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We develop a class of techniques for analyzing the output of simulations of a semi-regenerative

process. Called the semi-regenerative method, the approach is a generalization of the regenerative

method, and it can increase efficiency. We consider the estimation of various performance measures,

including steady-state means, expected cumulative reward until hitting a set of states, derivatives

of steady-state means, and time-average variance constants. We also discuss importance sampling

and a bias-reduction technique. In each case, we develop two estimators: one based on a simulation

of a single sample path, and the other a type of stratified estimator in which trajectories are gen-

erated in an independent and identically distributed manner. We establish a central limit theorem

for each estimator so confidence intervals can be constructed.
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1. INTRODUCTION

A stochastic process is regenerative if, loosely speaking, there exists an infi-
nite sequence of random times, known as regeneration points, at which the
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process probabilistically restarts. For example, for a positive-recurrent irre-
ducible Markov chain on a discrete state space S, the successive hitting times
to a fixed state form one possible regeneration sequence. A sample path of a re-
generative process can be divided into independent and identically distributed
(i.i.d.) cycles based on the sequence of regeneration points. The regenerative
method (RM) of simulation output analysis [Crane and Iglehart 1975] uses this
structure to construct asymptotically valid confidence intervals for the steady-
state mean of a regenerative process.

There are several settings in which exploiting regenerative structure and
applying the RM lead to improvements over other methods. For example, the
only known estimator of the time-average variance constant with convergence
rate t−1/2, where t is the run length of the simulation, is based on the RM
[Henderson and Glynn 2001]. (The time-average variance constant is the vari-
ance constant appearing in the central limit theorem for the time average of
a process.) Several bias-reduction techniques rely on regenerative structure
[Meketon and Heidelberger 1982; Glynn 1994]. Also, it is known that the
variance of likelihood ratio derivative estimators (respectively, importance-
sampling estimators) grows linearly (respectively, exponentially) in the length
of observations [Reiman and Weiss 1989; Glynn 1990; Glynn 1995] so breaking
up a sample path into regenerative cycles can be beneficial.

For many regenerative processes, there is more than one choice of regenera-
tion sequence to use for the RM. For example, for a Markov chain, returns to
any fixed state constitute regenerations. In such settings, it would be useful to
have methods that exploit multiple regeneration sequences.

In this article, we present a general approach for taking advantage of mul-
tiple regeneration sequences. We call it the semi-regenerative method (SRM)
because of its relationship to the theory of semi-regenerative stochastic pro-
cesses (Section 10.6 of Çinlar [1975]). We develop the SRM in the context of
Markov chains on a discrete state space S, with the goal of obtaining estima-
tors that have smaller variance than their regenerative counterparts.

The basic idea of the SRM is to fix a set of states A ⊂ S, and we define a
trajectory as a sample path beginning in a state in A until the first return to A.
Then we derive a new representation for the performance measure of interest in
terms of expectations of functionals of trajectories. The semi-regenerative esti-
mator results by replacing each expectation with a simulation-based estimator
of it.

We develop the SRM for several different classes of performance measures,
and in each case, we define two estimators. One is based on simulating a single
(long) sample path which we then divide into trajectories. The other uses a type
of stratification in which trajectory segments are sampled in an i.i.d. manner.
We establish central limit theorems for each of our semi-regenerative estima-
tors, thus enabling one to construct asymptotically valid confidence intervals.

Other methods for simulating processes with multiple regeneration se-
quences have been proposed in the literature, including the almost regener-
ative method (ARM) [Gunther and Wolff 1980], A-segments [Zhang and Ho
1992], semi-stationary processes [Alexopoulos and Shultes 1998], and per-
muted regenerative estimators [Calvin and Nakayama 1998, 2000b, 2000a].
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The other methods, which all result in estimators that differ from semi-
regenerative estimators, are based on simulating a single sample path. In ad-
dition to our semi-regenerative estimators based on a single sample path, we
also consider stratified estimators, which have no analogues with the other
methods.

Gunther and Wolff [1980] developed the ARM only for estimating the steady-
state mean reward. It fixes two disjoint sets of states, U and V , and divides a
sample path into almost regenerative cycles that begin and end with transitions
from the set U to the set V . To relate this to the semi-regenerative estimator,
let V = A and U = S\A, and note that the SRM allows for trajectories con-
sisting of one transition from A back to A, whereas this cannot be an almost
regenerative cycle. (Similarly, the approach of Alexopoulos and Shultes [1998]
for semi-stationary processes does not allow transitions from A directly back to
A.) If we remove the restriction that the sets U and V are disjoint in the ARM,
then the resulting ARM point estimator is the same as the SRM estimator when
using one long sample path.

Zhang and Ho [1992] developed the A-segments method to reduce the vari-
ance of likelihood ratio derivative estimators. Their technique breaks up a sam-
ple path into A-segments determined by returns to the set A as is done with
the SRM, but they construct their estimator using an approach that differs
from ours and end up with a different estimator. Also, Zhang and Ho only apply
their method to likelihood ratio derivative estimation, and they do not prove a
central limit theorem for their estimator as we do.

Permuted regenerative estimators [Calvin and Nakayama 1998, 2000b,
2000a] are constructed by first running a simulation of a fixed number of cycles
from one regeneration sequence. Then, for each regeneration sequence, permute
the cycles of that sequence along the generated path. Compute an estimate of
the performance measure based on this permuted sample path, and averaging
over all permuted paths yields the permuted estimator.

Calvin and Nakayama [2002] analyze the difference between semi-
regenerative and permuted estimators when estimating the second moment of
a cycle reward when |A| = 2. They also compare the two estimators to another,
a type of V -statistic estimator, which resamples trajectories with replacement.
They demonstrate that the three estimators are not the same in general, but
they are asymptotically equivalent and satisfy the same central limit theorem.
Specifically, they show that, for the performance measure considered, the per-
muted estimator is unbiased, and the other two estimators have positive bias
with the bias of the SRM estimator at least as large of that for the V -statistic
estimator.

An alternative approach to using multiple regeneration sequences is to try
to increase the frequency of regenerations from a single sequence. Andradöttir
et al. [1995] discuss such an approach for simulation of Markov chains. Instead
of regenerations occurring with each visit to a fixed state, regenerations may
occur (with a certain state-dependent probability) for visits to many states. In
the case of the regenerative estimator of the time-average variance constant,
basing the estimator on a regenerative subsequence of a regeneration sequence
produces an estimator with at least as large a variance.
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The rest of the article has the following structure. In Section 2, we develop
the mathematical framework for the article. Throughout this article, we re-
strict the setting to discrete-time Markov chains on a discrete state space, but
the methods also apply to more general semi-regenerative processes. In Sec-
tion 3, we derive semi-regenerative estimators for steady-state means, and,
in Section 5, we develop estimators that incorporate importance sampling for
estimating steady-state means. We construct estimators for the expected cumu-
lative reward until hitting a set of states, the gradient of a steady-state mean,
and the time-average variance constant in Sections 6, 7, and 4, respectively.
In Section 8, we derive a semi-regenerative version of a regenerative low-bias
estimator. In Section 9, we consider ratios of steady-state means. We close with
some concluding remarks.

Calvin et al. [2001] present (without proofs) some of the results from the
current article. In particular, Calvin et al. [2001] present the semi-regenerative
estimator based on a single sample path for the expected cumulative reward
until hitting a set as well as some importance sampling estimators for this
measure which are not in the current article. Also, Calvin et al. [2001] give
some empirical results.

2. MATHEMATICAL FRAMEWORK

Let X = {X j : j = 0, 1, 2, . . .} be a discrete-time Markov chain (DTMC) on
a finite or countably infinite state space S. Let � = (�(x, y) : x, y ∈ S) be
the transition probability matrix of X , and let Px (respectively, Ex , Varx , and
Covx) denote the probability measure (respectively, expectation, variance, and
covariance) given that X 0 = x, x ∈ S.

Assumption 2.1. The DTMC X with transition probability matrix � is ir-
reducible and positive recurrent.

Under Assumption 2.1, X has a unique stationary distribution π = (π (x) :
x ∈ S), which is the row-vector solution to π = π� with

∑
x∈S π (x) = 1 and

π (x) > 0 for all x ∈ S.

3. STEADY-STATE MEANS

Let f : S → � be a reward function. Our goal is to estimate α = π f ≡∑
x∈S π (x) f (x).

Assumption 3.1. The reward function f satisfies∑
x∈S

π (x)| f (x)| < ∞.

3.1 The Regenerative Method

Consider first the regenerative method [Crane and Iglehart 1975]. For x ∈ S,
define τx = inf { j ≥ 1 : X j = x}. Fix a return state w ∈ S. Under Assumptions
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2.1 and 3.1, the RM is based on the identity

α =
Ew

[∑τw−1
j=0 f (X j )

]
Ew [τw]

. (1)

The moments in Equation (1) are estimated by generating independent copies
of (

τw−1∑
j=0

f (X j ), τw

)
under measure Pw (2)

and forming the sample means. Specifically, let Tw,0 = inf{ j ≥ 0 : X j = w}
and Tw,k = inf{ j > Tw,k−1 : X j = w} for k ≥ 1. Define τw,k = Tw,k − Tw,k−1, for

k ≥ 1. Also, define Yw,k = ∑Tw,k−1
j=Tw,k−1

f (X j ) for k ≥ 1. Now fix a large integer

n and run a simulation of X up to time Tw,n, giving a sample path {X j : j =
0, 1, . . . , Tw,n}. The (Yw,k , τw,k), k = 1, 2, . . . , n, are i.i.d. copies of Equation (2).
Set Ȳ w,n = (1/n)

∑n
k=1 Yw,k and τ̄w,n = (1/n)

∑n
k=1 τw,k . Then the regenerative

estimator of α is α̃w,n ≡ Ȳ w,n/τ̄w,n.
Let N (κ, �) denote a normal distribution with mean vector κ and covari-

ance matrix �, and let
D→ denote convergence in distribution. We can form an

asymptotically valid confidence interval for α based on the following central
limit theorem (e.g., see p. 100 of Shedler [1993]).

PROPOSITION 3.2. If Assumption 2.1 holds and if Ew[(
∑τw−1

j=0 | f (X j )|)2] < ∞
and Ew[τ 2

w] < ∞, then

n1/2(̃αw,n − α)
D→ N (0, σ̃ 2)

as n → ∞, where σ̃ 2 = (Var[Yw,k] − 2αCov(Yw,k , τw,k) + α2Var[τw,k])/Ew[τw,k].

3.2 The Semi-Regenerative Estimator for Steady-State Means

We will now develop another estimator for α. Fix a set of states A ⊂ S, A 
= ∅,
and set

T0 = inf { j ≥ 0 : X j ∈ A},
Tk = inf { j > Tk−1 : X j ∈ A}, k ≥ 1,

T = T1,

Wk = X Tk , k ≥ 0.

The following result follows from Çinlar [1975, pp. 314–315].

PROPOSITION 3.3. Under Assumption 2.1, W = {Wk : k ≥ 0} is an irreducible,
positive-recurrent discrete-time Markov chain with state space A.

The process W is sometimes called the “chain on A”. Define R(x, y) =
Px(X T = y) for x, y ∈ A, and let R = (R(x, y) : x, y ∈ A) which is the
transition probability matrix of W . Under Assumption 2.1, Proposition 3.3 im-
plies the existence of a unique stationary distribution ν = (ν(x) : x ∈ A) ∈ �1×d

for W ; that is, ν is the row vector satisfying νR = ν with
∑

x∈A ν(x) = 1 and
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ν(x) > 0 for all x ∈ A. Let Eν denote expectation with initial distribution ν. We
assume the following:

Assumption 3.4. |A| = d < ∞, with A = {x1, x2, . . . , xd }.
The SRM is based on the following identity.

PROPOSITION 3.5. If Assumptions 2.1, 3.1, and 3.4 hold, then

α =
Eν

[∑T−1
j=0 f (X j )

]
Eν [T ]

=
∑d

i=1 ν(xi)Exi

[∑T−1
j=0 f (X j )

]
∑d

i=1 ν(xi)Exi [T ]
.

We defer the proof to Remark 3.9 before Theorem 3.10 in Section 3.3. Çinlar
[1975], Theorem 10.6.12, provides a proof of this result under different assump-
tions when the function f is of the form f (x) = I (x ∈ B) for some set of states
B ⊂ S, where I ( · ) is the indicator function. Also, see Zhang and Ho [1992].

Using the semi-regenerative identity in Proposition 3.5, we will now develop
an estimator for α, using a type of stratified sampling. Let

Y =
T−1∑
j=0

f (X j ),

τ = T,

χ ( y) = I (X T = y), for y ∈ A.

Let p1, p2, . . . , pd , be d positive numbers summing to one. Given a replication
budget n, we will sample �pin times from the initial state xi ∈ A, where for
a ∈ �, �a is the greatest integer less than or equal to a. Specifically, for each
i = 1, 2, . . . , d , let

(Yk(xi), τk(xi), χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ �pin be i.i.d. copies of

(Y , τ, χ ( y) : y ∈ A) under measure Pxi .

Set

Rn(xi, y) = 1

�pin
�pin∑
k=1

χk(xi, y)

for 1 ≤ i ≤ d and y ∈ A, and set Rn = (Rn(x, y) : x, y ∈ A) ∈ �d×d . Clearly,

Rn → R a.s. (3)

as n → ∞ by the strong law of large numbers. Since R is irreducible and
positive recurrent by Proposition 3.3, Rn also is for sufficiently large n, so there
exists a unique stationary distribution νn = (νn(x) : x ∈ A) ∈ �1×d for Rn for
n sufficiently large; that is, νn satisfies νn = νn Rn with

∑
x∈A νn(x) = 1 and

νn(x) > 0 for all x ∈ A for sufficiently large n by Proposition 3.3. We define the
semi-regenerative estimator of α to be

αn =
∑d

i=1 νn(xi)
1

�pin
∑�pin

k=1 Yk(xi)∑d
i=1 νn(xi)

1
�pin

∑�pin
k=1 τk(xi)

. (4)

If |A| = 1, then αn is the standard regenerative estimator of α.
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The estimator αn is a type of stratified estimator [Cochran 1977, Chapter 5],
in which starting a trajectory from xi is effectively a sample from stratum i, 1 ≤
i ≤ d . In general, for an arbitrary choice of the pi ’s, the estimator αn can have

a variance very different from that of the point estimator (1/Tn)
∑Tn−1

j=0 f (X j )

based on one long sample path of length Tn. Later in this section, we discuss
methods for determining the weights pi to minimize the asymptotic variance
of αn. Also, we will carry out an asymptotic comparison of the point estimator
of one long sample path and the semi-regenerative estimator in Section 3.3.

We now want to develop a central limit theorem for the semi-regenerative
estimator αn. For this, we will need to make some moment assumptions.

Assumption 3.6. There exists w ∈ S such that

Ew
[
τ 2

w

]
< ∞, Ew

⎡⎣(
τw−1∑
j=0

| f (X j )|
)2

⎤⎦ < ∞.

PROPOSITION 3.7. Under Assumptions 2.1 and 3.6, Ex[Y 2] < ∞ and
Ex[τ 2] < ∞ for all x ∈ A.

For a proof, see Chung [1967, Theorem 4, p. 84].
We now state our central limit theorem for αn. For i = 1, 2, . . . , d , define the

matrix �i = (�i(x, y) : x, y ∈ A) with entries

�i(x j , xk) = Covxi (χ (x j ), χ(xk)) = −R(xi, x j )R(xi, xk), j 
= k, (5)

and

�i(x j , x j ) = Varxi (χ (x j )) = R(xi, x j )(1 − R(xi, x j )). (6)

For i, j = 1, 2, . . . , d , define g (xi, x j ) = Covxi (χ (x j ), Z ) and h(xi) = Varxi (Z ),
where Z = Y − ατ . Let z = (z(x) : x ∈ A) ∈ �d×1 with z(x) = Ex[Z ]. Let e
denote the vector of all 1’s in �d×1, and let V be the matrix in �d×d in which all
rows are equal to ν; that is, V = eν. Let F = (I − R + V )−1, the fundamental
matrix of W , which exists under Assumptions 2.1 and 3.4 by Proposition 3.3
(e.g., see Kemeny and Snell [1960, p. 100]). Finally, let ζ = (ζ (x) : x ∈ A) ∈ �d×1

be defined by ζ = F z. The following establishes a central limit theorem for αn;
see the appendix for the proof.

THEOREM 3.8. Under Assumptions 2.1, 3.1, 3.4, and 3.6,

n1/2 (αn − α)
D→ N (0, σ 2)

as n → ∞, where

σ 2 = 1

(Eν[T ])2

d∑
i=1

ν2(xi)ηi

pi
, (7)

with

ηi = h(xi) + 2
d∑

j=1

g (xi, x j )ζ (x j ) +
d∑

j=1

d∑
l=1

ζ (x j )ζ (xl )�i(x j , xl ). (8)
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We can consistently estimate σ 2 by estimating each of the quantities in Equa-
tion (7) as follows:

—Estimate Eν[T ] by νnτ̄n.

—Estimate ν(xi) by νn(xi).

—Estimate h(xi) by

hn(xi) = 1

�pin − 1

�pin∑
k=1

(Yk(xi) − Ȳ n(xi))
2 + α2

n

�pin − 1

�pin∑
k=1

(τk(xi) − τ̄n(xi))
2

− 2αn

�pin − 1

�pin∑
k=1

(Yk(xi) − Ȳ n(xi))(τk(xi) − τ̄n(xi)),

where Ȳ n(xi) = (1/�pin)
∑�pin

k=1 Yk(xi) and τ̄n(xi) = 1
�pin

∑�pin
k=1 τk(xi).

—Estimate ζ by ζn = (I − Rn + Vn)−1(Ȳ n − αnτ̄n), where Vn = eνn and Ȳ n =
(Ȳ n(x) : x ∈ A).

—Estimate g (xi, x j ) by

gn(xi, x j )

= 1

�pin − 1

�pin∑
k=1

[χk(xi, x j ) − Rn(xi, x j )][(Yk(xi) − αnτk(xi)) − Z̃n(xi)],

where Z̃n(xi) = Ȳ n(xi) − αnτ̄n(xi).

—Estimate �i(x j , xl ) by

�i,n(x j , xl ) =
{

−Rn(xi, x j )Rn(xi, xl ) if j 
= l ,

Rn(xi, x j )(1 − Rn(xi, x j )) if j = l .

The resulting estimator σ̂ 2
n of σ 2 is then strongly consistent and can be used to

construct an asymptotically valid (as n → ∞) 100(1−δ)% confidence interval for
α given by (αn −aδσ̂n/

√
n, αn +aδσ̂n/

√
n), where aδ is chosen so that P (N (0, 1) ≥

aδ) = δ/2.
The semi-regenerative approach opens up the possibility of stratification (i.e.,

choosing the {pi}) in a way that is impossible to implement in the regenerative
context. This is a potentially important additional degree of freedom that does
not have a regenerative analogue.

For a fixed subset A of states, we now consider the problem of choosing the
optimal {pi} to minimize σ 2. By Equation (7), we can write

σ 2 ≡ σ 2(p1, p2, . . . , pd ) =
d∑

i=1

ci

pi
,

where ci = ηi(ν(xi)/Eν[T ])2. It can be shown (see Equation (55) in the appendix)
that ci ≥ 0. Minimizing σ 2 subject to

∑d
i=1 pi = 1 and pi ≥ 0 yields the optimal

{p∗
i } given by

p∗
i =

√
ci∑d

j=1

√c j
; (9)
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Fig. 1. Transition probabilities of a machine-repair Markov chain.

see Cochran [1977, Chapter 5]. Since the {ci} are typically unknown, one ap-
proach to applying this result in practice is to use a two-stage procedure. In the
first stage, simulate a pilot run to estimate the {ci}; one approach for implement-
ing the pilot run is to fix a number n of trajectories, and for each i = 1, 2, . . . , d ,
start n/|A| of them from state xi. In the second stage, using the estimates of
the {ci}, simulate the production runs with estimates for {p∗

i } determined by
substituting the estimates of the {ci} into Equation (9).

(Rather than choosing the pi to minimize variance, we could instead max-
imize efficiency, which is often defined as the inverse of the product of the
variance and work; see Glynn and Whitt [1992]. To define the work in this case,
we need to take into account the cost associated with sampling from each stra-
tum i, and a reasonable measure of that cost is Exi [τ ], the expected number of
transitions in a trajectory starting from xi. Thus, maximizing efficiency corre-
sponds to minimizing σ 2(p1, . . . , pd )

∑d
i=1 pi Exi [τ ], subject to

∑d
i=1 pi = 1 and

pi ≥ 0 which, in general, cannot be solved in closed form so numerical methods
need to be used.)

We performed numerical experiments to explore the possible benefit of choos-
ing approximately optimal stratification weights to minimize variance using
the two-stage procedure described previously. The model is a Markov chain on
state space S = {0, 1, . . . , 11} that models the maintenance of a machine sub-
ject to periodic breakdowns followed by repair intervals. We model the time
until a new machine breaks down, and the time to return it to service as dis-
crete phase-type distributions, as shown in Figure 1. States 0 and 1 are work-
ing states, and when the chain enters state 2, the machine is out of service.
There are three types of repair with respective probabilities 0.7, 0.27, and 0.03.
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Table I. Experimental Results

A Variance (×10−5) Bias (×10−4) MSE (×10−5) Time Efficiency

{0} 10.55 −0.05 10.6 21.30 1.0

{0,3} 7.65 1.45 7.7 24.52 1.19

{0,6} 8.76 −4.11 8.8 23.49 1.09

{0,9} 7.87 1.33 7.9 24.78 1.15

{0,3,6} 6.53 −0.42 6.5 27.19 1.28

{0,3,6,9} 5.76 −1.66 5.8 31.34 1.24

After repair, the system returns to state 0. The cost function f is given by
f (0) = f (1) = f (2) = f (3) = f (4) = 0, f (5) = f (6) = f (7) = f (8) = 1,
and f (9) = f (10) = f (11) = 24. The steady-state mean cost is approximately
π f ≈ 0.7037.

Table I presents simulation results with different choices of A where we used
pilot runs to approximate the weights in Equation (9) that minimize variance.
Each experiment consisted of 103 independent replications with each replica-
tion simulating a production run of 2 × 106 transitions of the Markov chain
from which a point estimate of the steady-state mean was computed using
Equation (4). When we applied the SRM with approximately optimal weights,
each replication started with an initial pilot run of 2 × 104 transitions which
was then followed by a production run; in this case, we used the data from the
pilot run only to estimate the optimal weights and not to compute the final point
estimates. For each choice of A, we computed the sample variance of the point
estimates across the 103 replications as well as the bias and mean-square error
(MSE). The column labeled “time” provides the total CPU times (in minutes)
required to run all 103 replications which includes the time for all the pilot runs
for the cases when they are used.

The first row of Table I shows the results for the standard regenerative es-
timator with return state 0, and this required no pilot run. The next five rows
show the results for the SRM with pilot runs in each replication to estimate the
optimal stratification weights in Equation (9). With A containing four states,
the simulation took about 50% longer than the standard regenerative estimator.
The last column in Table I gives the relative efficiency compared to the regener-
ative method where the efficiency is the reciprocal of the product of variance and
CPU time. The most efficient choice is A = {0, 3, 6} which is about 28% more ef-
ficient than the standard regenerative estimator. As |A| increases, the variance
decreases, but the computational cost also increases. The stationary distribu-
tion on A = {0, 3, 6, 9} is approximately ν = (0.662, 0.233, 0.086, 0.019), and
the optimal weights are approximately p∗ = (0.836, 0.010, 0.027, 0.127).

3.3 Comparison of the Stratified Semi-Regenerative Estimator and the Estimator
Based on One Long Path

We now compare the asymptotic behaviors of the semi-regenerative estimator
αn and the point estimator based on a simulation of one (long) sample path
which we define as follows. Fix an initial state X 0 = x0 ∈ A. (We can also
define an initial distribution μ on A or S to select X 0, but for simplicity, we
just fix X 0 = x0.) Then simulate X up to time Tn, for n fixed (and large), giving

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.



290 • J. M. Calvin et al.

us a sample path {X j : j = 0, 1, 2, . . . , Tn}, from which we obtain {Wk : k =
0, 1, 2, . . . , n} with Wk = X Tk . Then the point estimator of α based on one long
sample path is defined as

α′
n =

∑Tn−1
j=0 f (X j )

Tn
. (10)

Note that α′
n is identical to the regenerative estimator when T0 = 0 and Tn are

regeneration points.
To facilitate our asymptotic comparison of α′

n and αn, we will re-express α′
n

in a form similar to Equation (4). For x ∈ A, define Hn(x) = ∑n−1
k=0 I (Wk = x).

For x ∈ A, define T ′
1(x) = inf { j ≥ 0 : X j = x}, and for k ≥ 2, define T ′

k(x) =
inf { j > T ′

k−1(x) : X j = x}. Also, define T̃ ′
k(x) = inf { j > T ′

k(x) : X j ∈ A} which
is the first time after T ′

k(x) that X enters A again. For x ∈ A and k = 1, 2, . . .,
define

Y ′
k(x) =

T̃ ′
k (x)−1∑

j=T ′
k (x)

f (X j ), τ ′
k(x) = T̃ ′

k(x) − T ′
k(x).

Also, for x ∈ A, define ν̂n(x) = Hn(x)/n. Then observe that

α′
n =

∑d
i=1

∑Hn(xi )
k=1 Y ′

k(xi)∑d
i=1

∑Hn(xi )
k=1 τ ′

k(xi)
=

∑d
i=1 ν̂n(xi)

1
Hn(xi )

∑Hn(xi )
k=1 Y ′

k(xi)∑d
i=1 ν̂n(xi)

1
Hn(xi )

∑Hn(xi )
k=1 τ ′

k(xi)
. (11)

Remark 3.9. Because of Assumption 3.1, all of the Y ′
1(xi) have fi-

nite first moments. Also, Assumption 1 implies that each Hn(xi) → ∞
a.s., so it follows from Equation (11) that α′

n → Eν[
∑T−1

j=0 f (X j )]/Eν[T ]
a.s. by the strong law of large numbers. In addition, Equation (10) im-

plies limn→∞ α′
n = limm→∞(1/m)

∑m−1
j=0 f (X j ) a.s. since Tn → ∞ a.s. Now

limm→∞(1/m)
∑m−1

j=0 f (X j ) = α a.s. by the strong law of large numbers for
regenerative processes (e.g., see Shedler [1993, Theorem 2.2, p. 74]), thereby
establishing Proposition 3.5.

Note the similarity of α′
n in Equation (11) and αn in Equation (4). We now

establish the following central limit theorem for α′
n; see the appendix for the

proof.

THEOREM 3.10. Under Assumptions 2.1, 3.1, 3.4, and 3.6,

n1/2(α′
n − α)

D→ N
(
0, σ 2

1

)
as n → ∞, where

σ 2
1 = 1

(Eν[T ])2

d∑
i=1

ν(xi)ηi (12)

with ηi defined in (8).

If we set pi = ν(xi), i = 1, 2, . . . , d , in (7), then σ 2 = σ 2
1 . Therefore, our

semi-regenerative estimator αn in (4) with pi = ν(xi) has the same asymptotic
efficiency as the point estimator α′

n based on one long sample path (if we ignore
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the added computational cost of constructing αn). However, choosing the {pi}
according to Equation (9) may lead to the semi-regenerative estimator having
an asymptotic variance that is strictly smaller than that of α′

n.
As stated before, the regenerative estimator is equivalent to α′

n (when T0 = 0
and Tn are regeneration points). We ran experiments using the steady-state
probabilities as the stratification weights pi in Equations (4) and (7), and the re-
sults (not included in Table I) for the variance were consistent with the regener-
ative method but with increased computational time for the semi-regenerative
estimator.

4. TIME-AVERAGE VARIANCE CONSTANT

Suppose that Assumptions 2.1, 3.1, 3.4, and 3.6 hold. Then

n1/2

(
1

n

n−1∑
j=0

f (X j ) − α

)
D→ N (0, σ̄ 2)

as n → ∞; for example, see Shedler [1993, p. 74]. Our goal is now to estimate σ̄ 2

which is known as the time-average variance constant. Assumption 2.1 implies
that Tn/n → Eν[T ] a.s. as n → ∞ with 0 < Eν[T ] < ∞, so

T 1/2
n

(
1

Tn

Tn−1∑
j=0

f (X j ) − α

)
D→ N (0, σ̄ 2)

by the random-time-change central limit theorem. But it follows from Theo-
rem 3.10 that

σ̄ 2 = 1

Eν[T ]

d∑
i=1

ν(xi)ηi,

where ηi is defined in (8).
We now describe an unstratified semi-regenerative estimator of σ̄ 2 based on

a single simulated sample path up to time Tn. To do this, we will express σ̄ 2 as
a function of expectations of functionals of trajectories. We first define

y1(x) = Ex[Y ], y2(x) = Ex[Y 2],

t1(x) = Ex [τ ] , t2(x) = Ex[τ 2 ], υ(x) = Ex [Y τ ] ,

and let y1 = ( y1(x) : x ∈ A) ∈ �d×1, y2 = ( y2(x) : x ∈ A) ∈ �d×1, t1 = (t1(x) :
x ∈ A) ∈ �d×1, t2 = (t2(x) : x ∈ A) ∈ �d×1, υ = (υ(x) : x ∈ A) ∈ �d×1, g =
(g (x, y) : x, y ∈ A) ∈ �d×d , and � = (�i(x j , xk) : i, j , k = 1, 2, . . . , d ) ∈ �d×d×d .
Now define the function rσ : �d×1 ×�d×1 ×�d×1 ×�d×1 ×�d×1 ×�d×d ×�d×d ×
�d×d×d × �1×d × �d×d → � given by

rσ (w1, w2, . . . , w10)

= 1

w9w3

{
2w9w6w10

(
w1 − w9w1

w9w3

w3

)
+

d∑
i=1

w9(xi)

[
w2(xi) − 2

w9w1

w9w3

w5(xi)
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+
(

w9w1

w9w3

)2

w4(xi) −
(

w1(xi) − w9w1

w9w3

w3(xi)

)2

+
(

w10

(
w1 − w9w1

w9w3

w3

))�
w8(xi, · , · )

(
w10

(
w1 − w9w1

w9w3

w3

))]}
,

and it is easy to show that σ̄ 2 = rσ (μσ ), where μσ = ( y1, y2, t1, t2, υ,
g , R, �, ν, F ). Recall from Section 3.3 our definitions of Hn(x), Y ′

k(x), τ ′
k(x), ν̂n(x),

and α′
n. Define R ′

n = (R ′
n(x, y) : x, y ∈ A) with

R ′
n(x, y) =

∑n−1
k=0 I (Wk = x, Wk+1 = y)∑n−1

k=0 I (Wk = x)
. (13)

Also, define χ ′
k(x, y) = I (X T̃ ′

k (x) = y), so we can re-express R ′
n(x, y) as

R ′
n(x, y) =

∑Hn(x)
k=1 χ ′

k(x, y)

Hn(x)
.

Our unstratified estimator σ̄ 2
n′ of σ̄ 2 is then

σ̄ 2
n′ = rσ (Ȳ ′

n, Ȳ ′
2,n, τ̄ ′

n, τ̄ ′
2,n, υ ′

n, g ′
n, R ′

n, � ′
n, ν̂n, F̂ ′

n),

where Ȳ ′
n = (Ȳ ′

n(xi) : i = 1, 2, . . . , d ), Ȳ ′
2,n = (Ȳ ′

2,n(xi) : i = 1, 2, . . . , d ),
τ̄ ′

n = (τ̄ ′
n(xi) : i = 1, 2, . . . , d ), τ̄ ′

2,n = (τ̄ ′
2,n(xi) : i = 1, 2, . . . , d ), υ ′

n = (υ ′
n(xi) :

i = 1, 2, . . . , d ), g ′
n = (g ′

n(xi) : i = 1, 2, . . . , d ), � ′
n = (� ′

i,n(x j , xk) : i, j , k =
1, 2, . . . , d ), and F̂ ′

n = (I − R ′
n − êνn)−1 with

Ȳ ′
n(xi) = 1

Hn(xi)

Hn(xi )∑
k=1

Y ′
k(xi), Ȳ ′

2,n(xi) = 1

Hn(xi)

Hn(xi )∑
k=1

Y 2
k′ (xi),

τ̄ ′
n(xi) = 1

Hn(xi)

Hn(xi )∑
k=1

τ ′
k(xi), τ̄ ′

2,n(xi) = 1

Hn(xi)

Hn(xi )∑
k=1

τ 2
k′ (xi),

υ ′
n(xi) = 1

Hn(xi)

Hn(xi )∑
k=1

Y ′
k(xi) τ ′

k(xi),

g ′
n(xi, x j ) = 1

Hn(xi) − 1

Hn(xi )∑
k=1

[χ ′
k(xi, x j ) − R ′

n(xi, x j )][Z ′
n,k(xi) − Z̃ ′

n(xi)],

Z ′
n,k(xi) = Y ′

k(xi) − α′
nτ ′

k(xi), Z̃ ′
n(xi) = Ȳ ′

n(xi) − α′
nτ̄ ′

n(xi),

� ′
i,n(x j , xl ) =

{
−R ′

n(xi, x j )R ′
n(xi, xl ) if j 
= l ,

R ′
n(xi, x j )(1 − R ′

n(xi, x j )) if j = l .

Using similar arguments as in the proof of Theorem 3.10, we can show that

n1/2[(Ȳ ′
n, Ȳ ′

2,n, τ̄ ′
n, τ̄ ′

2,n, υ ′
n, g ′

n, R ′
n, � ′

n, ν̂n, F̂ ′
n) − μσ ]

D→ (N̄ ′
1, N̄ ′

2, . . . , N̄ ′
10)

D= N (0, �′
σ ),

for some normal random elements (N̄ ′
1, N̄ ′

2, . . . , N̄ ′
10) having a covariance ma-

trix �′
σ . As in the case of the covariance matrix �′ in the proof of Theorem 3.10,
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many of the entries in �′
σ are zero. We will not give all of the nonzero entries of

�′
σ but arguing as in the proof of Theorem 3.10, we can show, for example, that

cov(N ′
1(xi), N ′

2(x j )) =
{

1
ν(xi )

(
Exi [Y

3] − y1(xi) y2(xi)
)

if i = j

0 if i 
= j
.

Now we can show (see Equations (57) and (60) of the appendix) that as
n → ∞,

n1/2(̂νn − ν) = n1/2ν̂n(R ′
n − R)F + n1/2(̂νn − ν ′

n)(I − R ′
n)F

D→ N̄ ′
9 = ν N̄ ′

7 F. (14)

Also, let V̂n = êνn, so for sufficiently large n,

(R ′
n − R) + (V̂n − V )

= (I − R − V ) − (I − R ′
n − V̂n)

= [I − (I − R ′
n − V̂n)(I − R − V )−1](I − R − V )

= (I − R ′
n − V̂n)

[
(I − R ′

n − V̂n)−1 − (I − R − V )−1
]
(I − R − V )

= (I − R ′
n − V̂n) [F̂ ′

n − F ](I − R − V ),

and it follows that

n1/2(F̂ ′
n − F ) = F̂ ′

n

[
n1/2(R ′

n − R) + n1/2(V̂n − V )
]
F.

Consequently, N̄ ′
10 = F (N̄ ′

7 − eν N̄ ′
7 F )F by Equation (14). Now applying the

delta method (e.g., Serfling [1980, Theorem A, p. 122]) results in the following
central limit theorem for the estimator σ̄ 2

n′ .

THEOREM 4.1. Suppose Assumptions 2.1, 3.1, and 3.4 hold, and also that
there exists w ∈ S such that Ew[τ 4

w] < ∞ and Ew[(
∑T−1

j=0 | f (X j )|)4] < ∞. Then

n1/2
(
σ̄ 2

n′ − σ̄ 2
) D→ N (0, D�

σ �σ Dσ ),

where Dσ is the vector of partial derivatives of the function rσ evaluated at μσ .

It is straightforward to compute the entries of Dσ , which we largely omit.
For example, letting ∂

∂w2(x j )
denote the partial derivative with respect to w2(x j ),

we see that

∂

∂w2(x j )
rσ (w1, . . . , w10)

∣∣∣∣
(w1,...,w10)=μσ

= w9(x j ).

Also, we can similarly define a stratified estimator for σ̄ 2, but we omit
this.

5. IMPORTANCE SAMPLING FOR STEADY-STATE MEANS

Importance sampling is a variance-reduction technique that can lead to dra-
matic decreases in variance (when applied appropriately), especially when used
in rare-event simulations; see Glynn and Iglehart [1989] for an overview of im-
portance sampling. We now show how to combine importance sampling with
the SRM to estimate steady-state means.
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Let Fx,T denote the filtration of the process X up to time T with X 0 = x.
For x ∈ A, define Px,T to be the probability measure on Fx,T for the process X
under the transition probability matrix �, given X 0 = x. Now suppose that,
for each x ∈ A, we define another probability measure P∗

x,T (not necessarily
Markovian) on Fx,T for X conditional on X 0 = x, and let E∗

x,T be the corre-
sponding expectation. Also, let P∗

x (respectively, E∗
x) be the probability measure

(respectively, expectation operator) for X induced by the collection of measures
(P∗

y ,T : y ∈ A), given X 0 = x. We need to assume the following.

Assumption 5.1. For each x ∈ A, Px,T is absolutely continuous with respect
to P∗

x,T .

By the Radon-Nikodym theorem [Billingsley 1995, Theorem 32.2], Assump-
tion 5.1 guarantees the existence of a nonnegative random variable L ≡ L(x)
for which

Px,T (C) = E∗
x,T [I (C) L], C ∈ Fx,T . (15)

The random variable L = d Px,T /d P∗
x,T is known as the likelihood ratio

(or Radon-Nikodym derivative) of Px,T with respect to P∗
x,T (given X 0 =

x). For example, if the measure P∗
x,T is induced by a transition probabil-

ity matrix �∗
x = (�∗

x(w, y) : w, y ∈ S), then Assumption 5.1 will hold if
�∗

x(w, y) = 0 implies �(w, y) = 0 for all w, y ∈ S, and the likelihood
ratio for the sample-path trajectory X 0, X 1, X 2, . . . , X T , given X 0 = x, is

L = ∏T−1
j=0 �(X j , X j+1)/�∗

x(X j , X j+1). Thus, L is the likelihood of the observed
path (X 0, X 1, . . . , X T ) under the original measure over the likelihood of the
path under the new measure.

We use the importance-sampling measure P∗
x0

, x0 ∈ A, to generate a sam-
ple path {X j : j ≥ 0} of the process X as follows. Set X 0 = x0, so T0 = 0.
Then using measure P∗

X 0,T , generate a sequence of states until set A is hit
again, thereby yielding the trajectory X 1, X 2, . . . , X T1

. Now from state X T1
, use

measure P∗
X T1

,T to generate a sequence of states until A is hit again, yielding

X T1+1, X T1+2, . . . , X T2
. In general, at the kth hit to set A, the process is in state

X Tk , and we use measure P∗
X Tk ,T to generate a sequence of states until A is hit

again, yielding X Tk+1, X Tk+2, . . . , X Tk+1
. We define the process W = {Wk : k ≥ 0}

by letting Wk = X Tk .
The process X defined in this way may no longer be a Markov chain since we

did not assume any particular structure (other than Assumption 5.1) for the
measure P∗

x . On the other hand, no matter how the P∗
y ,T , y ∈ A, are defined,

the embedded process W is always a Markov chain.

PROPOSITION 5.2. If Assumptions 2.1, 3.4, and 5.1 hold, then for all x ∈ A,
W under measure P∗

x is an irreducible, positive-recurrent discrete-time Markov
chain on A.

PROOF. It is clear that W is a Markov chain. Assumptions 2.1 and 5.1 ensure
that W is irreducible since any sample path of X having positive probability un-
der the original measure Px also has positive probability under the importance-
sampling measure P∗

x . Thus, W is positive recurrent by Assumption 3.4.
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Define matrix R∗ = (R∗(x, y) : x, y ∈ A) with elements R∗(x, y) = P∗
x (X T =

y), and note that R∗ is the transition probability matrix of W under importance
sampling. As shown in Proposition 5.2, Assumptions 2.1, 3.4, and 5.1 ensure
that R∗ is irreducible and positive recurrent so R∗ has a stationary distribution
ρ = (ρ(x) : x ∈ A).

We can write α = π f in Proposition 3.5 as

α =
∑d

i=1 ν(xi)E∗
xi ,T [Y L]∑d

i=1 ν(xi)E∗
xi ,T [τ L]

(16)

by Equation (15), where ν is the stationary distribution for the R matrix under
the original measure as before. Expression (16) forms the basis for some semi-
regenerative approaches using importance sampling which we will describe in
the following. For more details on importance sampling in general, see Glynn
and Iglehart [1989].

An advantage of applying importance sampling in a semi-regenerative set-
ting rather than using the RM is that, even if all of the P∗

x,T , x ∈ A, correspond
to the same underlying change of measure, the trajectories simulated using
importance sampling are shorter (fewer transitions) in the SRM than in the
regenerative setting. This suggests that the semi-regenerative estimator will
have smaller variance since Glynn [1995] showed that the variance of the like-
lihood ratio grows approximately exponentially with the number of transitions.
Moreover, the SRM has the additional benefit of allowing the P∗

x,T to correspond
to different underlying changes of measure for the different x ∈ A, thereby al-
lowing one to tailor the importance sampling for each x ∈ A.

5.1 Stratified Estimation

We start by describing two stratified sampling methods based on Equation (16).
For each xi ∈ A, let

(Lk(xi), Yk(xi), τk(xi), χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ �pin be i.i.d. copies of

(L, Y , τ, χ ( y) : y ∈ A) under measure P∗
xi ,T .

Set

R̄n(xi, y) = 1

�pin
�pin∑
k=1

χk(xi, y)Lk(xi)

for 1 ≤ i ≤ d and y ∈ A, and let R̄n = (R̄n(x, y) : x, y ∈ A). Since E∗
x[χ ( y)L] =

Ex[χ ( y)] = R(x, y) for all x, y ∈ A by Equation (15), we have that R̄n → R
a.s. as n → ∞. Using the fact that R is irreducible and positive recurrent
by Proposition 3.3, we can show that R̄n also is for sufficiently large n under
Assumption 5.1. Hence, there exists a stationary distribution ν̄n = (ν̄n(x) : x ∈
A) for R̄n. We define our first stratified semi-regenerative importance-sampling
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estimator of α to be

α∗
n =

∑d
i=1 ν̄n(xi)

1
�pin

∑�pin
k=1 Yk(xi)Lk(xi)∑d

i=1 ν̄n(xi)
1

�pin
∑�pin

k=1 τk(xi)Lk(xi)
. (17)

To establish a central limit theorem for α∗
n, we need to assume the following.

Assumption 5.3. E∗
x[Y 2L2] < ∞ and E∗

x[τ 2L2] < ∞ for all x ∈ A.

Note that Assumption 5.3 ensures that E∗
x[χ ( y)L2] < ∞ for all x, y ∈ A

since 0 ≤ χ ( y) ≤ 1 ≤ τ . Let Var∗
x and Cov∗

x denote variance and covariance,
respectively, under P∗

x . Using essentially the same argument that we applied
to establish Theorem 3.8, we can prove the following central limit theorem for
α∗

n.

THEOREM 5.4. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2
(
α∗

n − α
) D→ N (0, σ 2

∗ )

as n → ∞, where

σ 2
∗ = 1

(Eν[T ])2

d∑
i=1

ν2(xi)ηi∗
pi

, (18)

with

ηi∗ = h∗(xi) + 2
d∑

j=1

g∗(xi, x j )ζ (x j ) +
d∑

j=1

d∑
l=1

ζ (x j )ζ (xl )�
∗
i (x j , xl ), (19)

h∗(xi) = Var∗
xi

(Y L − ατ L), g∗(xi, x j ) = Cov∗
xi

(χ (x j )L, Z L), and �∗
i (x j , xl ) =

Cov∗
xi

(χ (x j )L, χ (xl )L).

Observe that in Equation (17), we use importance sampling to estimate ν(xi).
However, in some situations, we might obtain a better (lower variance) esti-
mate of ν(xi) by using standard simulation instead (i.e., without importance
sampling). (We will still use importance sampling to estimate E∗

xi ,T [Y L] and
E∗

xi ,T [τ L].) To implement this idea, for each state xi ∈ A, we will now generate
two sets of trajectories starting from xi, where some of the trajectories will be
under the original measure Pxi ,T , and the others will be generated using the
importance-sampling measure P∗

xi ,T , with all trajectories mutually indepen-
dent. Specifically, let q1, q2, . . . , qd , r1, r2, . . . , rd be positive numbers such that∑d

i=1(qi + ri) = 1. Given a replication budget n, we will sample �qin (respec-
tively, �rin) times from initial state xi ∈ A using the original measure Pxi ,T

(respectively, importance-sampling measure P∗
xi ,T ). Let

(χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ �qin be i.i.d. copies of

(χ ( y) : y ∈ A) under measure Pxi ,T ,

and let

(Lk(xi), Yk(xi), τk(xi))
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for 1 ≤ k ≤ �rin be i.i.d. copies of

(L, Y , τ ) under measure P∗
xi ,T ,

where (χk(xi, y) : y ∈ A) and (Lk(xi), Yk(xi), τk(xi)) are generated indepen-
dently. Define

R̃n(xi, y) = 1

�qin
�qin∑
k=1

χk(xi, y)

for 1 ≤ i ≤ d and y ∈ A, and define ν̃n = (̃νn(x) : x ∈ A) such that ν̃n = ν̃n R̃n

with ν̃n ≥ 0 and ν̃ne = 1. Then we define another stratified semi-regenerative
importance-sampling estimator of α to be

α∗∗
n =

∑d
i=1 ν̃n(xi)

1
�rin

∑�rin
k=1 Yk(xi)Lk(xi)∑d

i=1 ν̃n(xi)
1

�rin
∑�rin

k=1 τk(xi)Lk(xi)
, (20)

which satisfies the following central limit theorem.

THEOREM 5.5. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2(α∗∗
n − α)

D→ N (0, σ 2
∗∗)

as n → ∞, where

σ 2
∗∗ = 1

(Eν[T ])2

d∑
i=1

ν2(xi)

(
h∗(xi)

ri
+

d∑
j=1

d∑
l=1

ζ (x j )ζ (xl )�
∗
i (x j , xl )

qi

)
, (21)

and h∗(xi) and �∗
i (x j , xl ) are defined as in Theorem 5.4.

For the estimators in Equations (17) and (20), we are using the same mea-
sure P∗

xi ,T in the estimation of both E∗
xi ,T [Y L] and E∗

xi ,T [τ L] in Equation (16).
However, in certain contexts, such as for rare-event simulations (e.g., see
Heidelberger [1995]), it might be more efficient to use different measures for
estimating the (conditional) expectations in the numerator and denominator of
Equation (16). Thus, suppose P̃∗

xi ,T is a measure on Fxi ,T such that Pxi ,T is abso-

lutely continuous with respect to P̃∗
xi ,T . Let Ẽ∗

xi ,T be expectation under measure

P̃∗
xi ,T , and let L̃ ≡ L̃(xi) be the likelihood ratio of Px,T with respect to P̃∗

xi ,T up
to time T . Then we can rewrite Equation (16) as

α =
∑d

i=1 ν(xi)E∗
xi ,T [Y L]∑d

i=1 ν(xi)Ẽ∗
xi ,T [τ L̃]

. (22)

We can use Equation (22) as the basis for developing importance-sampling esti-
mators analogous to Equations (17) and (20) but in which different importance-
sampling measures are used to estimate the expectations in the numerator
and denominator. This idea generalizes a method known as measure-specific
importance sampling discussed in Goyal et al. [1992]. One possibility is to let
P̃∗

x,T = Px,T for all x ∈ A, in which case Ẽ∗
xi ,T [τ L̃] = Exi [τ ]; that is, we use stan-

dard simulation for estimating the expectations in the denominator of Equa-
tion (22). This is the analogue to what is suggested in Goyal et al. [1992], and
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we might implement this by modifying the estimator in Equation (20) to esti-
mate ν(xi) and Exi [τ ], using the same samples generated under the (original)
measure Pxi ,T .

5.2 Unstratified Estimation

We now develop the estimator corresponding to Equation (17) for when we run
a simulation of a single sample path rather than using stratification. To do
this, we apply the method described at the beginning of Section 5 for using
the importance-sampling measure P∗

x0
to generate a sample path {X j : j =

0, 1, 2, . . . , Tn} from which we get {Wk : k = 0, 1, 2, . . . , n} with Wk = X Tk .
To state our new estimator, define T ′

k(x), T̃ ′
k(x), Y ′

k(x), τ ′
k(x), and Hn(x), for

x ∈ A, as in Section 3.3 but now these quantities are under measure P∗
x,T . Also,

for x ∈ A and k ≥ 1, define L′
k(x) to be the likelihood ratio of the sample-path

trajectory {X j : j = T ′
k(x), T ′

k(x) + 1, . . . , T̃ ′
k(x)} conditional on X T ′

k (x). Define

R̄ ′
n = (R̄ ′

n(x, y) : x, y ∈ A) with

R̄ ′
n(x, y) = 1

Hn(x)

Hn(x)∑
k=1

I (X T̃ ′
k (x) = y)L′

k(x),

and let ν̄ ′
n = (ν̄ ′

n(x) : x ∈ A) be the stationary distribution of R̄ ′
n. Then we define

the analogue of Equation (17) for one sample path as

α∗
n

′ =
∑d

i=1 ν̄ ′
n(xi)

1
Hn(xi )

∑Hn(xi )
k=1 Y ′

k(xi)L′
k(xi)∑d

i=1 ν̄ ′
n(xi)

1
Hn(xi )

∑Hn(xi )
k=1 τ ′

k(xi)L′
k(xi)

. (23)

We then have the following central limit theorem which can be established
using arguments similar to those applied in the proof of Theorem 3.10.

THEOREM 5.6. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2(α∗
n

′ − α)
D→ N (0, σ ′

∗
2
)

as n → ∞, where

σ ′
∗

2 = 1

(Eν[T ])2

d∑
i=1

ν2(xi)ηi∗
ρ(xi)

(24)

with ηi∗ defined as in (19) and ρ is the stationary distribution of R∗.

The reason the ρ(xi), i = 1, 2, . . . , d , appear in the denominator in Equa-
tion (24) is that in Equation (23) we are computing sample averages over Hn(xi)
observations. Note that Hn(xi)/n → ρ(xi) a.s. under measure P∗

x0
, for any x0 ∈ S,

with ρ(xi) > 0 since R∗ is positive recurrent. Thus, application of the random-
time-change central limit theorem results in the appearance of the ρ(xi). For
example,

n1/2

(
1

Hn(xi)

Hn(xi )∑
k=1

Z ′
k(xi)L′

k(xi) − z(xi)

)
D→ N

(
0,

h∗(xi)

ρ(xi)

)
,

as n → ∞, where Z ′
k(xi) = Y ′

k(xi) − ατ ′
k(xi).
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We now develop the analogue of Equation (20) for when two independent
sample paths of X are generated. Fix x0 and x∗

0 ∈ A. We generate one of the
paths using the original measure Px0

, and we use this path to estimate the ν(x),
x ∈ A. The other path is generated under the importance-sampling measure
P∗

x∗
0

and is used to estimate the (conditional) expectations in Equation (16).

Specifically, fix 0 < q < 1, and let r = 1 − q. Set X 0 = x0, and use the original
measure Px0

to generate a sample path {X j : j = 0, 1, 2, . . . , T�qn} from which
we get {Wk : k = 0, 1, 2, . . . , �qn} with Wk = X Tk . Independently of how we
generate {X j : j = 0, 1, 2, . . . , T�qn}, fix X ∗

0 = x∗
0 and use the measure P∗

x0
to

generate a sample path {X ∗
j : j = 0, 1, 2, . . . , T ∗

�rn} in the manner described in
Section 5 and this yields {W ∗

k : k = 0, 1, 2, . . . , �rn} with W ∗
k = X ∗

T ∗
k
. Here, the

T ∗
k , k ≥ 0, are the hitting times of the X ∗ process to the set A.

For x ∈ A, define ν̃ ′
n(x) = ∑�qn−1

k=0 I (Wk = x)/�qn which is based on the sam-
ple path generated using the original measure. Now we define some notation
for quantities that are computed based on the sample path generated under

importance sampling. For x ∈ A, define H∗
n (x) = ∑�rn−1

k=0 I (W ∗
k = x). For x ∈ A,

define T ∗
1 (x) = inf { j ≥ 0 : X ∗

j = x}, and for k ≥ 2, let T ∗
k (x) = inf { j > T ∗

k−1(x) :

X ∗
j = x}. Also, define T̃ ∗

k (x) = inf { j > T ∗
k (x) : X ∗

j ∈ A}. For x ∈ A and k ≥ 1,
define

Y ∗
k (x) =

T̃ ∗
k (x)−1∑

j=T ∗
k (x)

f (X ∗
j ), τ ∗

k (x) = T̃ ∗
k (x) − T ∗

k (x).

Finally, for x ∈ A and k ≥ 1, define L∗
k(x) to be the likelihood ratio corresponding

to the sample path {X ∗
j : T ∗

k (x) ≤ j ≤ T̃ ∗
k (x)} given X ∗

T ∗
k (x). Then we define the

analogue of Equation (20) for two sample paths to be

α∗∗
n

′ =
∑d

i=1 ν̃ ′
n(xi)

1
H∗

n (xi )

∑H∗
n (xi )

k=1 Y ∗
k (xi)L∗

k(xi)∑d
i=1 ν̃ ′

n(xi)
1

H∗
n (xi )

∑H∗
n (xi )

k=1 τ ∗
k (xi)L∗

k(xi)
, (25)

which obeys the following central limit theorem.

THEOREM 5.7. Under Assumptions 2.1, 3.1, 3.4, 5.1, and 5.3,

n1/2(α∗∗
n

′ − α)
D→ N (0, σ ′

∗∗
2
)

as n → ∞, where

σ ′
∗∗

2 = 1

(Eν[T ])2

d∑
i=1

ν2(xi)

(
h∗(xi)

r
+

d∑
j=1

d∑
l=1

ζ (x j )ζ (xl )�i(x j , xl )

q

)
,

with h∗(xi) defined as in Theorem 5.4 and �i(x j , xl ) defined in (5) and (6).

We could also develop (but omit since it is straightforward) an estimator
suggested by Equation (22) based on 3 long sample paths. The first path is
generated under the original measure Px0

and is used to estimate the ν(xi).
The second path is generated using the measure P∗

x∗
0

and is used to estimate
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the E∗
xi ,T [Y L]. The third path is generated using measure P̃∗

x̃0
and is used to

estimate the Ẽ∗
xi ,T [τ L̃].

6. EXPECTED CUMULATIVE REWARD UNTIL A HITTING TIME

Fix a nonempty set S0 ⊂ S, and let � = inf {n ≥ 0 : X n ∈ S0}. For x ∈ A, put

λ(x) = Ex

[
�∑

j=1

f (X j )

]
,

which is the expected cumulative reward up to hitting the set S0 given that the
chain starts in state x. The measure λ(x) arises in many contexts. For example,
it can be the mean time to failure of a reliability system or the expected time to
buffer overflow in a queueing network. We want to develop semi-regenerative
estimators for λ(x).

Throughout this section, unless stated otherwise, we no longer assume that
Assumptions 2.1, 3.1, 3.6, 5.1, or 5.3 hold. Assume that Assumption 3.4 and the
following hold.

Assumption 6.1. For each recurrence class C of states in A, there exists
some state x ∈ C such that Px(� > T ) < 1.

Note that

λ(x) = Ex

[
T∧�∑
j=1

f (X j )

]
+

∑
y∈A

Ex[I (X T = y , � > T )] λ( y),

where a1 ∧ a2 = min(a1, a2) for a1, a2 ∈ �. For x, y ∈ A, put

b(x) = Ex

[
T∧�∑
j=1

f (X j )

]
, K (x, y) = Ex[I (X T = y , � > T )].

Let λ = (λ(x) : x ∈ A), b = (b(x) : x ∈ A), and K = (K (x, y) : x, y ∈ A), and note
that λ = b + K λ.

PROPOSITION 6.2. If |b| < ∞ and if Assumptions 3.4 and 6.1 hold, then

λ =
∞∑

m=0

K mb = (I − K )−1b.

Assumption 6.1 ensures that (I − K )−1 exists and equals
∑∞

m=0 K m. With-
out this assumption, it is possible that

∑∞
m=0 K m diverges in which case

(I − K )−1 need not equal
∑∞

m=0 K m. Also, note that Proposition 6.2 does not
require irreducibility or recurrence. Finally, the representation of λ in Propo-
sition 6.2 generalizes the well-known result (e.g., Goyal et al. [1992]) that

λ(x) = Ex[
∑(τx∧�)

j=1 f (X j )]/Ex[I (� < τx)].
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6.1 Stratified Estimation

We now present a stratified semi-regenerative estimator for λ based on Propo-
sition 6.2. Let

B =
T∧�∑
j=1

f (X j ) and φ( y) = I (X T = y , � > T ), for y ∈ A.

Let

(Bk(xi), φk(xi, y) : y ∈ A)

for 1 ≤ k ≤ �pin be i.i.d. copies of

(B, φ( y) : y ∈ A) under measure Pxi .

Set

bn(xi) = 1

�pin
�pin∑
k=1

Bk(xi), Kn(xi, y) = 1

�pin
�pin∑
k=1

φk(xi, y)

for 1 ≤ i ≤ d and y ∈ A, and let bn = (bn(x) : x ∈ A) and Kn = (Kn(x, y) : x, y ∈
A). We define the stratified semi-regenerative estimator for λ to be

λn = (I − Kn)−1bn.

Under Assumption 6.1, (I − K )−1 exists. Since Kn → K a.s., evidently I − Kn

is non-singular for n sufficiently large, and

(I − Kn)−1 → (I − K )−1 a.s. (26)

as n → ∞ by the continuity of the inverse mapping at I − K . To establish a
central limit theorem for λn, we will assume the following.

Assumption 6.3. For each x ∈ A, Ex[B2] < ∞.

To prove our central limit theorem for λn, we need to get a handle on (I −
Kn)−1 − (I − K )−1 and bn − b. Note that

Kn − K = (I − K ) − (I − Kn)

= [I − (I − Kn)(I − K )−1](I − K )

= (I − Kn)[(I − Kn)−1 − (I − K )−1](I − K ).

Consequently,

(I − Kn)−1 − (I − K )−1 = (I − Kn)−1(Kn − K )(I − K )−1, (27)

so

λn − λ = (I − Kn)−1bn − (I − K )−1b

= ((I − Kn)−1 − (I − K )−1)bn + (I − K )−1(bn − b)

= (I − Kn)−1(Kn − K ) (I − K )−1bn + (I − K )−1(bn − b).

Under Assumption 6.3, we have that

n1/2(Kn − K , bn − b)
D→ (Ñ1, Ñ2)

D= N (0, �̃) (28)
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as n → ∞, where �̃ is some covariance matrix. Therefore, the continuous map-
ping theorem implies that

n1/2(λn − λ)
D→ (I − K )−1Ñ1(I − K )−1b + (I − K )−1Ñ2

by Equation (26) and since bn → b a.s. Finally, because λ = (I − K )−1b, we
obtain the following central limit theorem for λn.

THEOREM 6.4. If |b| < ∞ and if Assumptions 3.4, 6.1, and 6.3 hold, then

n1/2 (λn − λ)
D→ (I − K )−1Ñ1λ + (I − K )−1Ñ2

as n → ∞, where (Ñ1, Ñ2) is defined in (28). In particular, for each k =
1, 2, . . . , d,

n1/2(λn(xk) − λ(xk))
D→ N

(
0, σ̃ 2

k

)
as n → ∞, where

σ̃ 2
k =

d∑
i=1

J (xk , xi)
2

pi

[
vi + 2

d∑
j=1

λ(x j )si j +
d∑

j=1

d∑
l=1

λ(x j )λ(xl )�i(x j , xl )

]
, (29)

J = (J (x, y) : x, y ∈ A) with J = (I − K )−1, vi = Varxi (B), si j = Covxi (φ(x j ), B),
and �i(x j , xl ) = Covxi (φ(x j ), φ(xl )).

6.2 Unstratified Estimation

We now present a semi-regenerative estimator for λ based on Proposition 6.2
when simulating one sample path. We now assume that Assumption 2.1 holds.
Define Hn(x), T ′

k(x), and T̃ ′
k(x) as in Section 3.3. Also, for k ≥ 1, define �k(x) =

inf { j > T ′
k(x) : X j ∈ S0}. For x, y ∈ A, let

B′
k(x) =

T̃ ′
k (x)∧�k (x)∑

j=T ′
k (x)+1

f (X j ), φ′
k(x, y) = I

(
X T̃ ′

k (x) = y , �k(x) > T̃ ′
k(x)

)
.

Then define the estimators of b and K to be b′
n = (b′

n(x) : x ∈ A) and K ′
n =

(Kn(x, y) : x, y ∈ A), respectively, with

b′
n(x) =

∑n−1
k=0

∑�k∧Tk+1

j=Tk
f (X j ) I (Wk = x)∑n−1

k=0 I (Wk = x)
= 1

Hn(x)

Hn(x)∑
k=1

B′
k(x),

K ′
n(x, y) =

∑n−1
k=0 I (Wk = x, Wk+1 = y , �k > Tk+1)∑n−1

k=0 I (Wk = x)
= 1

Hn(x)

Hn(x)∑
k=1

φ′
k(x, y),

where �k = inf { j > Tk : X j ∈ S0}. Then we define our semi-regenerative
estimator of λ based on one simulation to be λ′

n = (I − K ′
n)−1b′

n, where λ′
n =

(λ′
n(x) : x ∈ A). Using the techniques we developed in the proof of Theorem 3.10,

we can prove that

n1/2(λ′
n(xk) − λ(xk))

D→ N
(
0, σ̃ ′ 2

k

)
as n → ∞, where σ̃ ′ 2

k is the same as σ̃ 2
k in Equation (29) except that each pi,

i = 1, 2, . . . , d , appearing in the denominators in Equation (29) is replaced by
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ν(xi). As shown in Table I, the freedom to choose the {pi} different from the
{ν(xi)} can result in a significant efficiency improvement.

7. DERIVATIVE OF STEADY-STATE REWARD

We now discuss the estimation of derivatives of a performance measure with
respect to a model parameter. For example, for a reliability system, we may
be interested in computing the derivative of the steady-state availability with
respect to the failure rate of one component.

We now assume that the transition probability matrix of X depends on some
real-valued parameter θ where we allow θ to vary in an open interval �. Thus,
we write �(θ ) = (�(θ , x, y) : x, y ∈ S) to emphasize the dependence on θ . Our
goal is to compute the derivative of the steady-state mean reward α = α(θ ) with
respect to θ and evaluate this when θ takes on some fixed value θ0 ∈ �. We
assume the following:

Assumption 7.1. |S| < ∞. Also, the family (�(θ ) : θ ∈ �) is continuously
differentiable in θ , and �(θ ) is irreducible for all θ ∈ �, with {(x, y) ∈ S × S :
�(θ , x, y) > 0} independent of θ ∈ �.

For each θ ∈ �, the finiteness of S and the irreducibility of �(θ ) imply that
X is positive recurrent. Thus, for each θ ∈ �, there exists a unique stationary
distribution π (θ ) = (π (θ , x) : x ∈ S) for X .

Let P θ
x denote the probability measure of the process X induced by the tran-

sition matrix �(θ ) given X 0 = x, and let Eθ
x be the corresponding expectation

operator.
Now define the embedded chain W relative to the set A as in Section 2,

and let R(θ ) = (R(θ , x, y) : x, y ∈ A) be its transition probability matrix with
stationary distribution ν(θ ) = (ν(θ , x) : x ∈ A). Note that R(θ , x, y) = P θ

x (X T =
y), and the set {(x, y) ∈ A × A : R(θ , x, y) > 0} is independent of θ ∈ �

under Assumption 7.1. Also, let P θ1

ν(θ2) denote the probability measure induced

by the transition matrix �(θ1) with initial distribution ν(θ2), and let Eθ1

ν(θ2) be the
corresponding expectation operator. According to Proposition 3.5, α(θ ) = π (θ ) f
can be written as

α(θ ) =
Eθ

ν(θ )

[∑T−1
j=0 f (X j )

]
Eθ

ν(θ )[T ]
.

With θ0 ∈ � fixed, we write

α(θ ) =
Eθ0

ν(θ )

[∑T−1
j=0 f (X j )

∏T−1
l=0

�(θ ,X l ,X l+1)
�(θ0,X l ,X l+1)

]
Eθ0

ν(θ )

[
T

∏T−1
l=0

�(θ ,X l ,X l+1)
�(θ0,X l ,X l+1)

] ≡ ξ (θ )

κ(θ )
.

The above change of measure is justified since P θ1

ν(θ2) is absolutely continuous

with respect to P θ3

ν(θ4) for all θ1, θ2, θ3, θ4 ∈ � by Assumption 7.1. It then follows
that

∂α(θ0) = κ(θ0)∂ξ (θ0) − ξ (θ0)∂κ(θ0)

κ(θ0)2
, (30)
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where we use the notation that ∂ g (θ0) denotes the derivative of g (θ ) taken with
respect to θ and evaluated at θ = θ0.

We now examine ∂ξ (θ0). Observe that

ξ (θ ) =
∑
x∈A

ν(θ , x) Eθ0
x

[
T−1∑
j=0

f (X j )
T−1∏
l=0

�(θ , X l , X l+1)

�(θ0, X l , X l+1)

]
.

Then Assumption 7.1 ensures that

∂ξ (θ0) =
∑
x∈A

∂ν(θ0, x) Eθ0
x

[
T−1∑
j=0

f (X j )

]
+

∑
x∈A

ν(θ0, x) Eθ0
x

[
T−1∑
j=0

f (X j ) ∂L

]
, (31)

where

∂L =
T−1∑
l=0

∂�(θ0, X l , X l+1)

�(θ0, X l , X l+1)
.

Similarly, we can show that

∂κ(θ0) =
∑
x∈A

∂ν(θ0, x) Eθ0
x [T ] +

∑
x∈A

ν(θ0, x) Eθ0
x [T ∂L] . (32)

These expressions form the basis for applying the likelihood ratio (LR) method
for derivative estimation; see, for example, Glynn [1990], Reiman and Weiss
[1989], and Rubinstein [1989] for details on the LR method.

We now need to get a handle on ∂ν(θ0) = (∂ν(θ0, x) : x ∈ A). We can show that
R(θ ) is continuous and differentiable in θ by using the fact that

R(θ , x, y) = Eθ0
x

[
I (X T = y)

T−1∏
l=0

�(θ , X l , X l+1)

�(θ0, X l , X l+1)

]
,

so

∂ R(θ0, x, y) = Eθ0
x [I (X T = y) ∂L].

Let ∂ R(θ0) = (∂ R(θ0, x, y) : x, y ∈ A). Glynn [1986] shows that the continuity of
R(θ ) in θ implies that ν(θ ) is also continuous. Then, letting V (θ ) be the matrix
with all rows equal to ν(θ ) (i.e., V (θ ) = eν(θ )), Glynn [1986] also establishes
that ∂ν(θ0) exists and

∂ν(θ0) = ν(θ0)∂ R(θ0)F (θ0), (33)

where F (θ0) = (I − R(θ0) + V (θ0))−1.
For x ∈ A, define

y0(x) = Eθ0
x

[
T−1∑
j=0

f (X j )

]
, ∂ y(x) = Eθ0

x

[
T−1∑
j=0

f (X j ) ∂L

]
,

t(x) = Eθ0
x [T ], ∂t(x) = Eθ0

x [T ∂L] ,

and set y0 = ( y0(x) : x ∈ A), ∂ y = (∂ y(x) : x ∈ A), t = (t(x) : x ∈ A), and
∂t = (∂t(x) : x ∈ A). Define the function r0 : �d×1 ×�d×1 ×�d×1 ×�d×1 ×�d×d ×
�1×d × �d×d → � as

r0(w1, w2, . . . , w7) = (w6w5w7w1 + w6w2)w6w3 − w6w1(w6w5w7w3 + w6w4)

(w6w3)2
. (34)
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Let μ0 = ( y0, ∂ y , t, ∂t, ∂ R(θ0), ν(θ0), F (θ0)), and note that

∂α(θ0) = r0(μ0) (35)

by Equations (30), (31), (32), and (33). Equation (35) will be the basis for devel-
oping semi-regenerative estimators for ∂α(θ0).

One advantage of using the SRM rather than the RM to implement the
likelihood-ratio derivative method is that the semi-regenerative trajectories are
shorter than the regenerative cycles when the return state w of the RM is chosen
from the set A. Analyses in Reiman and Weiss [1989] and Glynn [1987] suggest
that the variance of likelihood-ratio derivative estimators grows linearly in the
length (number of transitions) of the observation, so semi-regenerative deriva-
tive estimators should have smaller variance than regenerative derivative es-
timators. Zhang and Ho [1992] develop a similar idea of dividing regenerative
cycles into A-segments which are the same as trajectories, but they end up with
a different estimator than we do.

7.1 Stratified Estimation

We now develop a stratified semi-regenerative estimator based on Equa-
tion (35). For x, y ∈ A, define Y (x), τ (x), and χ (x, y) as in Section 3.2. Taking
p1, p2, . . . , pd , to be d positive numbers summing to one, we let

(∂Lk(xi), Yk(xi), τk(xi), χk(xi, y) : y ∈ A)

for 1 ≤ k ≤ �pin be i.i.d. copies of

(∂L, Y , τ, χ ( y) : y ∈ A) under measure P θ0
xi

.

For i = 1, 2, . . . , d , and y ∈ A, set

Ȳ n(xi) = 1

�pin
�pin∑
k=1

Yk(xi), ∂Ȳ n(xi) = 1

�pin
�pin∑
k=1

Yk(xi) ∂Lk(xi),

τ̄n(xi) = 1

�pin
�pin∑
k=1

τk(xi), ∂τ̄n(xi) = 1

�pin
�pin∑
k=1

τk(xi) ∂Lk(xi),

Rn(θ0, xi, y) = 1

�pin
�pin∑
k=1

χk(xi, y),

∂ Rn(θ0, xi, y) = 1

�pin
�pin∑
k=1

χk(xi, y) ∂Lk(xi),

and let Ȳ n = (Ȳ n(x) : x ∈ A), ∂Ȳ n = (∂Ȳ n(x) : x ∈ A), τ̄n = (τ̄n(x) : x ∈
A), ∂τ̄n = (∂τ̄n(x) : x ∈ A), Rn(θ0) = (Rn(θ0, x, y) : x, y ∈ A), and ∂ Rn(θ0) =
(∂ Rn(θ0, x, y) : x ∈ A. Let νn(θ0) = (νn(θ0, x) : x ∈ A) ∈ �1×d be the stationary
distribution of Rn(θ0). Define Vn(θ0) as the matrix with all rows equal to νn(θ0);
that is, Vn(θ0) = eνn(θ0), where e is the vector of all 1’s in �d×1. Also, define
Fn(θ0) = (I − Rn(θ0) + Vn(θ0))−1. Finally, define ∂νn(θ0) = (∂νn(θ0, x) : x ∈ A) as

∂νn(θ0) = νn(θ0) ∂ Rn(θ0) Fn(θ0).
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We then define our stratified semi-regenerative estimator of ∂α(θ0) to be

∂αn(θ0) = r0(Ȳ n, ∂Ȳ n, τ̄n, ∂τ̄n, Rn(θ0), ∂ Rn(θ0), νn(θ0), Fn(θ0)),

where the function r0 is defined in (34).
We show in the appendix (see Equation (48)) that

νn(θ0) − ν(θ0) = νn(θ0)(Rn(θ0) − R(θ0))F (θ0), (36)

so

Vn(θ0) − V (θ0) = e(νn(θ0) − ν(θ0)) = eνn(θ0)(Rn(θ0) − R(θ0))F (θ0). (37)

We also establish in the appendix (see Equation (49)) that νn → ν a.s. as n → ∞,
so Equation (3) implies that Vn(θ0) → V (θ0) a.s. as n → ∞. Thus,

Fn(θ0) = (I − Rn(θ0) + Vn(θ0))−1 → (I − R(θ0) + V (θ0))−1 = F (θ0) a.s.

as n → ∞ by the continuity of the inverse mapping at I − R(θ0)+V (θ0). Also, in
a similar manner to how we established Equation (27), we can also show that

Fn(θ0) − F (θ0)

= Fn(θ0)[(Rn(θ0) − R(θ0)) − (Vn(θ0) − V (θ0))]F (θ0)

= Fn(θ0)[(Rn(θ0) − R(θ0)) − eνn(θ0)(Rn(θ0) − R(θ0))F (θ0)]F (θ0) (38)

by Equation (37).
Note that the finiteness of S and irreducibility of �(θ0) by Assumption 7.1

ensure that τ has finite moments of all orders under measure P θ0
x , x ∈ A. Also,

the finiteness of S and the continuous differentiability of �(θ ) imply that f and
∂�(θ0, · , · )/�(θ0, · , · ) are bounded. Thus, Y , Y ∂L, τ , τ∂L, χ ( y), and χ ( y)∂L
all have finite moments of all orders under measure P θ0

x , x ∈ A, so it follows
that

n1/2[(Ȳ n, ∂Ȳ n, τ̄n, ∂τ̄n, ∂ Rn(θ0), νn(θ0), Fn(θ0)) − μ0]
D→ (M1, M2, . . . , M7)

D= N (0, �0), (39)

for some normal random elements M1, M2, . . . , M7, and some covariance matrix

�0. Also, note that n1/2[Rn(θ0)−R(θ0)]
D→ M8 as n → ∞, where M8 is a normally

distributed matrix for which the ith row of M8 has covariance matrix p−1
i �i,

where �i is defined in Equations (5) and (6). Moreover, for i 
= j , the ith and
j th row of M8 are independent. We can then show that

M6 = ν(θ0)M8 F (θ0), M7 = F (θ0)(M8 − eν(θ0)M5 F (θ0))F (θ0),

by Equations (36) and (38), respectively. Then applying the delta method (e.g.,
Serfling [1980, Theorem A, p. 122]) results in the following central limit theorem
for ∂αn(θ0).

THEOREM 7.2. Under Assumption 7.1,

n1/2(∂αn(θ0) − ∂α(θ0))
D→ N

(
0, D�

0 �0 D0

)
,

where �0 is defined in Equation (39) and D0 is the vector of partial derivatives
of the function r0 evaluated at μ0, with r0 defined in Equation (34).
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It is straightforward to compute the entries of D0 which we mostly do
not give explicitly. For example, calculating the partial derivative of r0

with respect to w6(xi) and evaluating at μ0 yields (with a slight abuse of
notation)

∂r0(μ0)

∂w6(xi)
=

{
κ(θ0)2

[
κ(θ0)

(
d∑

l=1

∂ R(θ0, xi, xl )
d∑

m=1

F (θ0, xl , xm) y0(xm) + ∂ y(xi)

)
+ ∂ξ (θ0)t(xi) − y0(xi) ∂κ(θ0)

− ξ (θ0)

(
d∑

l=1

∂ R(θ0, xi, xl )
d∑

m=1

F (θ0, xl , xm)t(xm) + ∂t(xi)

)]

− 2[κ(θ0)∂ξ (θ0) − ξ (θ0)∂κ(θ0)] κ(θ0)t(xi)

}
κ(θ0)−4.

Many entries in �0 in Equation (39) are zero because (∂Lk(xi), Yk(xi),
τk(xi), χk(xi, y) : y ∈ A) and (∂Lk(x j ), Yk(x j ), τk(x j ), χk(x j , y) : y ∈ A) for i 
= j
are independent, and the remaining nonzero entries are straightforward to
calculate. For example,

Covθ0

xi
(M1(xi), M6(xi, x j )) = Covθ0

xi
(Y , χ (x j ) ∂L)

pi
, (40)

where Covθ0 is the covariance operator under parameter value θ0.
One can also construct a semi-regenerative estimator based on Equation (35)

for one sample path, but we omit this.

8. LOW-BIAS ESTIMATOR

In this section, we describe a variation of the semi-regenerative estimator that
we expect to have lower bias than the standard semi-regenerative estimator.

Put α̂m = m−1
∑m−1

j=0 f (X j ). In great generality, it is known that

Ex [̂αm] = π f + m−1β + o(m−1)

as m → ∞; see Glynn and Heidelberger [1990]. We wish to have a semi-
regenerative estimator βm for β. This is a semi-regenerative analogue of a
regenerative estimator proposed by Glynn [1994].

Suppose |S| < ∞ with X irreducible and aperiodic. For x ∈ S, let fc(x) =
f (x) − α. Then we can express the bias of α̂m as

1

m
Ex

[
m−1∑
j=0

f (X j )

]
− π f = 1

m
Ex

[
m−1∑
j=0

fc(X j )

]

= 1

m

∞∑
j=0

Ex[ fc(X j )] − 1

m

∞∑
j=m

Ex[ fc(X j )] ≡ 1

m
β(x) + o

(
1

m

)
.

Our goal is to reduce the order 1/m bias by subtracting an estimate of
β(x)/m.
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Let μ(x) = Ex[
∑T−1

j=0 fc(X j )] for x ∈ A, and μ = (μ(x) : x ∈ A). Then, it
follows that for x ∈ A,

β(x) = Ex

[ ∞∑
k=0

Tk+1−1∑
j=Tk

fc(X j )

]
=

∞∑
k=0

Ex[μ(Wk)]

=
∞∑

k=0

∑
y∈A

Rk(x, y)μ( y) = (Fμ)(x),

that is, β = Fμ.
We now discuss how to estimate β from a simulation of one sample path.

Let Nm = sup{n ≥ 0 : Tn ≤ m}. Recall our definitions of ν̂n and R ′
n from

Section 3.3, and let V̂n = êνn. Then βm = (I − R ′
Nm

− V̂Nm)−1μ′
m estimates β,

where μ′
m = (μ′

m(x) : x ∈ A) is an estimate of μ given by

μ′
m(x) =

1
Nm

∑Nm−1
k=0

∑Tk+1−1
j=Tk

( f (X j ) − α̂m)I (Wk = x)

1
Nm

∑Nm−1
k=0 I (Wk = x)

.

We then expect α̂m − βm(x)/m to have lower bias than α̂m does, provided X 0 =
x ∈ A.

9. RATIOS OF STEADY-STATE MEANS

In this section, we consider a performance measure γ of the form γ =
(π f1)/(π f2), where f1 and f2 are real-valued reward functions on S, and π

is the stationary measure of X on S. Note that Equation (1) implies that

γ =
Ew

[ ∑T−1
j=0 f1(X j )

]
/Ew[T ]

Ew

[ ∑T−1
j=0 f2(X j )

]
/Ew[T ]

=
Ew

[ ∑T−1
j=0 f1(X j )

]
Ew

[ ∑T−1
j=0 f2(X j )

] (41)

for any state w ∈ S when Assumption 2.1 holds. Also, we can write

γ =
Eν

[ ∑T−1
j=0 f1(X j )

]
/Eν[T ]

Eν

[ ∑T−1
j=0 f2(X j )

]
/Eν[T ]

=
Eν

[ ∑T−1
j=0 f1(X j )

]
Eν

[ ∑T−1
j=0 f2(X j )

]
by Proposition 3.5.

The measure γ is a generalization of the ratio formula for steady-state means
in Proposition 3.5. Also, γ arises in practice when applying discrete-time con-
version to a continuous-time Markov chain [Hordijk et al. 1976; Fox and Glynn
1986]. The basic idea is to condition on the embedded discrete-time Markov
chain which results in replacing the random exponential holding times in each
state with their (conditional) means, and this is guaranteed to reduce variance.
Specifically, suppose that U = {U (t) : t ≥ 0} is a positive-recurrent, irreducible
continuous-time Markov chain on state space S with embedded discrete-time
Markov chain X . Suppose that q(x) is the total transition rate of U out of
state x ∈ S, and we are interested in computing γ = limt→∞(1/t)

∫ t
0

f3(U (s))ds,
where f3 : S → � is some reward function. Then for any state w ∈ S, the
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steady-state mean reward of the continuous-time Markov chain can be ex-
pressed as

γ =
Ew

[ ∑T−1
j=0 f3(X j )/q(X j )

]
Ew

[ ∑T−1
j=0 1/q(X j )

] ,

which has exactly the form in Equation (41) by letting f1(x) = f3(x)/q(x) and
f2(x) = 1/q(x) for x ∈ S.

The methods described in the previous sections can easily be modified to
work with this more general setting of dealing with the performance measure
γ rather than α. Thus, we can handle continuous-time Markov chains in our
framework of discrete-time Markov chains.

10. CONCLUDING REMARKS

For many of our estimators considered in this article, confidence intervals are
desirable. (But, e.g., there is typically no need for a confidence interval for the
bias correction of Section 8.) However, the central limit theorem for many of
our estimators is complicated. From an implementation standpoint, it may be
desirable to produce confidence intervals without having to explicitly work out
the corresponding central limit theorem, followed by consistent estimation of
the corresponding variance constant.

One way of doing this is by sectioning. Sectioning works even in the strati-
fied sampling context. Given an integer � > 0, we section the computer budget c
into � different pieces, each of size c/�. We then apply our stratification weights
p1, . . . , pd to each of the � sub-budgets; this gives us � i.i.d. estimators. We also
get one estimator for the total budget c. Specifically, suppose the goal is to es-
timate some performance measure α. Let α̃i be the estimator for sub-budget
i, 1 ≤ i ≤ �, where α̃1, α̃2, . . . , α̃� are i.i.d. Also let α̃ = ∑�

i=1 α̃i/� be the es-
timator associated with the entire budget. Then, under appropriate moment
assumptions,

√
c(̃α1 − α, α̃2 − α, . . . , α̃� − α, α̃ − α)

D→
(

N1, N2, . . . , N�,
1

�

�∑
i=1

Ni

)
,

as c → ∞, where N1, N2, . . . , N� are i.i.d. N (0, σ 2
� ) for some σ 2

� . Hence,

√
�(̃α − α)√

1
�−1

∑�
i=1(̃αi − α̃)2

D→ t�−1

as c → ∞, where t�−1 is a Student-t random variable with � − 1 degrees of free-
dom. The sectioning approach avoids the complications of deriving an explicit
central limit theorem. But this is at the cost of producing a Student-t interval,
as opposed to a normal interval. Hence, the intervals are slightly larger and
more variable than in the case where we consistently estimate the variance
constant explicitly.
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APPENDIX

PROOF OF THEOREM 3.8. For each i = 1, 2, . . . , d , let Zk(xi) = Yk(xi) − ατk(xi),
k ≥ 1, and set

Z̄ n(xi) = 1

�pin
�pin∑
k=1

Zk(xi).

Let Z̄ n = (Z̄ n(x) : x ∈ A) ∈ �d×1 and τ̄n = (τ̄n(x) : x ∈ A) ∈ �d×1. Note that

n1/2(αn − α) = n1/2

∑d
i=1 νn(xi)Z̄ n(xi)∑d
i=1 νn(xi)τ̄n(xi)

= n1/2 νnZ̄ n

νnτ̄n
= Cn + Dn, (42)

where

Cn = n1/2 νnZ̄ n

Eν[T ]
, Dn = n1/2νnZ̄ n

(
1

νnτ̄n
− 1

Eν[T ]

)
. (43)

We begin by analyzing Cn. The second equality in Proposition 3.5 implies
that

νz = 0. (44)

Hence,

Cn = n1/2 (νn − ν)Z̄ n + ν(Z̄ n − z)

Eν[T ]
. (45)

We now need to analyze νn − ν and Z̄ n − z.
Assumptions 2.1 and 3.4 imply that R is finite and irreducible. It then follows

that Rn is finite and irreducible for n sufficiently large by Equation (3). Since
νR = ν and νn = νn Rn,

νn − ν = νn Rn − νR = νn(Rn − R) + (νn − ν)R, (46)

and so

(νn − ν) (I − R) = νn(Rn − R). (47)

Then because νne − νe = 1 − 1 = 0 and V = eν, we have that (νn − ν)V = 0.
Hence, we can rewrite Equation (47) as

(νn − ν) (I − R + V ) = νn(Rn − R).

Therefore,

νn − ν = νn(Rn − R)F. (48)

Note that Rn − R → 0 a.s. by Equation (3). Also, |A| < ∞ by Assumption 3.4,
and νn is bounded for all n. Thus, Equation (48) implies that

νn → ν a.s. (49)

as n → ∞. Also because of Equation (48), Equation (45) becomes

Cn = n1/2 νn(Rn − R)F Z̄ n + ν(Z̄ n − z)

Eν[T ]
. (50)
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Under Assumptions 2.1 and 3.6 (see Proposition 3.7),

n1/2(Rn − R, Z̄ n − z)
D→ (N1, N2)

D= N (0, �), (51)

where
D= denotes equality in distribution. Thus, (N1, N2) are jointly normally

distributed with some covariance matrix �. (We will examine the structure of
the matrix � in the following.) Because Z̄ n → z a.s. and by Equation (49),

(n1/2(Rn − R), n1/2(Z̄ n − z), νn, Z̄ n)
D→ (N1, N2, ν, z) as n → ∞ by Theorem 3.9

of Billingsley [1999]. Hence, the continuous mapping theorem (e.g., Billingsley
[1999, Theorem 2.7]) implies that

Cn
D→ νN1 F z + νN2

Eν[T ]
, (52)

as n → ∞.
We now consider Dn from Equation (43). Note that for each x ∈ A,

τ̄n(x) → Ex[τ ] a.s. and Ex[τ ] > 0. Thus, Equation (49) implies that (1/(νnτ̄n)) −
(1/Eν[T ])

D→ 0 by the continuous mapping theorem. So it follows from Equa-
tion (52) that

Dn
D→ 0. (53)

Therefore, using Equations (42) and (52), gives

n1/2(αn − α)
D→ ν(N1ζ + N2)

Eν[T ]
(54)

by the converging-together lemma (see Billingsley [1995, Theorem 25.4]), since
ζ = F z.

We now examine the structure of the covariance matrix � in Equation (51),
which we will need to know to determine the exact form of the variance of
the limiting distribution in Equation (54). Many of the entries in � are zero
since (Rn(xi, · ), Z̄ n(xi)) is independent of (Rn(x j , · ), Z̄ n(x j )) for i 
= j , where
we use the notation that for x ∈ A, M (x, · ) = (M (x, y) : y ∈ A) for a matrix
M = (M (u, v) : u, v ∈ A). We now consider separately the nonzero components
of �. Recall we previously defined the matrix �i in Equations (5) and (6), and
note that

n1/2
(
Rn(xi, · ) − R(xi, · )

) D→ N (0, p−1
i �i),

as n → ∞. Also, n1/2(Rn(xi, x j )− R(xi, x j ), Z̄ n(xi)− z(xi)) converges in distribu-
tion to a normal random vector with mean 0 and covariance matrix

p−1
i

(
�i(x j , x j ) g (xi, x j )
g (xi, x j ) h(xi)

)
.

Now the only thing left to show is that the asymptotic variance σ 2 is given
by Equation (7). In Equation (54), N1ζ + N2 is a random vector in which each
component (N1ζ+N2)(xi) is normally distributed since it is a linear combination
of dependent normals, and

Var((N1ζ + N2)(xi)) = ηi

pi
. (55)
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For i 
= j , (N1(xi, ·), N2(xi)) and (N1(x j , ·), N2(x j )) are independent because
of the independence of (Rn(xi, ·), Z̄ n(xi)) and (Rn(x j , ·), Z̄ n(x j )). Therefore,
N1ζ + N2 is a normally distributed random vector with independent compo-
nents, which implies that ν(N1ζ+N2) is a linear combination of the independent
(N1ζ + N2)(x), x ∈ A, and so (7) follows.

PROOF OF THEOREM 3.10. For x ∈ A, define Z ′
k(x) = Y ′

k(x) −ατ ′
k(x), k ≥ 1, and

set

Z̄ ′
n(x) = 1

Hn(x)

Hn(x)∑
k=1

Z ′
k(x), τ̄ ′

n(x) = 1

Hn(x)

Hn(x)∑
k=1

τ ′
k(x).

Let Z̄ ′
n = (Z̄ ′

n(x) : x ∈ A) and τ̄ ′
n = (τ̄ ′

n(x) : x ∈ A). Since νz = 0 by Equation (44),
we have that

n1/2(α′
n − α) = C′

n + D′
n,

where

C′
n = n1/2 ν̂nZ̄ ′

n

Eν[T ]
= n1/2 (̂νn − ν)Z̄ ′

n + ν(Z̄ ′
n − z)

Eν[T ]
,

D′
n = n1/2ν̂nZ̄ ′

n

(
1

ν̂nτ̄ ′
n

− 1

Eν[T ]

)
,

and ν̂n = (̂νn(x) : x ∈ A).
For x ∈ A, ν(x) > 0 by Proposition 3.3. Also,

ν̂n(x) = Hn(x)

n
→ ν(x) > 0 a.s. (56)

as n → ∞, so Hn(x) → ∞ a.s. Recall the definition of R ′
n at Equation (13). By

Equation (56), R ′
n → R a.s., and since R is irreducible and positive recurrent by

Proposition 3.3, R ′
n also is for sufficiently large n. Thus, for n sufficiently large,

we can define ν ′
n = (ν ′

n(x) : x ∈ A) such that ν ′
n = ν ′

n R ′
n, ν ′

n ≥ 0, and eν ′
n = 1.

Observe that

ν̂n − ν = ν̂n R ′
n − νR + (̂νn − ν ′

n)(I − R ′
n)

= ν̂n(R ′
n − R) + (̂νn − ν)R + (̂νn − ν ′

n)(I − R ′
n).

Now arguing as we did to go from Equation (46) to Equation (48), we can show
that

ν̂n − ν = ν̂n(R ′
n − R)F + (̂νn − ν ′

n)(I − R ′
n)F. (57)

Hence,

C′
n = n1/2 ν̂n(R ′

n − R)F Z̄ ′
n + ν(Z̄ ′

n − z)

Eν[T ]
+ n1/2 (̂νn − ν ′

n)(I − R ′
n)F Z̄ ′

n

Eν[T ]
. (58)

Note that Equation (56) implies that Z̄ ′
n(x) → z(x) a.s. and τ̄ ′

n(x) → Ex[τ ] a.s.,
and the random-time-change central limit theorem (e.g., Serfling [1980, p. 32])
implies that

n1/2(R ′
n − R, Z̄ ′

n − z)
D→ (N ′

1, N ′
2)

D= N (0, �′), (59)
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that is, (N ′
1, N ′

2) are jointly normally distributed with some covariance ma-
trix �′ for which we will later give the exact form. It then follows that, as in
Equation (52),

n1/2 ν̂n(R ′
n − R)F Z̄ ′

n + ν(Z̄ ′
n − z)

Eν[T ]

D→ νN ′
1ζ + νN ′

2

Eν[T ]

by Equation (59) since ν̂n → ν a.s. and Z̄ ′
n → z a.s.

We now show that

n1/2(̂νn − ν ′
n)

D→ 0 (60)

as n → ∞. To see this, define εn(x) by

εn(x) = ν̂n(x) − ν̂n R ′
n(x) = Hn(x)

n
−

∑
y∈A

Hn( y)

n

∑n−1
k=0 I (Wk = y , Wk+1 = x)∑n−1

k=0 I (Wk = y)

= 1

n

(
Hn(x) −

∑
y∈A

n−1∑
k=0

I (Wk = y , Wk+1 = x)

)

= 1

n
(I (W0 = x) − I (Wn = x)).

Therefore, |εn(x)| ≤ 1/n for each x. Let V ′
n be the matrix with each row equal to

ν ′
n, and let F ′

n = (I − R ′
n + V ′

n)−1. For any probability vector μ ∈ �1×d , μV ′
n = ν ′

n.
Then ν̂n = ν̂n R ′

n + εn = ν̂n(R ′
n − V ′

n) + ν ′
n + εn, or

ν̂n(I − R ′
n + V ′

n) = ν ′
n + εn = ν ′

n(I − R ′
n + V ′

n) + εn.

Therefore, ν̂n − ν ′
n = εnF ′

n. Since F ′
n → F a.s. and |εn(x)| ≤ 1/n for all x,

Equation (60) follows.
Hence, the second term on the right-hand side of Equation (58) satisfies

n1/2 (̂νn − ν ′
n)(I − R ′

n)F Z̄ ′
n

Eν[T ]

D→ 0

since R ′
n → R a.s. and Z̄ ′

n → z a.s. Also, as in Equation (53), we can similarly

show that D′
n

D→ 0. Therefore,

n1/2(α′
n − α)

D→ νN ′
1ζ + νN ′

2

Eν[T ]
.

We now examine the structure of the covariance matrix �′ in Equation (59).
Even though R ′

n(xi, ·) is not independent of R ′
n(x j , ·) for i 
= j , it turns out that

N ′
1(xi, ·) and N ′

1(x j , ·) are independent; for example, Billingsley [1961, Theo-
rem 3.1 and p. 23].

We now show that Cov(N ′
2(xi), N ′

2(x j )) = 0 for i 
= j . For xi ∈ A, define

Ẑ ′
n(xi) = 1

�ν(xi)n
�ν(xi )n∑

k=1

Z ′
k(xi).

By slightly modifying the argument of Billingsley [1961, p. 20], we can prove
that for each xi ∈ A,

n1/2(Z̄ ′
n(xi) − z(xi)) − n1/2(Ẑ ′

n(xi) − z(xi))
D→ 0
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as n → ∞. Now let Ẑ ′
n = (Ẑ ′

n(xi) : i = 1, 2, . . . , d ), and it then follows that

n1/2(Z̄ ′
n − z) − n1/2(Ẑ ′

n − z)
D→ 0

as n → ∞. Hence, the converging-together lemma implies that n1/2(Ẑ ′
n − z)

D→
N ′

2 as n → ∞, where N ′
2 is defined in Equation (59); that is, n1/2(Ẑ ′

n − z) and

n1/2(Z̄ ′
n − z) have the same limiting distribution. But the Markov property im-

plies that for each n, Ẑ ′
n(xi) and Ẑ ′

n(x j ) are independent for i 
= j . Consequently,
N ′

2(xi) and N ′
2(x j ) are independent for i 
= j , so Cov(N ′

2(xi), N ′
2(x j )) = 0. We can

similarly show that N ′
1(xi, ·) and N ′

2(x j ) are independent for i 
= j .
Thus, �′ has nonzero entries in the same places as � in Equation (51) does.

The difference between �′ and � is that the nonzero entries in � are divided by
the appropriate pi, whereas they are divided by the appropriate ν(xi) in �′. The
divisors ν(xi) in �′ arise from the random-time-change central limit theorem
because Hn(xi)/n → ν(xi) a.s. as we showed in Equation (56). For example, note

that n1/2(Z̄ ′
n(xi)−z)

D→ N (0, h(xi)/ν(xi)), where h(xi) = Varxi (Z ) as before. Thus,
as in the proof of Theorem 3.8, we can work out the exact form of the asymptotic
variance σ 2

1 to be (12).
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