T0 = 0 the process �X (t) : t ≥ 0� is nondelayed; otherwise, it is
called delayed. For a delayed process �X (t) : t ≥ 0�, the “0th cycle” �X (t) :
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0 ≤ t < T0� need not have the same distribution as the other cycles.
Similarly, the length of this cycle—denoted by 0—need not have the same
distribution as 1, 2, and so forth.

The usefulness of od-regenerative structure stems from the fact that
it permits application of well known results for m -dependent random
variables. Specifically, given an od-regenerative process �X (t) : t ≥ 0� with
state space S and od-regeneration points �Tk : k ≥ 0�, along with a real-
valued function f defined on S , set

Yk(f ) =
∫ Tk

Tk−1

f (X (u))du

for k ≥ 0. (Take T−1 = 0.) It follows from the definition of an od-
regenerative process that the sequence �(Yk(f ), k) : k ≥ 1� consists of one-
dependent identically distributed random pairs. Set

r (f ) = E [Y1( f )]
E [1]

and observe that r (f ) is well defined and finite if and only if E [Y1(|f |)],
and hence r (|f |), is finite. Denoting by M (t) the number of regeneration
points in [0, t ], we have

∫ t
0 f

(
X (u)

)
du = ∑M (t)−1

k=0 Yk(f ) + R1(t) and t =∑M (t)−1
k=0 k + R2(t) for appropriate remainder terms R1(t) and R2(t), and an

argument similar to the proof of Theorem 3.1.1.2 using the classical SLLN
for m -dependent random variables (Ref.[2], p. 86), yields the following
result.

Proposition 3.1.2.1. Suppose that E [1] < ∞. Then r (|f |) < ∞ and

lim
t→∞

1
t

∫ t

0
f (X (u))du = r (f ) a.s.

for any real-valued function f such that Y0(|f |) < ∞ a.s. and E [Y1(|f |)] < ∞.

See Ref.[1] for a detailed proof in the setting of classical regenerative
processes. The foregoing development has an obvious analog for a discrete-
time process �Xn : n ≥ 0�; the discrete-time results can be obtained by
applying the continuous-time theory to the process �X�t� : t ≥ 0�, where �x�
is the greatest integer less than or equal to x .

To apply Proposition 3.1.2.1 in the GSMP setting, we must show that
the GSMP of interest (or its underlying chain) is od-regenerative and that
quantities such as 1 and Y1(|f |) have finite mean. A number of authors
(Refs.[18,19,22,27]) have identified simple conditions on the building blocks of
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a GSMP that ensure probabilistic restart, and hence classical regenerative
structure. For example, suppose that state s̄ ∈ S is a “single state” in that
E(s̄) = �ē� for some ē ∈ E . Then the successive times at which event ē
occurs in state s̄ form a sequence of regeneration points. Indeed, at each
such regeneration point the new state s ′ is always chosen according to the
fixed distribution function p(·; s̄, ē), the clock for each new event e ′ is set
according to F (·; s ′, e ′, s̄, ē) regardless of the past history of the GSMP, and
there are no old events.

The other sufficient conditions for probabilistic restart discussed in
Refs.[18,19,22,27] are variations on this theme. For example, let s̄ ∈ S and
suppose that each event e ′ ∈ E(s̄) has a clock-setting distribution function
of the form F (x ; s ′, e ′, s,E ∗) ≡ F (x ; e ′) = 1 − exp

(−�(e ′)x
)
. [An event e ′

such that F (x ; s ′, e ′, s,E ∗) ≡ F (x ; e ′) is called simple.] It follows (nontrivially)
from the memoryless property of the exponential distribution that the
successive state-transition times at which the new state is s̄ form a sequence
of regeneration points.

Glynn[7] provides a different set of conditions on an irreducible finite-
state GSMP that ensure probabilistic restart. Specifically, each event is
assumed to be simple, and each clock-setting distribution function F (·; e)
is assumed to be absolutely continuous with density function f (·; e) and
“exponentially bounded” in that the hazard function h(x ; e) = f (x ; e)/

(
1 −

F (x ; e)
)

is bounded both above and below by positive constants. It
then follows that f (x ; e) = �e�e exp(−�e x) + (1 − �e)qe(x) for some density
function qe and constants �e > 0 and �e ∈ (0, 1). Conceptually, each new
clock reading for event e is selected according to either an exponential
distribution or according to qe , depending on the outcome of a Bernoulli
trial having success probability �e . For any fixed state s̄ ∈ S , a geometric
trials argument then shows that, with probability 1, the GSMP makes
infinitely many transitions to s̄ such that the clock for each event e ∈
E(s̄) has most recently been set according to an exponential distribution.
As discussed previously, these state-transition times form a sequence of
regeneration points.

Once probabilistic restart has been established, it remains to show that
the regenerative cycle length 1 has finite mean, which in turn implies
that Y1(|f |) has finite mean when S is finite. One approach (Refs.[18,19,22,27])
to establishing finite moments combines geometric trials arguments with
“new better than used” (NBU) distributional assumptions. A distribution
F with support on [0,∞) is NBU if �F (x + y) ≤ �F (x)�F (y) for all x , y ≥ 0,
where �F = 1 − F . Equivalently, a random variable L is NBU if P �L > x + y |
L > x� ≤ P �L > y�; viewing L as the lifetime of a component, the NBU
condition asserts that a new component is more likely than a used
component (which has been running for x time units) to survive for at least
the next y time units.
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The following example illustrates the basic ideas. Suppose that each
event is simple and there exist infinite sequences of random times ���(n) :
n ≥ 0� and ���(n) : n ≥ 0� with ��(n) < ��(n) ≤ ��(n+1) for n ≥ 0 and such that

(i) A probabilistic restart occurs at time ��(n) if every event that belongs
to a specified set Ẽ and is active at time ��(n) occurs “soon enough,”
i.e., before the occurrence of another specified new event ei∗ �∈ Ẽ ;

(ii) The clock-setting distribution F (·; ei) is NBU for each ei ∈ Ẽ ;
(iii) For ei ∈ Ẽ , there is a positive probability that an independent sample

from F (·; ei) is smaller than an independent sample from F (·; ei∗); and
(iv) lim infn≥0 E�[��(n+1) − ��(n)] < ∞.

We claim that E�[1] < ∞, where 1, 2, � � � are the lengths of the i.i.d.
cycles delineated by the successive points in ���(n) : n ≥ 0� at which a
probabilistic restart occurs. The idea is that a “trial” occurs at each time
��(n), where a “success” corresponds to a probabilistic restart at time ��(n).
The NBU and structural assumptions can be used to uniformly bound
the success probability away from zero: letting Rn be the event in which
a probabilistic restart occurs at time ��(n), �n = �X (t) : 0 ≤ t ≤ ��(n)�, and
Ẽn = Ẽ ∩ E(S�(n)), we have

P��Rn |�n� ≥ P��C�(n),i ≤ C�(n),i∗ for ei ∈ Ẽn |�n�

≥ P��Ai ≤ C�(n),i∗ for ei ∈ Ẽn |�n�

≥ P �Ai ≤ Ai∗ for ei ∈ Ẽ� def= �

for n ≥ 0, where Ai denotes an independent sample from F (·; ei). Here the
first inequality follows from the assumption in (i). The second inequality
follows (nontrivially) from the assumption in (ii); intuitively, the clock
reading for event ei is more likely to be “small” (i.e., less than the new clock
reading C�(n),i∗) than is a fresh sample from the clock-setting distribution
for ei . The assumption in (iii) ensures that � > 0. A “conditional” geometric
trials argument (Ref.[18], pp. 88–89), now shows that the number of trials �
between regeneration points is stochastically dominated by a geometrically-
distributed random variable (having success probability �) and hence has
finite moments of all orders. The quantity 1 can be represented as a
random sum containing � terms, and the assumption in (iv), which is often
easy to verify in practice, controls the expected size of these terms.

Example 3.1.2.1 (Patrolling Repairman). For the model of Example 2.1,
it can be seen that the system probabilistically restarts whenever the
repairman arrives at machine 1 and all machines are stopped. Indeed, just
prior to this event the state of the system is s = (1, 1, � � � , 1, 0, 1), which is
a single state. We can therefore take ��(n) (resp., ��(n)) to be the nth time
at which the repairman arrives at machine 1 (resp., leaves machine N ),
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event ei∗ to be eN+2 = “arrival of repairman at a machine,” and the set
Ẽ to be �e1, e2, � � � , eN �. Thus �X (t) : t ≥ 0� is a regenerative process with
finite expected cycle length if each machine lifetime Lj is NBU with
P �Lj <WN �> 0. (Recall that WN is the deterministic walking time from
machine N to machine 1.) Note that the expected time between successive
arrivals to machine 1 is bounded above by

∑N
j=1

(
Wj + E [Rj ]

)
, so that the

condition in (iv) above is satisfied.

Refs.[18,19,22,27] give refinements and extensions of the foregoing
approach. For example, the NBU requirements can be relaxed to require
that specified distributions have a “generalized NBU” (GNBU) property; a
distribution F is GNBU if supy≥0

�F (x + y)/�F (y) < 1 for some x ≥ 0.
The geometric trials approach avoids imposition of positive density

assumptions on the clock-setting distributions, but establishing the
conditions in (i)–(iv) typically requires detailed knowledge of the GSMP
under study. A more generic regenerative approach to the SLLN is
discussed in Ref.[17] for GSMPs having a single state s̄, and hence
classical regenerative structure. The set of states � = �(s̄, c) : c ∈ C(s̄)� is
called an “atom” of the underlying chain �(Sn ,Cn) : n ≥ 0� and has the
defining property that P

(
(s, c),A

) = P
(
(s ′, c ′),A

)
for any set A whenever

(s, c), (s ′, c ′) ∈ �. For any Markov chain �Zn : n ≥ 0� having an atom �
and satisfying the conditions of Proposition 3.1.1.1 it can be shown
(Ref.[24], p. 334) that Ez

[ ∑T�
n=1 u(Zn)

]
< ∞ for any z ∈ � and u = O(g ),

where T� is the first hitting time of �. Thus, if Assumption PD(2)
holds for a GSMP with a single state, then Proposition 3.1.1.2 implies
that E [1] < ∞ and E [Y1(|f |)] < ∞ for any function f : S �→ �, and an
application of Proposition 3.1.2.1 establishes the desired SLLN for �X (t) :
t ≥ 0�. This result differs from Theorem 3.1.1.2 in that there is an
additional assumption (the presence of a single state) and a corresponding
representation of the time-average limit as a ratio of quantities defined in
terms of a regenerative cycle. Analogous arguments in discrete time yield a
“regenerative version” of Theorem 3.1.1.1.

Finally, we note that in the setting of Ref.[7], the assumption that each
clock-setting distribution function is exponentially bounded ensures that
each distribution has finite moments of all orders. The finiteness of the
mean cycle length then follows by an argument similar to the proof of
Wald’s identity.

3.2. Functional Central Limit Theorems

Given a GSMP satisfying the SLLN in (4) for a specified function f , set

U�(f )(t) = 1√
�

∫ �t

0

(
f (X (u)) − r (f )

)
du (13)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
a
n
f
o
r
d
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
5
:
1
2
 
2
0
 
J
u
l
y
 
2
0
1
0



216 Glynn and Haas

for t , � ≥ 0; each random function U�( f ) is an element of C [0,∞),
the space of continuous real-valued functions on [0,∞). A FCLT gives
conditions under which there exists a finite constant �( f ) ≥ 0 such
that U�( f ) ⇒ �( f )W as � → ∞ for any initial distribution �. Here W =
�W (t) : t ≥ 0� denotes a standard Brownian motion on [0,∞) and ⇒
denotes weak convergence on C [0,∞); see Refs.[3,6]. Weak convergence on
C [0,∞) generalizes to a sequence of random functions—i.e., a sequence
of stochastic processes—the usual notion of convergence in distribution of
a sequence of random variables.

Similarly, supposing that (5) holds, a discrete-time FCLT give
conditions under which there exists a finite constant �̃( f̃ ) ≥ 0 such that
Un( f̃ ) ⇒ �̃( f̃ )W as n → ∞ for any initial distribution �, where

Un( f̃ )(t) = 1√
n

∫ nt

0

(
f̃ (S�u�,C�u�) − r̃ ( f̃ )

)
du� (14)

The two main techniques for establishing FCLTs rest on the theory of
martingales and regenerative processes, respectively.

3.2.1. Approach via Martingale Theory
One approach[17] to establishing a discrete-time FCLT for the

underlying chain of a GSMP is to apply results in Refs.[13,24], which are in
turn obtained by combining Lyapunov-function arguments with martingale
methods. Limit theorems for the continuous-time process �X (t) : t ≥ 0�
can then be obtained using random-time-change arguments.

Specifically, suppose that the underlying chain of a GSMP is positive
Harris recurrent with invariant distribution 
, and suppose that 
(|f̃ |) < ∞
for the function f̃ of interest. Then the key idea is to establish the existence
of a solution h̃ to Poisson’s equation:

f̃ (s, c) − 
( f̃ ) = h̃(s, c) − P h̃(s, c), (s, c) ∈ �,

where P h̃(s, c) = E(s,c)[h̃(S1,C1)]. Setting Ln = ∑n−1
j=0 f̃ (Sj ,Cj) and Mn =Ln +

h̃(Sn ,Cn) − h̃(S0,C0) for n ≥ 0, it follows from Poisson’s equation that

Mn =
n−1∑
j=0

{
h̃(Sj+1,Cj+1) − E�

[
h̃(Sj+1,Cj+1) | (Sj ,Cj)

]}
�

Thus �Mn : n ≥ 0� is a martingale, and hence the partial sum process of
interest �Ln : n ≥ 0� is “almost” a martingale. Provided that 
(h̃2) < ∞, an
application of a FCLT for martingales as in Ref.[20] establishes a FCLT for
�Mn : n ≥ 0� under initial distribution 
, and a corresponding FCLT for
�f̃ (Sn ,Cn) : n ≥ 0� follows directly.
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To show that the solution to Poisson’s equation has finite second
moment with respect to 
, we can use the following result from Ref.[13] for
a general Markov chain �Zn : n ≥ 0�. Suppose that the drift conditions in
(6) and (7) hold. Then, for any f = O(g ), Poisson’s equation f − 
(f ) =
h − Ph admits a solution h satisfying the bound |h| ≤ c0(v + 1) for some
constant c0. Hence if 
(v2) < ∞, then 
(h2) < ∞ and the chain satisfies a
FCLT when the initial distribution is 
. It can then be shown[13] that the
FCLT in fact holds for any initial distribution of the chain.

We can now obtain an FCLT in the GSMP setting in a manner
analogous to our derivation of the SLLN in Theorem 3.1.1.1. Suppose
that Assumption PD(2u + 3) holds for some u ≥ 0. First apply
Proposition 3.1.1.2 with q = u + 1 to show that the conditions in (6) and
(7) hold with v = hu+1 and g = hu . Apply Proposition 3.1.1.2 again with
q = 2u + 3 followed by Proposition 3.1.1.1(ii) to show that 
(h2u+2) < ∞,
and hence 
(v2) < ∞. The discussion in the preceding paragraph now
implies the following result, where we define Un( f̃ ) as in (14), but with
r̃ ( f̃ ) replaced by 
( f̃ ).

Theorem 3.2.1.1. Suppose that Assumption PD(2u + 3) holds for some u ≥
0. Let f̃ : � �→ � be a specified function such that f̃ = O(hu). Then there exists
�̃( f̃ ) ≥ 0 such that Un( f̃ ) ⇒ �̃( f̃ )W as n → ∞ for any initial distribution �.

Ref.[18] gives variants of Theorems 3.1.1.1 and 3.2.1.1 in which the
assumption of finite qth moments for the clock-setting distributions is
strengthened to an assumption of convergent Laplace–Stieltjes transforms
in a neighborhood of the origin. Then the SLLN and FCLT can be shown
to hold, e.g., for any function f̃ (s, c) such that | f̃ | is bounded above by
some polynomial function of the clock readings.

To derive a continuous-time FCLT from Theorem 3.2.1.1, we can
proceed almost as in the derivation of Theorem 3.1.1.2 and apply the
discrete time result (with u = 1) to the function f̃ (s, c) = (ft ∗)(s, c) =
f (s)t ∗(s, c). Instead of using (12), however, we use a random-time-change
argument; see Ref.[17] for details. The resulting continuous-time FCLT is
as follows, where we define U�( f̃ ) as in (13), but with r (f ) replaced by

( ft ∗)/
(t ∗).

Theorem 3.2.1.2. Suppose that Assumption PD(5) holds and let f be an
arbitrary real-valued function defined on S. Then there exists �(f ) ≥ 0 such that
U�( f ) ⇒ �( f )W as � → ∞ for any initial distribution �.

Glynn and Haas[9] apply the foregoing approach in the setting of
finite-state irreducible SMPs, establishing a FCLT under essentially the
assumption that the holding time in each state has finite second moment.
In this simpler stochastic process setting, the martingale approach leads to
a closed-form expression for the variance constant �2(f ) in the FCLT.
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218 Glynn and Haas

3.2.2. Approach via Regenerative-Process Theory
The regenerative approach to establishing an FCLT parallels the

development of the SLLN in Section 3.1.2, using the following FCLT for
od-regenerative processes. Let �X (t) : t ≥ 0� be an od-regenerative process
with state space S and od-regeneration points �Tk : k ≥ 0�, and let f be a
real-valued function defined on S . Define the quantities k , Yk(f ), and r (f )
as in Section 3.1.2. Suppose that r (|f |) < ∞ and define U�(f ) as in (13).
Set

�2(f ) = Var�[Z1( f )] + 2Cov�[Z1( f ),Z2( f )]
E 2
� [1]

, (15)

where Zk(f ) = Yk(f ) − r (f )k for k ≥ 1. Note that the value of �2(f ) is
actually independent of the initial distribution � by virtue of the od-
regenerative property.

Proposition 3.2.2.1. Suppose that Y0(|f |) < ∞ a.s. and E [Y 2
1 (|f |) + 21] <∞. Then U�( f ) ⇒ �( f )W as � → ∞.

The proof of Proposition 3.2.2.1 rests on the FCLT for “mixing” stationary
random variables (Ref.[3], Th. 19.2) together with a random-time-change
result (Ref.[3], Sec. 14); see Ref.[17] for further details. When applying
Proposition 3.2.2.1 to a classical regenerative process, the covariance term
in (15) vanishes. Analogous results are available for both od-regenerative
and classical regenerative processes in discrete time.

As with the SLLN, previous work has focused on establishing classical
regenerative structure and finite cycle-length moments in order to obtain
an FCLT for GSMPs via Proposition 3.2.2.1. The approach to establishing
probabilistic restart is identical to that in Section 3.1.2. As in the latter
section, the geometric-trials approach can be used to show that the cycle
length 1, and hence the cycle integral Y1(f ), has finite second moment.
The condition that lim infn≥0 E�[��(n+1) − ��(n)] < ∞ is now strengthened to
require that lim infn≥0 E�[(��(n+1) − ��(n))

2+�] < ∞ for some � > 0. Similarly
to the situation described in Section 3.1.2, the more generic approach in
Ref.[17] leads to “regenerative versions” of Theorems 3.2.1.1 and 3.2.1.2.

4. IMPROVED LIMIT THEOREMS

In this section we provide new SLLNs and FCLTs that weaken the
moment conditions of Theorems 3.1.1.1, 3.1.1.2, 3.2.1.1, and 3.2.1.2. Our
approach exploits the fact that every positive Harris chain is an od-
regenerative process, and applies Propositions 3.1.2.1 and 3.2.2.1 in their
full generality. An argument reminiscent of the proof of Wald’s identities
establishes the required finite-moment properties of quantities such as the
od-regenerative cycle length.
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4.1. Statement of Results

Consider a GSMP �X (t) : t ≥ 0� with finite state space S and underlying
chain �(Sn ,Cn) : n ≥ 0� having initial distribution � and state space �.
Recall the definition of the holding-time function t ∗ in (1) and denote by
� the set of real-valued functions defined on �. For u ≥ 0, set

�u = {
h ∈� : |h(s, c)| ≤ a + b

(
t ∗(s, c)

)u
for some a, b ≥ 0 and all (s, c)∈�

}
�

Also write x ∨ y = max(x , y).
We first state a discrete-time SLLN and FCLT for the underlying chain

of a GSMP; see Section 5 below for proofs. Recall from Theorem 3.1.1.1
that if Assumption PD(1) holds for a GSMP, then the underlying chain is
positive Harris recurrent and admits a unique invariant distribution.

Theorem 4.1.1. Suppose that Assumption PD(u ∨ 1) holds for some u ≥ 0,
so that there exists a unique invariant distribution 
 for the underlying chain
�(Sn ,Cn) : n ≥ 0�. Then 
(|f̃ |) < ∞ and

lim
n→∞

1
n

n−1∑
j=0

f̃ (Sn ,Cn) = 
( f̃ ) a.s.

for any f̃ ∈ �u and initial distribution �.

Theorem 4.1.2. Let u ≥ 0 and f̃ ∈ �u. If Assumption PD
(
2(u ∨ 1)

)
holds,

then there exists a finite constant �̃( f̃ ) ≥ 0 such that Un( f̃ ) ⇒ �̃( f̃ )W as n → ∞
for any initial distribution �, where Un( f̃ ) is given by (14) with r̃ ( f̃ ) = 
( f̃ ).

A variant of the foregoing result asserts weak convergence to a limiting
Brownian motion on D[0,∞), the space of real-valued functions on [0,∞)

that are right-continuous and have limits from the left. The statement of
this theorem is identical to that of Theorem 4.1.2, except that the sequence
U1( f̃ ),U2( f̃ ), � � � is defined by setting

Un( f̃ )(t) = 1√
n

�nt�∑
j=0

(
f̃ (Sj ,Cj) − 
( f̃ )

)
for n, t ≥ 0. The proof is essentially identical to that of Theorem 4.1.2, and
we omit the details.

We now give limit theorems in continuous time. Given an invariant
distribution 
 for the underlying chain of a GSMP together with a function
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220 Glynn and Haas

f : S �→ �, set

r ( f ) = 
( ft ∗)

(t ∗)

,

where the functions t ∗ and ft ∗ are defined as before.

Theorem 4.1.3. Suppose that Assumption PD(1) holds. Then r (|f |) < ∞ and

lim
t→∞

1
t

∫ t

0
f
(
X (u)

)
du = r ( f ) a.s.

for any real-valued function f defined on S and any initial distribution �.

Theorem 4.1.4. Suppose that Assumption PD(2) holds, and let f be a real-
valued function defined on S. Then there exists a finite constant �( f ) ≥ 0 such that
U�( f ) ⇒ �( f )W as � → ∞ for any initial distribution �, where U�( f ) is given
by (13).

4.2. Discussion

The conclusions of Theorems 4.1.1 and 4.1.2 hold for a function
f ∈ �u (u ≥ 1) under the respective assumptions PD(u) and PD(2u),
and the conclusions of Theorems 4.1.3 and 4.1.4 hold under the
respective assumptions PD(1) and PD(2). The moment conditions in
Theorems 3.1.1.1, 3.1.1.2, 3.2.1.1, and 3.2.1.2 are substantially stronger:
the SLLN and FCLT for the underlying chain hold for a function f ∈
�u under the respective assumptions PD(u + 1) and PD(2u + 3), and the
corresponding limit theorems for the process �X (t) : t ≥ 0� hold under the
respective assumptions PD(2) and PD(5).

The moment conditions in Theorems 4.1.3 and 4.1.4 are natural in
light of known conditions for semi-Markov processes and continuous-
time Markov chains. E.g., it is shown in Ref.[9] that, for a finite-state
irreducible semi-Markov process, finite second moments on the holding
time distributions are necessary and sufficient for the conclusion of the
FCLT to hold; thus the moment condition in Theorem 4.1.4 is the weakest
general condition possible. The appropriateness of the moment conditions
in Theorems 4.1.1 and 4.1.2 may not be quite as apparent. For example,
it may not be clear why Theorem 4.1.2 requires finite second moments on
the clock-setting distributions even when f̃ (s, c) ≡ g (s) for some function
g , so that the constant u in the theorem can be taken as 0. The following
example shows that the conclusion of Theorem 4.1.2 can fail when clock-
setting distribution functions are allowed to have infinite second moments.
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FIGURE 1 State-transition diagram for GSMP of Example 4.2.1.

Example 4.2.1. Consider a GSMP with unit speeds, state space S = �1, 2�,
event set E = �e1, e2, e3�, and active event sets given by E(1) = �e3� and
E(2) = �e1, e2�. The state-transition probabilities are

p(2; 1, e3) = p(2; 2, e1) = p(1; 2, e2) = 1

(see Figure 1). The clock-setting distribution functions have the simple
form F (·; ei) for i = 1, 2, 3. Denote by �i and �i the first and second
moment of F (·; ei). We assume that �1, �2, �3, �1, �3 < ∞ and �2 = ∞. We
also assume that each F (·; ei) has a density function that is positive on
[0,∞).

Set �(−1) = −1 and �(n) = inf�k > �(n − 1) : S�(n) = 1� for n ≥ 0.
Because there are never any old events just after a transition from state 2
to state 1, the underlying chain probabilistically restarts whenever it hits
the set �1� × C(1). Because Assumption PD(1) holds, it follows from
Theorem 5.2.1 below that the random indexes ��(n) : n ≥ 0� form a
sequence of classical regeneration points for the underlying chain and that
the cycle length �1 = �(1) − �(0) has finite mean. It can then be shown[14]

that a necessary condition for the conclusion of Theorem 4.1.2 to hold
with f̃ (s, c) = s is that �1 have finite second moment. Observe that �1 is
distributed as N (T ) + 1, where �N (t) : t ≥ 0� is a renewal counting process
with inter-renewal distribution function F (·; e1) and T is an independent
sample from F (·; e2). Using the Cauchy-Schwartz inequality together with
a standard result for renewal counting processes (Ref.[1], p. 158), we have
E [N 2(t)] ≥ E 2[N (t)] ≥ t 2/�21 for t ≥ 0. Thus

E [�21] ≥ E [N 2(T )] = E [E [N 2(T ) |T ]] ≥ E [T 2/�21] = ∞,

so that the conclusion of Theorem 4.1.2 fails to hold.

A slight modification of the foregoing example shows that conclusion
of Theorem 4.1.1 can fail to hold if we allow clock-setting distributions to
have infinite mean.

Our assumption in Theorems 4.1.1, 4.1.2, 4.1.3, and 4.1.4 of positive
density components for the clock-setting distributions is by no means
necessary—it is easy to construct GSMPs that violate this assumption but
still satisfy SLLNs and FCLTs. The following example, however, shows that
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222 Glynn and Haas

some such assumption is needed in order to ensure that value of a time-
average limit does not depend upon the initial distribution.

Example 4.2.2. (An irreducible GSMP with no unique time-average
limit) Consider a GSMP with unit speeds, state space S = �1, 2, 3, 4�, event
set E = �e1, e2� and active event sets given by E(1) = E(3) = �e1, e2� and
E(2) = E(4) = �e2�. The state-transition probabilities are

p(1; 3, e1) = p(3; 1, e1) = 1

and

p(1; 2, e2) = p(2; 1, e2) = p(3; 4, e2) = p(4; 3, e2) = 1

(see Figure 2). Observe that this GSMP is irreducible in the sense of
Definition 3.1.1.1. Suppose that each successive new clock reading for
event ei (i = 1, 2) is uniformly distributed on a specified interval [ai , bi], and
that 0 ≤ a2 < b2 < a1 < b1. Then with probability 1 event e2 always occurs
before event e1 whenever both events simultaneously become active. It
follows that if the initial state is equal to 1 or 2, then the GSMP never
hits state 3 or 4; if the initial state is equal to 3 or 4, then the GSMP
never hits state 1 or 2. Thus, in general, the value of a limit of the
form limt→∞(1/t)

∫ t
0 f

(
X (u)

)
du depends on the initial distribution. Similar

observations hold for the underlying chain. Of course, this GSMP does not
satisfy Assumption PD(q) for any q ≥ 0 since the clock-setting distribution
function for event e1 does not have a density component that is positive on
an interval of the form (0, x̄).

The positive-density condition in Theorems 4.1.1–4.1.4 can actually be
weakened slightly. Denote by � the subset of the clock-setting distribution
functions such that F (·; s ′, e ′, s,E ∗) ∈ � if and only if E(s ′) = �e ′�. Then, in
Definition 3.1.1.2, we need only require that each clock-setting distribution
function F (·; s ′, e ′, s,E ∗) �∈ � have a density component that is positive and

FIGURE 2 State-transition diagram for GSMP of Example 4.2.2.
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continuous on (0, x̄). The point is that the positive-density assumption is
only needed when two or more events are simultaneously active, in order
to ensure that the events can occur in any specified order with positive
probability; see Ref.[17]. When the GSMP reduces to a semi-Markov process,
then every clock-setting distribution function is an element of �, so that
there are no positive-density requirements in this case.

In the continuous-time setting, the results in this paper focus on
rewards that accrue continuously at rate f (s) whenever the GSMP is in
state s ∈ S . It is not difficult to extend our results to handle “impulse
rewards,” e.g., a reward of the form g (s ′; s,E ∗) that accrues whenever the
simultaneous occurrence of the events in E ∗ triggers a transition from s to
s ′. The idea is to consider the Markov chain �(Sn ,Cn , Sn+1,Cn+1) : n ≥ 0�,
which inherits the stability properties of the underlying chain; cf Ref.[9].
Another straightforward extension of the results in the current paper
allows for the reward functions f̃ and f to take values in �l for some l > 1;
see Ref.[18], Sec. 7.2.1.

5. PROOFS

Before proving Theorems 4.1.1–4.1.4, we first review conditions under
which a GSMP has od-regenerative structure. These conditions allow the
application of Propositions 3.1.2.1 and 3.2.2.1.

5.1. OD-Regenerative Structure in GSMPs

The following proposition gives some conditions under which the
underlying chain of a GSMP is an od-regenerative process.

Proposition 5.1.1. Let �(Sn ,Cn) : n ≥ 0� be the underlying chain of a GSMP.
If Assumption PD(1) holds, then there exists a sequence ��(k) : k ≥ 0� of od-
regeneration points for �(Sn ,Cn) : n ≥ 0�. Moreover, the invariant distribution 
 of
the chain has the representation


(A) = E�

[ ∑�(1)−1
n=�(0) 1A(Sn ,Cn)

]
E�[�1]

for A ⊆ �, where �1 = �(1) − �(0) and 1A is the indicator function of the set A.

The idea of the proof is as follows (see Ref.[17] and references therein
for further details). Because Assumption PD(1) holds by hypothesis,
Propositions 3.1.1.1, and 3.1.1.2 together imply that the underlying chain
�(Sn ,Cn) : n ≥ 0� is positive Harris recurrent with recurrence measure 	̄
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224 Glynn and Haas

defined by (8). By a well known result for Harris chains, there exists a set
� ⊆ � with 	̄(�) > 0 such that

P r ((s, c), ·) = ��(·) + (1 − �)Q ((s, c), ·), (s, c) ∈ � (16)

for some r ≥ 1, � ∈ (0, 1], probability distribution �, and transition kernel
Q ; see Asmussen[1] Sec. VI.3, Glynn and L’Ecuyer[12], and Meyn and
Tweedie[24], Th. 5.2.3. Indeed, any subset A ⊆ � with 	̄(A) > 0 contains
such a �-set (Ref.[24], Th. 5.2.2). Observe that, since 	̄(�) > 0, it
follows that P��(Sn ,Cn) ∈ � i.o.� = 1. The decomposition in (16) permits
construction of a version of the underlying chain together with a
sequence ��(k) : k ≥ 0� of random indices that serve as od-regeneration
points. The construction uses a sequence �In : n ≥ 0� of i.i.d. Bernoulli
random variables with P��In = 1� = 1 − P��In = 0� = �. The idea is to
generate successive states of the underlying chain according to the initial
distribution � and one-step transition kernel P until the first time M ≥ 0
such that (SM ,CM )∈�. If IM = 1, then generate (SM+r ,CM+r ) according to
�; if IM = 0, then generate (SM+r ,CM+r ) according to Q ((SM ,CM ), ·). Next,
generate the intermediate states �(Sn ,Cn) : M + 1 ≤ n < M + r � according
to an appropriate conditional distribution (conditioned on the endpoint
values (SM ,CM ) and (SM+r ,CM+r )). Now iterate this procedure starting
from state (SM+r ,CM+r ). The successive times �(0), �(1), � � � at which the
state of the chain is distributed according to � form a sequence of od-
regeneration points. [Observe that the length of each cycle is greater than
or equal to r . In general, the conditioning on (SM ,CM ) and (SM+r ,CM+r )

mentioned above results in statistical dependence between (S�(n),C�(n)) and
(S�(n)−r ,C�(n)−r ) for each n ≥ 0, which is why the cycles are one-dependent.]
The second assertion of the proposition follows from Theorem VI.3.2 in
Ref.[1].

Although we do not use this fact in the sequel, a close inspection of the
foregoing proof shows that the cycle lengths ��(k) − �(k − 1) : k ≥ 1� are
i.i.d., so that the od-regeneration points form a (possibly delayed) renewal
process. On the other hand, the continuous-time cycle lengths ���(k) −
��(k−1) : k ≥ 1� are, in general, one-dependent and stationary.

5.2. Proof of the SLLNs and FCLTs

Under Assumption PD(1), Proposition 5.1.1 guarantees the existence
of a sequence ��(k) : k ≥ 0� of od-regeneration points for the underlying
chain �(Sn ,Cn) : n ≥ 0� and a corresponding sequence ���(k) : k ≥ 0� of
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od-regeneration points for the GSMP �X (t) : t ≥ 0�. For a real-valued
function f̃ defined on �, set

Ỹi( f̃ ) =
�(i)−1∑

j=�(i−1)

f̃ (Sn ,Cn) (17)

for i ≥ 0. [Take �(−1) = 0.] Also set 1̃(s, c) ≡ 1 for all (s, c) ∈ �.
Theorem 4.1.3 follows from Proposition 3.1.2.1 provided that the cycle
length 1 = ��(1) − ��(0) = Ỹ1(t ∗) has finite mean, and Theorem 4.1.4 follows
from Proposition 3.2.2.1 provided that 1 has finite second moment.
Similarly, Theorem 4.1.1 (resp., Theorem 4.1.2) follows from the discrete-
time version of Proposition 3.1.2.1. (resp., Proposition 3.2.2.1) provided
that the cycle length �1 = �(1) − �(0) = Ỹ1(1̃) and the cycle quantity Ỹ1(|f̃ |)
have finite first (resp., second) moments. [In this connection, observe that
Ỹ0(|f̃ |) < ∞ a.s. because �(0) is a.s. finite by Proposition 5.1.1 and each
new clock reading is a.s. finite by definition.] To establish the desired limit
theorems, it therefore suffices to prove the following general result on cycle
moments.

Theorem 5.2.1. Suppose that Assumption PD(q(u ∨ 1)) holds for some q ∈
�1, 2, � � � � and u ≥ 0. Then E�Ỹ

q
1 (|f̃ |) < ∞ for any f̃ ∈ �u, where Ỹ1 is defined

as in (17).

We prove the assertion of Theorem 5.2.1 via a sequence of lemmas. Fix
a compact set B ⊆ � and denote by TB the return time to B: TB = inf�n >

0 : (Sn ,Cn) ∈ B�. Lemma 5.2.1 below gives upper bounds on the moments
of TB . To prepare for this lemma, first recall the definition of hq from (10).
By an argument that uses the drift conditions (11) in Proposition 3.1.1.2
together with Dynkin’s formula, we have

E(s,c)

[ TB−1∑
n=0

hq−1(Sn ,Cn)

]
≤ �qhq(s, c) (18)

for some finite positive constant �q = �q(B) and all (s, c) ∈ �; see the proof
of Theorem 14.2.3 in Ref.[24] for details. Next, fix finite positive constants
a1 = 1, a2, a3, � � � such that

nq+1 ≤ aq+1(1q + 2q + · · · + nq) (19)

for n ≥ 1 and q ∈ �0, 1, 2, � � � �—it is well known that such constants exist.
Finally, set bq = ∏q

i=1(ai�i) for q ≥ 1.
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Lemma 5.2.1. Suppose that Assumption PD(q) holds for some q ∈ �1, 2, � � � �.
Then

E(s,c)[T q
B ] ≤ bqhq(s, c)

for (s, c) ∈ �.

Proof. Our proof is by induction on q . Fix (s, c) ∈ � and observe that the
desired result holds for q = 1 by virtue of (18). Assume for induction that
the lemma holds for some q ≥ 1 and observe that, by (19),

E(s,c)[T q+1
B ] ≤ aq+1E(s,c)

[ TB−1∑
n=0

(TB − n)q
]

= aq+1

∞∑
n=0

E(s,c)[(TB − n)q ;TB > n], (20)

where the interchange of sum and expectation is justified by the
nonnegativity of the summands. Using the Markov property together with
the induction hypothesis, we find that

E(s,c)[(TB − n)q ;TB > n] = E(s,c)[E(s,c)[(TB − n)q ;TB > n | (Sk ,Ck) : 0 ≤ k ≤ n]]
= E(s,c)[I (TB > n)E(Sn ,Cn )[T q

B ]]
≤ E(s,c)[I (TB > n)bqhq(Sn ,Cn)], (21)

where I (A) is the indicator function for the event A. Substituting (21) into
(20), interchanging sum and expectation, and applying (18), we find that

E(s,c)[T q+1
B ] ≤ aq+1bqE(s, c)

[ TB−1∑
n=0

hq(Sn ,Cn)

]
≤ aq+1�q+1bqhq+1(s, c)

= bq+1hq+1(s, c),

and the desired result follows. �

The next step in the argument is to show that the discrete-time cycle
length �1 has finite qth moment under Assumption PD(q). To this end,
we use the following fact: if X1,X2, � � � ,Xk (k ≥ 1) are nonnegative random
variables and a1, a2, � � � , ak are positive integers, then

E [X a1
1 X a2

2 · · ·X ak
k ] ≤ Ea1/q [X q

1 ]Ea2/q [X q
2 ] · · ·Eak/q [X q

k ], (22)
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where q = a1 + a2 + · · · + ak . The inequality in (22) follows by an easy
induction argument on k that uses Hölder’s inequality.

Lemma 5.2.2. Suppose that Assumption PD(q) holds for some q ∈ �1, 2, � � � �.
Then E�[�q1] < ∞.

Proof. We give the proof under the simplifying assumption that (16)
holds with r = 1; the extension to the general case is straightforward as in
Ref.[25]. Let � ⊂ � be as in (16), and set

�q = sup
(s,c)∈�

E(s,c)[T q
�]�

We can assume that � is compact, and it follows from Lemma 5.2.1 that
�q < ∞. Assume for convenience that the initial state of the chain is an
element of �, and that the initial Bernoulli trial is successful (i.e., I0 =
1), so that �(0) = 1. Denote by �i the number of state transitions between
the (i − 1)st and ith visit of the underlying chain to �, where the 0th visit
occurs at time 0. Also denote by N the number of returns to �, up to and
including the return that corresponds to the first successful Bernoulli trial
after time 0. Observe that, by (16),

P��N ≥ i� = (1 − �)i−1 (23)

for i ≥ 1. Also observe that

E�[�q1] = E�

[( N∑
i=1

�i
)q]

�

We can write ( N∑
i=1

�i

)q

= b1V1 + b2V2 + · · · + bmVm ,

where m and b1, b2, � � � , bm are finite integers and each Vj is a sum of the
form

Vj =
N∑

i1=1

N∑
i2=1

· · ·
N∑

ik=1

�
a1
i1 �

a2
i2 · · · �akik �

Here the integers k, a1, a2, � � � , am are such that k = k(j) ≤ q , al = al(j) ≥ 1
for 1 ≤ l ≤ k, and a1 + · · · + ak = q . It therefore suffices to show that each
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Vj has finite mean. Consider an arbitrary fixed value of j , and observe that,
using (22),

E�[Vj ] = E�

[ N∑
i1=1

N∑
i2=1

· · ·
N∑

ik=1

�
a1
i1 �

a2
i2 · · · �akik

]

=
∞∑

i1=1

∞∑
i2=1

· · ·
∞∑

ik=1

E�

[
�
a1
i1 I (N ≥ i1) �

a2
i2 I (N ≥ i2) · · · �akik I (N ≥ ik)

]
≤

∞∑
i1=1

∞∑
i2=1

· · ·
∞∑

ik=1

( k∏
l=1

Eal /q
�

[
�
q
il I (N ≥ il)

])
� (24)

Let �0 = �(S0,C0, I0), that is, the �-field generated by (S0,C0, I0), and �j =
�
(
(Sn ,Cn , In) : 0 ≤ n ≤ �1 + · · · + �j

)
for j ≥ 1. For each i ≥ 1, observe that

I (N ≥ i) is measurable with respect to �i−1, so that

E�[�qi I (N ≥ i)] = E�[I (N ≥ i)E�[�qi
∣∣ �i−1]] ≤ �qP��N ≥ i��

Using the foregoing inequality together with (23) and (24), we find that

E�[Vj ] ≤ �q

k∏
l=1

( ∞∑
i=1

P al /q
� �N ≥ i�

)
= �q

k∏
l=1

( ∞∑
i=1

(1 − �)al (i−1)/q

)
< ∞

as desired. �

To complete the proof of Theorem 5.2.1, we need the following
proposition.

Proposition 5.2.1. Let SN = ∑N
n=1 Xn, where �Xn : n ≥ 1� is a sequence of

i.i.d. random variables and N is a stopping time with respect to an increasing
sequence ��n : n ≥ 1� of �-fields such that Xn is measurable with respect to �n for
n ≥ 1 and independent of �n−1 for n ≥ 2. Then for r ≥ 0 there exists a finite
constant br (depending only on r ) such that E [|SN |r ] ≤ br E [|X1|r ]E [N r ].

The proof of Proposition 5.2.1 is contained in the proof of Theorem I.5.2
in Gut[16].

Proof of Theorem 5.2.1. Fix q , u, and f̃ ∈ �u . For ease of exposition,
we assume that all speeds for active events are equal to 1 and that
F (·; s ′, e ′, s, e∗) ≡ F (·; e ′) for all s ′, e ′, s, and e∗. Denote by Ai ,j the value of
the j th new clock reading generated for event ei after time ��(0), and by Ni
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the number of new clock readings generated for event ei in the interval
(��(0), ��(1)). Observe that

Ỹ1(|f̃ |) ≤ a�1 + b
M∑
i=1

Cu
�(0),i + b

M∑
i=1

Ni+r∑
j=1

Au
i ,j (25)

for some a, b ≥ 0, where r is as in (16). It therefore suffices to show that

E�

[(Ni+r∑
j=1

Au
i ,j

)q]
< ∞ (26)

and

E�[Cqu
�(0),i] < ∞ (27)

for 1 ≤ i ≤ M—this assertion follows from (25), Lemma 5.2.2, and the
elementary inequality

E [(X1 + X2 + · · · + Xk)
q ] ≤ kq−1

(
E [X q

1 ] + E [X q
2 ] + · · · + E [X q

k ]),
which holds for any k ≥ 1 and non-negative random variables X1,X2, � � � ,Xk .
To see that (26) holds, fix i and denote by �(i , j) the random index of
the state transition at which Ai ,j is generated. Set �j = �((Sn ,Cn , In) : 0 ≤
n ≤ �(i , j)) for j ≥ 1, and observe that (i) Ai ,j is measurable with respect
to �j for j ≥ 1, (ii) Ai ,j is independent of �j−1 for j ≥ 2, and (iii) Ni +
r is a stopping time with respect to ��n : n ≥ 1�. Moreover, since Ni ≤
�1, it follows from Lemma 5.2.2 that E�[(Ni + r )q ] < ∞. An application of
Proposition 5.2.1 now establishes (26). In light of (16), it can be seen
that a sufficient condition for (27) to hold is sup(s,c)∈�

∫ ∞
0 xqu dGi(x ; s, c) <

∞, where Gi(x ; s, c) = P(s,c)�Cr ,i ≤ x�. Observe that if Xi is distributed
according to Gi(x ; s, c), then Xi is stochastically dominated by Wi(c) =
Wi(c1, c2, � � � , cM ) = max(ci ,Bi ,1,Bi ,2, � � � ,Bi ,r ), where Bi ,1,Bi ,2, � � � ,Bi ,r are i.i.d.
samples from F (·; ei). Because � is assumed compact, there is a finite
constant b such that max1≤j≤M ci ≤ b for all c = (c1, c2, � � � , cM ) such that
(s, c) ∈ �. Thus E [X qu

i ] ≤ E [W qu
i (c)] ≤ bqu + rE [Bqu

i ,1] < ∞, and the desired
result follows. �

As an aside, it follows from the results of this section that the limits r (f )
and 
( f̃ ) in Theorems 4.1.1 and 4.1.3 can be expressed as ratios of the
form

r (f ) = E�[Y1(f )]
E�[1] and 
( f̃ ) = E�[Ỹ1( f̃ )]

E�[�1] ,
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where Ỹ1( f̃ ) = ∑�(1)−1
j=�(0) f̃ (Sn ,Cn) and Y1(f ) = ∫ ��(1)

��(0)
f (X (u))du. Similarly, the

variance constants �2(f ) and �̃2( f̃ ) in Theorems 4.1.2 and 4.1.4 can be
expressed as

�2(f ) = Var�Z1(f ) + 2Cov�[Z1(f ),Z2(f )]
E 2
� [1]

and

�̃2( f̃ ) = Var�[Z̃1( f̃ )] + 2Cov�[Z̃1( f̃ ), Z̃2( f̃ )]
E 2
� [�1]

,

where Zk(f ) = Yk(f ) − r (f )k and Z̃k( f̃ ) = Ỹk( f̃ ) − 
( f̃ )�k for k ≥ 1. Note
that none of the foregoing quantities actually depend on the initial
distribution �.
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