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Abstract

General perpetuities (i.e. random variables of the formD =
R∞
0 e−Γ(t−)dΛ (t),

also known as infinite horizon discounted rewards) play an important role in
several application settings (e.g. insurance, finance and time series analysis).
Our focus is on developing approximations for the distribution of D that are
asymptotically valid when the “accumulated short rate process” or “accumu-
lated force of interest” (represented by Γ) is small. In this paper, we emphasize
approximations that are good around the “center” of the distribution of D.
We provide: 1) characterizations, in terms of solutions to certain linear equa-
tions, for the distribution of D when Γ and Λ are driven by Markov processes;
2) General sufficient conditions under which weak convergence results can be
derived for D; 3) Edgeworth expansions for the distribution of D in the iid
case and the case in which Λ is a Levy process and Γ̇ (t) is a function of a
Markov process, this last setting is of particular interest in applications to life
and non-life insurance problems.

1 Introduction

Perpetuities arise in the insurance and mathematical finance context when modeling
long term guaranteed payments. A very basic model that is used considers benefits
that are paid in perpetuity at a fixed rate, say λ, under the assumption that the
interest rates are fixed at level γ (in the insurance context, γ is often called the force
of interest). The present value of such benefit plan is λ/γ =

R∞
0
e−γsλds. In more

realistic situations, it is of interest to consider a pension system as a whole (which
could be a private pension fund designed for a particular group) in a stochastic
economic environment (i.e. under stochastic compounding) then a natural quantity
to consider is the perpetuityZ ∞

0

exp

µ
−
Z t

0

γ (s) ds

¶
λ (s) ds, (1)
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where λ (t) is the aggregated rate paid by the insurance company at time t and
γ (t) represents the short rate (or the instantaneous force of interest) at time t. It is
natural to assess how well balanced is the fund or how likely is for the pension fund to
collapse by studying the distribution of the difference between the present value of the
aggregated benefits and the present value of the aggregated premiums received. We
refer the interested reader to the paper by Dufresne (1990) who (under stationary and
ergodic assumptions) proposes a detailed model, based on perpetuities, for computing
the value of a pension fund. The processes λ (t) and γ (t) depend on the parameters
that serve to characterize the pension fund (i.e. benefit payments, actuarial liability,
net premium, and rate of return). As explained in Dufresne (1990), the distribution
of the value process plays an important role in risk management, as it serves to
compute critical rates ensuring that the fund is being managed in a balanced manner
with respect to its actuarial liabilities; see Dufresne (1990) and Bédard and Dufresne
(2001) for additional detail on pension funding.
Perpetuities also arises in non-pension fund insurance settings. Consider a com-

pany that receives premiums at a rate of p dollars per unit time, and pays out claims
according to the random process A (·). If γ (t) represents the rate of return on the
invested risk reserve at time t, the risk reserve R (t) evolves according to the equation

dR (t) = γ (t)R (t) dt+ (pdt− dA (t)) ,
subject to the initial condition R (0) = r0. Harrison (1977) shows that the ruin
probability P (inft≥0R (t) < 0) can be computed in terms of the distribution of a
more general perpetuity that takes the form

D =

Z
[0,∞)

exp (−Γ (t−)) dΛ (t) ,

(for Λ and Γ suitably defined) when γ is deterministic. Paulsen (1998) extends this
result to the case of stochastic γ (·); see also Nyrhinen (2001). Thus, the key to
calculating such ruin probabilities is computing the distribution of D.
General perpetuities, such as D, are also called infinite horizon discounted re-

wards. One can immediately appreciate that random variables that take the form of
D arise in many other contexts in addition to insurance / finance settings discussed
above.
It turns out that D also plays a major role in the theory of ARCH processes. This

class of time series is widely used within the statistics and econometrics communities,
and has been employed to model log-returns, exchange rates, inflation, and many
other financial and economic time series; see Campbell, Lo and Mackinlay (1999),
Shephard (1996), Mills (1993) and Wilkie (1986). An ARCH(1) model satisfies the
stochastic recursion

Yn+1 = An +Bn+1Yn, (2)

where the sequence ((Ai, Bi) : i ≥ 1) is iid (independent and identically distributed.)
Under mild stability conditions (see, for example, Kesten (1973), Verbaat (1979),
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Goldie (1991), Embrechts and Goldie (1994)), this Markov chain has a stationary
distribution. This stationary distribution is a special case of D.
We also note several other applications settings in which the distribution of D

arises as a central object. Goldie and Grübel (1996) describe its relevance to complex-
ity theory (in the context of sorting algorithms related to “Quicksort”) and analytic
number theory. Carmona, Petit, and Yor (2001) describe several other applications
arising in mathematical physics and finance.
Study of approximations for the distribution of D can be traced back (at least)

to the early seventies. Gerber (1971) established a Central Limit Theorem (CLT), as
well as its Berry-Esséen companion, for

D =
∞X
k=0

exp (−αk)Xk,

in the case of a (small) deterministic discount rate α and iid rewards (Xk)k≥0. Whitt
(1972) obtained more general central limit theorems for D, also under the assumption
of deterministic interest rates. The aim of Whitt’s paper was to establish discounted
stochastic limit theorems based on postulating a functional limit theorem for the
(undiscounted) reward process (in our notation, Λ).
The setting of stochastic discount rates has also been studied in the literature.

Pollack and Siegmund (1985) computed the distribution of D in the case in which
Γ follows a Brownian motion with negative drift and Λ (t) = t; see also Dufresne
(1990). The distribution of D has also been computed explicitly by Gjessing and
Paulsen (1997) in some other particular cases in which both Γ and Λ follow particu-
lar types of Levy processes. Computing the distribution of D in complete generality
is clearly unfeasible. Even in Markovian settings, such as those previously described,
the type of integro-differential equations that arise (see Gjessing and Paulsen (1997),
Yor (2001) and Section 3 below) are challenging to solve both analytically and nu-
merically. Therefore, part of our goal is to provide approximations to D that hold in
great generality and require relatively “easy-to-obtain” information for their imple-
mentation.
As main contributions of the paper we provide:
1) Characterizations, in terms of solutions to certain linear equations, of the dis-

tribution of D and its Laplace transform when Γ and Λ are driven by an underlying
Markov process.
2) General sufficient conditions are given under which D properly centered and

scaled converges weakly to some random variable Z, which typically is Gaussian, as
the “interest rate” tends to zero.
3) Edgeworth expansions for the distribution of D in the iid case and the case in

which Λ is a Levy process and Γ̇ (t) is a function of a Markov process. This case is
of particular interest in the insurance context under investments since it is common
to model pure claim processes as Levy motions and interest rates as mean reverting
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processes. Formal Edgeworth expansions are also given for more general Markovian
settings.
The rest of the paper is organized as follows. As we indicated before Section 2

discusses some motivating examples in which the distribution ofD plays an important
role. In Section 3 we deal with item 2) of the previous list, namely, sufficient conditions
that guarantee weak convergence of D as the “interest rate” goes to zero. The
development of the Edgeworth expansions is given in Section 4.

2 Exact Computations

Our main goals in this section are to provide means to compute either numerically
or analytically the exact distribution of D and to provide a brief discussion of the
computational issues that would arise in implementing a numerical scheme to eval-
uate the distribution of D “exactly”. We argue that approximations can often be a
convenient alternative to exact computation.
In the applications described in previous sections, it is often the case that the dis-

count and reward rates are modeled as functions of some underlying Markov process.
To be more precise, let Y = (Y (s) : s ≥ 0) be a homogeneous Markov process taking
values in a compact Polish space Ξ and let B (Ξ) be the Borel sigma-field in Ξ. Let
P (t, y,B) (t ∈ R+, y ∈ Ξ and B ∈ B (Ξ)) be the corresponding transition probability
function. Assume that Y satisfies the Feller condition (i.e. P (t, y,Bδ (y)) → 1 as
t& 0, for all δ > 0, where Bδ (y) is a ball of radius δ around y) and that the mapping
y → Eyf (Y (t)) is continuous for all f (·) ∈ C (Ξ) (the space of continuous function
taking values on Ξ). Let A be the associated infinitesimal generator of the process
Y , defined via the relation

Af (y) = lim
t↓0
Eyf (Y (t))− f (y)

t
,

where f ∈ C(Ξ). The domain D (A) of A is composed by those functions f ∈ C (Ξ)
for which the previous limit exists (uniformly in Ξ) (See Skorohod, Hoppensteadt
and Salehi (2002)). Finally, suppose that Y (·) has right continuous with left limits
sample paths. The discount rate at time t, satisfies γ (t) , g (Y (t)), while the reward
rate at time t is defined as λ (t) , f (Y (t)). Where both f and g are continuous
functions and g is positive. We are interested in computing the distribution of

D =

Z ∞

0

exp (−Γ (t)) f (Y (t)) dt,

where Γ (t) =
R t
0
g (Y (s)) ds. In this setting, one can develop linear equations that

are satisfied for the distribution of D or its Laplace transform, thereby providing the
necessary means to compute either numerically or analytically the exact distribution
of D. Our first result concerns the moment generating function of D.
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Theorem 1 Suppose that there exists a solution to the linear equation

(Aφ) (y, θ) = (∂θφ (y, θ) g (y) θ − φ (y, θ) f (y) θ) , (y, θ) ∈ Ξ×R, (3)

with sup(y,θ)∈Ξ×[−a,a]φ (y, θ) <∞ for every a > 0 (i.e. locally bounded), φ non-negative
and satisfying that φ (y, 0) = 1. Then, φ (y, θ) = Ey exp (θD).

Remarks
a) It should not be any confusion when evaluating (Aφ) (y, θ) (naturally, the

operator A acts on φ as a function of the first argument, y, only).
b) Note that the domain of A introduces hidden boundary conditions in the pre-

vious linear equation. For example, if Y is a one dimensional reflected Brownian
motion in [0, 1], the domain of A will comprise functions h ∈ C2 [0, 1] such that
h0 (0) = 0 = h0 (1) (otherwise, we cannot guarantee uniform convergence in the defi-
nition of Ah).
c) In many applications (for example in the insurance context) it is important

to study the distribution of D =
R∞
0
e−Γ(t)dΛ (t), where Γ (t) =

R t
0
g (Y (s)) ds and

Λ is a Levy process, typically independent of Y . Assuming that E exp (θΛ (1)) =
exp (ψΛ (θ)) <∞ for θ ∈ R, the linear system that must be solved takes the form

(Aφ) (y, θ) = (∂θφ (y, θ) g (y)− φ (y, θ)ψΛ (θ)) , (y, θ) ∈ Ξ×R.
d) Note that sufficient conditions for existence/uniqueness to (3) are well studied

at least in the case in which Y is a diffusion with uniformly elliptic generator A. In
this case, we can transform equation (3) into a parabolic equation by introducing
the change of variable θ = et (which imposes the restriction θ > 0). We then let

φ (y, et) = eφ (y, t) and obtain that (3) is transformed into³
Aeφ´ (y, t) = ³∂teφ (y, t) g (y)− eφ (y, t) f (y) et´ , (y, t) ∈ Ξ×R,

which is a non-homogeneous parabolic equation.
Proof. Consider the process,

M (t)

= φ
¡
Y (t) , θe−Γ(t)

¢
exp

µ
−
Z t

0

µ
Aφ+ ∂θφ∂se

−Γ(s)

φ

¶¡
Y (s) , θe−Γ(s)

¢
ds

¶
.

As in Lemma 2, p. 82 of Skorohod, Hoppensteadt and Salehi (2001) we see thatM (t)
is a local Martingale. However, note thatµ

Aφ+ ∂θφ∂se
−Γ(s)

φ

¶¡
Y (s) , θe−Γ(s)

¢
= −θe−Γ(s)f (Y (s)) ,

therefore

M (t) = φ
¡
Y (t) , θe−Γ(t)

¢
exp

µ
θ

Z t

0

e−Γ(s)f (Y (s)) ds
¶
.
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Since φ is locally bounded it follows that M is a bounded Martingale. On the other
hand, we are assuming that φ is in the domain of A and differentiable in θ, thus φ
is continuous in both arguments. It is not hard to verify that u1 (·) , supy∈Ξ φ (y, ·)
and u2 (·) , infy∈Ξ φ (y, ·) are both continuous functions, therefore we have that

φ (y, θ) = EyM (t) ≤ Eyu1
¡
θe−Γ(t)

¢
exp

µ
θ

Z t

0

e−Γ(s)f (Y (s)) ds
¶
,

and

φ (y, θ) = EyM (t) ≥ Eyu2
¡
θe−Γ(t)

¢
exp

µ
θ

Z t

0

e−Γ(s)f (Y (s)) ds
¶
.

Using that φ is locally bounded and the continuity of u1 and u2 we obtain, after
applying the bounded convergence theorem

φ (y, θ) = Ey exp

µ
θ

Z t

0

e−Γ(s)f (Y (s)) ds
¶
,

which is the statement of the theorem.

Our next result provides a more direct way of computing the distribution of D,
the inconvenient is that the types of boundary conditions involved are harder to deal
with numerically.

Theorem 2 Suppose that for every y ∈ Ξ, Py (D ≤ ·) is continuous and that there
exists a solution to the linear equation

(Ah) (y, z) = (f (y)− zg (y)) (∂zh) (y, z) , (y, z) ∈ Ξ×R, (4)

where 0 ≤ h (y, z) ≤ 1 and such that limz→∞ h (y, z) = 1 and limz→−∞ h (y, z) = 0.
Then,

h (y, z) = Py (D ≤ z) .

Proof. Let

D (t) =

Z t

0

e−Γ(s)f (Y (s)) ds,

and define M = (M (t) : t ≥ 0) as

M (t) = h
¡
Y (t) , (z −D (t)) eΓ(t)¢ ,

it follows from Lemma 2, p. 82 of Skorohod, Hoppensteadt and Salehi (2001), that
M is a local Martingale. Since h is bounded we therefore must have thatM is indeed
a bounded Martingale. Hence, we obtain that

h (y, z) = Eyh
¡
Y (t) , (z −D (t)) eΓ(t)¢ .
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An argument similar to that given in the proof of Theorem 1 (using the continuity
of h and the continuity of the distribution of D) implies, letting t→∞, that

h (y, z) = Py (D ≤ z)
as we claimed.

The previous results provide means for numerical evaluation of the distribution of
D. In order to get a sense of the computational complexity implied in equation (3)
consider the case in which Y follows a diffusion process. In this case, equation (3)
becomes a PDE that has the level of complexity of a parabolic equation. In addition,
there is a transform inversion that is required to recover the distribution from the
solution to (3). This inversion has the level of complexity of a numerical integration,
but it has to be carried out for each value of y and z in Py (D ≤ z). Equation (4),
on the other hand seems more convenient. One problem, however, is that equation
(4) requires handling more complicated boundary conditions and the corresponding
PDE does not correspond to a parabolic equation, thus the existence/uniqueness
issues in this case are more subtle. In the next sections we shall propose several
approximations that can be implemented at a lower computational cost. Some of
these approximations (for example, the case of the Edgeworth expansions and the
exact large deviations) require solving linear systems such as (3) and (4), but there
is no inversion involved in those procedures and the existence/uniqueness issues are
easier to deal with as we shall see.

3 Weak Convergence

The computational analysis described in the previous section suggests that developing
approximations for the distribution of D can be a convenient alternative in many of
the applications previously discussed. In this section, we are interested in developing
distributional approximations for D that are asymptotically valid in the presence of
low interest rates. In order to accomplish this, we shall introduce a parameter α > 0
that will be used to control the size of the “discount rate” (essentially what we have
denoted as Γ). Later we shall offer convenient interpretations of the results that can
be applied to practical problems, in which typically there is no scaling parameter
α > 0. To be more precise, let us define

D (α) =

Z ∞

0

exp (−αΓ (t−)) dΛ (t) .

Our goal is then to derive distributional approximation for D (α) that are asymptoti-
cally valid as α& 0. It is important to recognize that in the particular case in which
(Γ,Λ)t≥0 have stationary increments, D (α) will typically be equal in distribution toeD (∞), where eD (t) satisfies

d eD (t) = −α eD (t) dΓ (t−) + dΛ (t) . (5)
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Indeed, note that the solution to the previous stochastic differential equation (SDE)
is (assuming that Γ and Λ do not jump at the same time) given by

eD (t) = e−αΓ(t−)µeD (0) + Z t

0

e−αΓ(s−)dΛ (s)
¶
.

Assuming that Γ (t) /t → γ > 0 as t → ∞ and noting that because of stationarity
(using a time reverse argument)

e−αΓ(t−)
Z t

0

e−αΓ(s−)dΛ (s) D=
Z t

0

e−αΓ(s−)dΛ (s) ,

we conclude (using convergence together results) that eD (t)⇒ D (α).
Of course, not every infinite horizon discounted reward can be analyzed assuming

stationary input. For instance, note that Theorem 2 indicates that the distribution
of D (α) depends on the initial state of the underlying Markov process, and this will
actually be the typical situation in applications settings such as insurance. However,
stationarity is reasonable in some applied contexts such as time series analysis. In
fact, in this context, by properly scaling certain types of auto-regressive processes
(which satisfy the discrete analog of (5), see equation (2) above), Nelson (1990) ob-
tained sample-path weak convergence results a Gaussian Ornstein-Uhlenbech process
as the sample frequency increases. More recently Forniari and Mele (1997) extended
Nelson’s results to cover more general type of non-linear ARCH and GARCH time
series models. From the time series analysis perspective, a central limit theorem
approximation for the distribution of D (α) is related to the convergence of the sta-
tionary distributions of auto-regressive type models to that of Ornstein-Uhlenbeck
(namely a Gaussian law).
One of the contributions of Whitt (1972) is to show that weak convergence of

properly scaled processes Γ and Λ in the standard Skorohod topology is not enough
to guarantee weak convergence of a suitably scaled and centered version of D (α).
Thus, the general weak convergence analysis at the level of stationary distributions
in auto-regressive processes does not follow directly from previous results in the litera-
ture (such as those by Nelson (1990), and Forniari and Mele (1997)). Our results here
complement previous analysis on the structure of auto-regressive processes by provid-
ing additional conditions that guarantee weak convergence at the level of stationary
distributions.
In the context of stochastic approximation algorithms, Bucklew, Kurtz, and Sethares

(1993) analyzed weak convergence (on compact sets) of processes following certain
stochastic recursive equations that give rise to stationary distributions related to
D (α). As in the previous discussion regarding the time series setting, this type of
analysis does not directly imply weak convergence of stationary distributions.
For the case in which the increments of (Γ,Λ) are not stationary, there is also a

SDE related toD (α), which is probably more natural to consider from the perspective
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of insurance applications. If we let R = (R (t) : t ≥ 0) satisfy
dR (t) = αR (t) dΓ (t−) + dΛ (t) , R (0) = 0

and define D (t) = exp (−αΓ (t−))R (t), then, assuming that Γ and Λ do not jump
have common jumps, we have that

D (t) =

Z t

0

exp (−αΓ (s−)) dΛ (s) .

One can take advantage of a number of results that are available in the literature to
develop functional weak convergence results in D[0,∞). In particular, for example,
the results by Kurtz and Protter (1991) can be applied by considering the sequence
of processes (Γα,Λα) = (Γ (·/α) ,Λ (·/α)) and developing the corresponding weak
convergence theory for

dRα (t) = αRα (t) dΓα (t−) + dΛα (t) , (6)

Dα (t) = exp (−αΓα (t−))Rα (t) . (7)

Typically, after centering and scaling (6) and (7) standard results such as those de-
veloped by Kurtz and Protter (1991) would yield weak convergence (in D[0,∞) under
the standard Skorohod topology, also denoted as the J1 topology) to an Ornstein-
Uhlenbeck type process driven by a stable process. If the stable process is Brownian
motion, then one obtains convergence to a Gaussian process which suggests a central
limit theorem for D (α). Again, the problem is that in the analysis of D (α) one first
sends t → ∞ and then α → 0, while the weak convergence results in D[0,∞) are
developed on compact sets (i.e for fixed t) as α → ∞. In other words, there is an
interchange of limits that must be justified. The main result of this section justifies
this interchange of limits under general assumptions that we state next.
Throughout the rest of the present section we adopt the setting of Kurtz and

Protter (1991), namely, we shall assume that Λ is a semi-martingale (with respect to
some filtration) with decomposition

Λ = Λb + ΛM ,

where ΛM is a local Martingale and Λb is a process with local bounded variation (i.e.
bounded variation on compact sets). Also, we shall assume that both Λ and Γ are
cadlag (right continuous with left limits) processes and Γ is adaptedWe shall discuss
this set of assumptions after we state our main result of the section. We will also
explain later how this result can be applied in practice.

Theorem 3 Let (Γα,Λα) = (Γ (·/α) ,Λ (·/α)) and assume that
W1 α−β (α (Γα (·) ,Λα (·))− (γ·,λ·)) =⇒ (ZΓ (·) , ZΛ (·)) in D[0,∞) × D[0,∞)

(under the standard Skorohod J1 topology), for β ∈ (0, 1) and γ > 0.
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W2

limt→∞
|Λb| (t)
t

+E
[ΛM ] (t)

t
<∞.

W3

lim
α&0

E log

Ã
1 + sup

u∈[0,1]
α−β |αΛ (u/α)− λu|

!
< ∞,

lim
α&0

E

Ã
sup
u∈[0,1]

α−β |αΓ (u/α)− γu|
!

< ∞.

Then,

α−β (D (α)− λ/γ) =⇒
Z ∞

0

e−γsdZΛ
1 (s)− λ

Z ∞

0

e−γsdZΓ
2 (s) ,

where

D (α) =

Z ∞

0

exp (−αΓ (t−)) dΛ (t) .
Remark: condition W2 can be relaxed by means of localization as in Kurtz

and Protter (1991), condition C2.2(i). The two assumptions given in W3 resamble
classical conditions that are required to define a perpetuity such as D (α), see Kesten
(1973).

Before providing the proof of the previous theorem, we shall present the following
lemma that makes clear the connection of condition W3 to a more direct technical
condition that can be expressed in terms of the tail behavior of the processes Λ and
Γ. The proof of this lemma is given at the end of the present section.

Lemma 4 If conditionW3 holds, then for each δ, δ0 > 0 we have that

lim
t0%∞

lim
α&0

P

µ
sup
t≥t0

e−δtα−β |αΛ (t/α)− λt| > δ0

¶
= 0.

Moreover,

lim
t0%∞

lim
α&0

P

µ
sup
t≥t0

α−β |αΓ (t/α)− γt| > δ0

¶
= 0.

With the aid of the previous lemma we can proceed to the proof of the main result
of this section.
Proof of Theorem. 3 ConditionsW1 andW2 imply by virtue of Kurtz and

Protter (1991) Theorem 2.2 that

α−β
µZ t

0

e−αΓα(s−)αdΛα (s)−
Z t

0

e−γsλds
¶

D[0,∞)
=⇒

Z t

0

e−γsdZΛ
1 (s)− λ

Z t

0

e−γsZΓ
2 (s) ds.
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Note that in our context we do not require to take E (·) in the total variation process
|Λb| (·) as condition C2.2(i) of Kurtz and Protter (1991) requires. Looking at the
proof of Kurtz and Protter (1991), specifically from equations (2.6) to (2.7), we see
that taking expectation to the total variation process is not necessary in our context
to obtain the required convergence in probability.
We then must show that for each δ0, ε > 0 there exists t = t (ε) > 0 large enough

such that

limα→∞P
µ¯̄̄̄

α−β
µZ ∞

t

e−αΓα(s−)αdΛα (s)−
Z ∞

t

e−γsλds
¶¯̄̄̄
> δ0

¶
≤ ε.

So we have to study

α−β
µZ ∞

t

e−αΓα(s−)αdΛα (s)−
Z ∞

t

e−γsλds
¶

= α−β
Z ∞

t

¡
e−αΓα(s−) − e−γs¢αdΛα (s) (8)

+α−β
Z ∞

t

e−γsd (αΛα (s)− λs) . (9)

First we analyze (8), we decompose this term using the decomposition for the semi-
martingale Λ, thus we obtain that the integral (8) equals

α−β
Z ∞

t

¡
e−αΓα(s−) − e−γs¢αdΛb (s/α) (10)

+α−β
Z ∞

t

¡
e−αΓα(s−) − e−γs¢αdΛM (s/α) . (11)

We shall start by showing that the contribution of the integral (11) is small for large
t (uniformly in α). Define the stopping time

T1 = inf{u ≥ t : u−1 |αΓα (u−)− γu| > δ1α
β},

Note that

P

µ¯̄̄̄
αβ

Z ∞

t

¡
e−αΓα(s−) − e−γs¢αdΛM (s/α)¯̄̄̄ > δ

¶
(12)

≤ P

µ¯̄̄̄
αβ

Z T1

t

¡
e−αΓα(s−) − e−γs¢αdΛM (s/α)¯̄̄̄ > δ;T =∞

¶
+P (T1 <∞)¡
α−2(β−1/2)/δ

¢
E

Z T1

t

¡
e−αΓα(s−) − e−γs¢2 αd[ΛM ] (s/α) (13)

+P (T1 <∞) . (14)

11



Now, observe that (for some constant c1 > 0)

E

Z T1

t

e−2γs
¡
e−(αΓα(s−)−γs) − 1¢2 αd[ΛM ] (s/α)

≤ c1α
βE

Z T1

t

e−γsαd[ΛM ] (s/α) = c1αβE

Z ∞

t

e−γsαd[ΛM ] (s/α) .

This estimate implies that (13) is bounded by

c1
α−2(β−1/2)

δ
αβE

Z ∞

t

e−γsαd[ΛM ] (s/α)

≤ c1γ
α1−β

δ
E

Z ∞

t

e−γsα[ΛM ] (s/α) ds < c2α1−βe−γ/2t, (15)

for some constant c2 > 0. For P (T1 <∞) note that

P (T1 <∞) ≤ P
µ
sup
u≥t

¯̄̄̄
αΓ (u/α)− γu

u

¯̄̄̄
≥ δ1α

β

¶
.

Therefore, this estimate combined with (15) and Lemma 4 yields that for each ε > 0
we can find α0 > 0 small enough such that

sup
0<α<α0

P

µ¯̄̄̄
αβ

Z ∞

t

¡
e−αΓα(s−) − e−γs¢ dΛM (s/α)¯̄̄̄ > δ

¶
≤ ε, (16)

this takes care of (12). The analysis of (10) is similar to that of (11). In particular,
we note that

P

µ¯̄̄̄
α−β

Z ∞

t

¡
e−αΓα(s−) − e−γs¢αdΛb (s/α)¯̄̄̄ > δ

¶
≤ P

µ¯̄̄̄
α−β

Z T1

t

¡
e−αΓα(s−) − e−γs¢αdΛb (s/α)¯̄̄̄ > δ

¶
+ P (T1 <∞) . (17)

Note that the definition of T1 implies that we can find a constant c1 > 0 such that

P

µ¯̄̄̄
α−β

Z T1

t

¡
e−αΓα(s−) − e−γs¢αdΛb (s/α)¯̄̄̄ > δ

¶
≤ P

µ
c1

Z T

t

e−γs/2αd |Λb| (s/α) > δ

¶
≤ P

µ
c1

Z ∞

t

e−γs/2αd |Λb| (s/α) > δ

¶
≤ P

¡
C (ω) e−γt/2 > δ

¢
, (18)

where the last line above follows from integration by parts and assumption W2.
Consequently, (18) together with (16) allows to control the behavior of (8). Finally,

12



note we study (9). Integration by parts yields

α−β
Z ∞

t

e−γsd[αΛα (s)− λs]

= α−β
Z ∞

t

γ[αΛα (s)− λs]e−γsds− e−γtα−β[αΛα (s)− λs].

Hence, as an immediate consequence of Lemma 4, we obtain that

lim
t0%∞

lim
α&0

P

µ
α−β

¯̄̄̄Z ∞

t

e−γsd[αΛα (s)− λs]

¯̄̄̄
> δ0

¶
= 0.

Combining this estimate with our previous arguments concerning (8) yields the con-
clusion of the theorem.

Proof. Let t0 be a large but fix number, α > 0 and pick θ > 1, then

P

µ
sup
t≥t0

e−δtα−β |Λ (t/α)− λt| > δ0

¶
≤

∞X
k=0

P

Ã
sup

t∈[t0θk,t0θk+1)
e−δtα−β |αΛ (t/α)− λt| > δ0

!

≤
∞X
k=0

P

Ã
sup

t∈[t0θk,t0θk+1)
α−β

|αΛ (t/α)− λt|¡
t0θ

k+1
¢β >

t0 exp
¡
δθk
¢
δ0¡

t0θ
k+1
¢β

!

≤
∞X
k=0

P

Ã
sup

t∈[0,t0θk+1)
α−β

|αΛ (t/α)− λt|¡
t0θ

k+1
¢1−β >

tβ0 exp
¡
δθk
¢
δ0

θ(k+1)β

!
. (19)

Put rk = t0θ
k+1 and note that making urk = t and α/rk = eα
sup
t∈[0,rk]

α−β
|αΛ (t/α)− λt|

r1−βk

= sup
u∈[0,1]

|αΛ (urk/α)− λurk|
αβr1−βk

= sup
u∈[0,1]

|αΛ (urk/α)− λurk|
(α/rk)

β rk

= sup
u∈[0,1]

|αΛ (urk/α)− λurk|eαβ
.

Therefore, by the indicated property of W (·) we obtain from (19) that there exists a
constant b > 0 such that for all α sufficiently small

P

µ
sup
t≥t0

e−δtα−β |αΛ (t/α)− λt| > δ0

¶

13



≤
∞X
k=0

P

Ã
sup

t∈[0,t0θk+1)
α−β

|αΛ (t/α)− λt|¡
t0θ

k+1
¢1−β >

tβ0 exp
¡
δθk
¢
δ0

θ(k+1)β

!

≤ b
∞X
k=0

1

β log (t0) + δθk − (k + 1)β log (θ)− log δ0
.

Since θ > 1 the previous quantity is finite and it goes to zero (because β ∈ (0, 1)) as
t0 % ∞. The corresponding property for Γ follows completely analogous steps and
therefore is ommitted. This concludes the proof of the lemma.

In most applications β = 1/2 and Z corresponds to a Gaussian process driven by
Brownian motion, but in more general settings Z is driven by a stable process. More
precisely, in many applications we can expect

α1/2
µµ

Λα (·)
Γα (·)

¶
−
µ

λ · /α
γ · /α

¶¶
⇒ G

µ
B1 (·)
B2 (·)

¶
,

where B = (B1, B2) is a two dimensional Brownian motion and GG
T = C is the

corresponding covariance matrix. Typically, one would have

C1,2 = lim
t→∞

E
(Λ (t)− λt) (Γ (t)− τ)

t
,

C1,1 = lim
t→∞

E
(Λ (t)− λt)2

t
,

C2,2 = lim
t→∞

E
(Γ (t)− γt)2

t
.

Therefore, Theorem 3 guarantees that in great generality

α−1/2 (αD (α)− λ/γ)⇒ Z (∞) D= σ/γ1/2N (0, 1) ,

where

σ2 =
1

2

µ
C11 − 2λ

γ
C12 +

λ2

γ2
C22

¶
.

The expression for σ2 was obtained using integration by parts to represent

Z (∞) =
Z ∞

0

e−γsd (G1·B (s))− λ

γ

Z ∞

0

e−γsd (G2·B (s)) ,

in combination with Ito’s isometry. In practical situations (where α > 0 does not
appear naturally in the problem structure) Theorem 3 provides rigorous support for
the formal approximation

D =

Z ∞

0

exp (−Γ (t−)) dΛ (t) D≈ λ

γ
+ σ/γ1/2N (0, 1) , (20)

the symbol “
D≈ ” means “approximately equal in distribution to” and the precise

meaning of approximation (20) is given by Theorem 3.
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4 Edgeworth Expansions

In this section, we provide refined versions for some of the approximations given in
the previous sections. The refined approximation takes the form of an Edgeworth
expansion for the distribution of D. We shall derive these approximations in the iid
setting for the discrete time case and under Markovian assumptions for the continuous
time case. More precisely, in the discrete time case, motivated by the applications to
ARCH processes described in Section 2, we consider

D =
∞X
k=0

exp

Ã
−

k−1X
j=0

Zj

!
Xk,

where (Xk, Zk)k≥1 is a sequence of iid random vectors satisfying certain assumptions
to be described later (see assumptions ED1 to ED4 below); while in the continuous
time context, we work with

D =

Z ∞

0

exp

µ
−
Z t

0

γ (Y (s)) ds

¶
dΛ (t) ,

where Y = (Ys : s ≥ 0) is a suitably defined homogeneous Markov process Λ is a
stationary independent increment process, this setting is commonly used in the risk
theory example discussed in Section 2 (see Ch. 7 of Asmussen (2001)).

4.1 The discrete time setting

In this section, we shall consider the following set of assumptions.

ED1 Assume that Z1 ≥ 0, E (Z1) = γ <∞, E (Z21) = µ(2)Z <∞, and E ¡|Z1|3¢ <∞.
Let σ2Z be the variance of Z1 and κ

(3)
Z its third order cumulant, which can be

written as
κ
(3)
Z = µ

(3)
Z − 3µ(2)Z γ + 2γ3.

ED2 Suppose that X1 has non-lattice distribution with E (X1) = λ, V ar (X2
1) = σ2X ,

and E
¡|X1|3¢ <∞. Let E (X3

1 ) = µ
X
3 and write κ

(3)
X to denote the third order

cumulant of X1. In addition, assume that the distribution of X1 given Z1 is
non-lattice.

ED3 Suppose that E
³
|X1|j |Z1|k

´
< ∞ for 0 < j + k ≤ 3 and for j, k ≥ 1 denote

µjk = E
¡
Xj
1Z

k
1

¢
. Moreover, let us define,

δ (θ, Z1) =
¯̄
E
¡
eiθX1

¯̄
Z1
¢¯̄

and assume that

lim
h→0

sup
ε≤|θ|≤1/ε

P (δ (θ, Z1) > 1− h)
h

<∞, (21)

for ε > 0.
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Condition (21) is technical, and may be seen as a form of strong non-latticity ofX1
given Z1. Notice that, in the important special case in which theXk’s are independent
of the Zk’s, assumption ED3 is an immediate consequence of ED2. Indeed, if X1 is
non-lattice, we have that δ (θ, Z1) = δ (θ) < 1. Therefore, for all h > 0 sufficiently
small, δ (θ) < 1− h. This implies that the limit in (21) is zero.
As a remark, we also note that, alternatively, the non-negativity of Z1 required in

assumption ED1 can be replaced by the existence of exponential moments, we record
this observation as our alternative assumption ED1’.

ED1’ Assume that E exp (ρZ1) <∞ for ρ in a vicinity of the origin.

Under these assumptions, we improve the approximation (20) by providing an
Edgeworth expansion for the distribution of D when (Xk, Zk)k≥1 is a sequence of
i.i.d. random vectors and the discount rate γ is small. In particular, by defining

σ2 =
1

2

µ
σ2X − 2

λ

γ
σXZ +

λ2

γ2
σ2Z

¶
,

we can write the approximation proposed as

P (D ≤ y) ≈ P
¡
N
¡
λ/γ,σ2/γ

¢ ≤ y¢−√γβ1ηµ(y − λ/γ)

√
γ

σ

¶
(22)

−
√
γ

18
β2H

µ
(y − λ/γ)

√
γ

σ

¶
.

The constants β1 and β2 satisfy

β1 =
µ
(2)
Z λ

2γ2σ
,

σ3β2 = κ
(3)
X − 2κ21

λ

γ
+ 3κ12

λ2

γ2
− 3κ11

γ

µ
σ2X − 2

λ

γ
σXZ +

λ2

γ2
σ2Z

¶
+3σ2Z

λ

γ2

µ
σ2X − 2

λ

γ
σXZ +

λ2

γ2
σ2Z

¶
− κ

(3)
Z λ3

γ3
,

with

κ12 = µ12 + µ11 − µ(2)Z − 3γµ11 + 2γ2λ,
κ21 = µ21 + µ11 − µ(2)X − 3λµ11 + 2λ2γ,
κ11 = µ11 − λγ = σXZ , cov (X,Z) ;

and

η (y) =
1√
2π
exp

¡−y2/2¢
H (y) =

¡
y2 − 1¢ η (y) .
16



The application of the approximation (22), requires estimation of the joint mo-
ments µij, which can be easily done (even non-parametrically) using standard meth-
ods. Also, observe that in the case in which the sequences (Xk)k>0 and (Zk)k>0 are
independent, the constants σ2, β1 and β2 take the simplified form

σ2 =
1

2

µ
σ2X +

λ2

γ2
σ2Z

¶
and

β1 =
µ
(2)
Z λ

2γ2σ
, β2 =

1

σ3

Ã
κ
(3)
X + 3

σ2Zλσ
2
X

γ2
− κ

(3)
Z λ3

γ3
+ 3

σ4Zλ
3

γ4

!
.

In order to understand the nature of approximation (22), we introduce a small
scaling parameter α > 0 and define

D (α) =
∞X
k=0

exp

Ã
−α

k−1X
j=0

Zj

!
Xk.

approximation (22) becomes (since the quantities σ, β1 and β2 are not affected by
the scaling)

P (D (α) ≤ y) ≈ P
¡
N
¡
λ/αγ,σ2/αγ

¢ ≤ y¢−√γαβ1ηµ(y − λ/γα)

√
γα

σ

¶
(23)

−
√
γα

18
β2H

µ
(y − λ/γα)

√
γα

σ

¶
.

Or, in other words,

P
¡√

α (D (α)− λ/αγ) ≤ y¢ ≈ P
¡
N
¡
0,σ2/γ

¢ ≤ y¢−√γαβ1ηµ√γσ y

¶
−
√
γα

18
β2H

µ√
γ

σ
y

¶
with an error of order o (

√
α) (uniformly on y). The precise mathematical statement

concerning the previous approximations is the content of Theorem 6 below, which
provides the first order correction in the Edgeworth expansion for D (α). However,
before moving on to Theorem 6, we present a simple example to illustrate the accuracy
of the approximations proposed.

Example 5 Suppose that X1 ∼ λ exp (1) and Z1 ∼ γ exp (1). Under these assump-
tions it follows (see Gjessing and Paulsen (1997)) that

D =
∞X
k=0

exp

Ã
−

k−1X
j=0

Zj

!
Xk ∼ λΓ (1/γ + 1, 1) ,
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where Γ (1/γ + 1, 1) represents a random variable with distribution gamma with the
parameters given. In order to illustrate the numerical fit of the approximation pro-
vided we consider the case in which λ = 1 and γ = .1 and γ = .5 respectively. The
following graphs compare the CLT and Edgeworth approximations developed against
the true distribution of D

Approximation for D (Exponential 
Case EZ=.1 )

0
0.1
0.2
0.3
0.4
0.5
0.6
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0.8
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0.8

1.7
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7.1
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Edgeworth

Approximation for D (Exponential 
Case EZ=.5 )

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-2.8

-1.9

-1 -0.1

0.8

1.7

2.6

3.5

4.4

5.3

6.2

7.1

True
CLT
Edgeworth

CLT and Edgeworth Based Approximations

We now provide the rigorous statement supporting approximation (22).

Theorem 6 If the set of assumptions ED1 (or ED10) to ED4 are in force, then

P

µ√
α

µ
D (α)− λ

γα

¶
≤ y

¶
= P

µ
N

µ
0,

σ2

γ

¶
≤ y

¶
−√αβ1n (y) (24)

−
√
α

18

β2
γ
H (y) +Gα (y) ;

where Gα represents a signed measure with G
+
α (R) +G

−
α (R) , kGα (dy)k = o (√α) .

In order to prove this theorem, we need some preliminary results. As it is standard
in obtaining Edgeworth expansions via Fourier analytic methods (see Feller (1968)
p. 512), one first proceeds to obtain an asymptotic expansion for the cumulant
moment generating function of interest. Hence, our first result provides an asymptotic
expansion for ψα (θ) , logE exp

¡
iθα−1/2 (αD (α)− λ/γ)

¢
in powers of

√
α.

Lemma 7 Assume ED1 (or ED10) to ED3. Then, there exists δ > 0 for which we
have that

ψα (θ) =

Ã
µ
(2)
Z λ

2γ2
+O (α)

!
iθα1/2

+

µ
1

2γα

µ
σ2X − 2

λ

γ
σXZ +

λ2

γ2
σ2Z

¶
+O (1)

¶
(iθ)2

2
α

+

µ
C3
α
+O (1)

¶
(iθ)3

6
α3/2 + o

¡
α1/2

¢
,

18



(uniformly in θ ∈ (−δ, δ), δ > 0) where

3γC3 = κ
(3)
X − 2κ21

λ

γ
+ 3κ12

λ2

γ2

+3

µ
σ2Z

λ

γ2
− σXZ

γ

¶µ
σ2X − 2

λ

γ
σXZ +

λ2

γ2
σ2Z

¶
− κ

(3)
Z λ3

γ3
.

Proof. The idea is to write

φα (θ) = exp
¡
iθλ/γ

√
α
¢
φ
¡
θ
√
α,α

¢
,

where φα (θ) , exp (ψα (θ)) and φ (θ,α) , E exp (iθD (α)). Notice that φ (θ,α)
satisfies

φ (θ,α) = E (exp (iθ (X1 + exp (−αZ1)D1 (α)))) ,
with D1 (α) independent of (X1, Z1). Thus, we have,

φ (θ,α) = E (exp (iθ (X1 + exp (−αZ1)D1 (α))))
= E (E (exp (iθ (X1 + exp (−αZ1)D1 (α)))|X1, Z1))
= E (E (exp (iθX1)φ (θ exp (−αZ1) ,α)|X1, Z1))
= E (exp (iθX1)φ (θ exp (−αZ1) ,α)) .

Using the Taylor development for characteristic functions (see Feller (1968) App. Sec.
XV.5 and Breiman (1992) Prop. 8.44) applied to φ (θ,α) and φα (θ), together with
the moment conditions implied by assumptions ED1 (or ED10) to ED3, we arrive
at the expression stated for ψα (θ).

Lemma 8 Under assumptions ED1 (or ED10) to ED4, φ (θ,α) , E exp (iθD (α))
satisfies

|φ (θ,α)| = o ¡α1/2¢
as α→ 0 uniformly in θ over compact sets not containing the origin.

Proof. Let φX (θ, Z1) = E
¡
eiθX1

¯̄
Z1
¢
, and let Tα = inf{k : Sk > 1/α}. Then,

|φ (θ,α)| =
¯̄̄̄
¯E
Ã
E

Ã
exp

Ã
iθ

∞X
k=1

Xk exp (−αSk−1)
!¯̄̄̄
¯Z
!!¯̄̄̄

¯
=

¯̄
E
¡
Π∞k=1φX

¡
θe−αSk−1, Zk

¢¢¯̄
≤ E

¡
Π∞k=1

¯̄
φX
¡
θe−αSk−1, Zk

¢¯̄¢
≤ E

¡
ΠTα−1k=1

¯̄
φX
¡
θe−αSk−1 , Zk

¢¯̄¢
≤ E

¡
ΠTα−1k=1 |∆ (θ, Zk)|

¢
,
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where ∆ (θ, Z1) = sup{|φX (θ∗, Z1)| : |θ∗| > |θe−1|}. Since the distribution of X1
given Z1 is non-lattice, we must have that 0 < ∆ (θ, Z1) < 1. So,

|φ (θ,α)| ≤ E
¡
ΠTα−1k=1 |∆ (θ, Zk)|

¢
≤ P

µ
α

¯̄̄̄
Tα − 1

αγ

¯̄̄̄
> ε

¶
+E

¡
ΠTα−1k=1 |∆ (θ, Zk)| ;α |Tα − 1/αγ| ≤ ε

¢
≤ P

µ
α

¯̄̄̄
Tα − 1

αγ

¯̄̄̄
> ε

¶
+E

³
|∆ (θ, Z1)|1/α(1/γ−ε)−1

´
.

Since condition AF1 (AF10) imply that 0 < EZ1 < ∞ and V ar (Z1) < ∞, we have
that

³
α1/2

¯̄̄
Tα − 1

αγ

¯̄̄´2
is uniformly integrable (see Gut (1988) p. 92.) In particular,

this implies, using Chebyshev’s inequality, that

P

µ
α

¯̄̄̄
Tα − 1

αγ

¯̄̄̄
> ε

¶
= O (α) .

Finally, if we choose ε > 0 small enough so that c , 1/γ − ε > 0, we must show (for
θ not in a neighborhood of the origin) that

E
³
|∆ (θ, Z1)|c/α

´
= o

¡√
α
¢
.

Let W = − log (|∆ (θ, Z1)|) and β = c/α. Then,

E
³
|∆ (θ, Z1)|β

´
= E (exp (−βW )) =

Z ∞

0

exp (−u)P (u/β > W ) du.

Thus,

βE
³
|∆ (θ, Z1)|β

´
=

Z ∞

0

exp (−u)βP (u/β > W ) du.
Fix ε > 0 and write

βE
³
|∆ (θ, Z1)|β

´
=

Z ε

0

exp (−u)βP (u/β > W ) du

+

Z ∞

ε

u exp (−u)β/uP (u/β > W ) du (25)

≤ βP (ε/β > W ) +

Z ∞

ε

u exp (−u)β/uP (u/β > W ) du.

We want to apply Fatou’s Lemma in the form

limβ−→∞

Z ∞

ε

u exp (−u)β/uP (u/β > W ) du

≤
Z ∞

ε

limβ−→∞u exp (−u)β/uP (u/β > W ) du.
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In order to do this, we must show that

0 ≤ β/uP (u/β > W ) ≤M
for someM > 0 for u ∈ [ε,∞], and β large. So, by right continuity and the existence
of left limits, it suffices to show that

limβ−→∞
P (h > W )

h
<∞.

But

limh−→0
P (h > W )

h
= limh−→0

P (h > − log (|∆ (θ, Z1)|))
h

= limh−→0
P (exp(−h) < |∆ (θ, Z1)|)

h

= limh−→0
P (|∆ (θ, Z1)| > 1− h)

h
<∞,

by virtue of assumption ED4. This is what we require in order to apply Fatou’s
lemma. Consequently, we have

limβ−→∞βE
³
|∆ (θ, Z1)|β

´
<∞,

which implies

limβ−→∞
p

βE
³
|∆ (θ, Z1)|β

´
= 0,

and this is what we needed to conclude the proof of the lemma.

We now are ready to proof Theorem 6.

Proof of Theorem 6. . The proof of this theorem follows closely the steps
of Feller (1968) p.512. To simplify the notation, let us consider E (X1) = 0 and
E (X2

1 ) = 2γ and the Xk’s independent of the Zk’s (as we shall see from the proof,
these are just simplifying assumptions and the adaptation of the present proof is
straightforward using the corresponding local expansion given in Lemma 7)). Let

γ (θ) = bG (θ) = e−θ2/2µ1 + (iθ)3κ
(3)
X

18γ

√
α

¶
. Esséen’s lemma applies here since

G (x) = Φ (x)− κ
(3)
X

18

√
a
¡
x2 − 1¢ η (x)

is bounded by some constant C. Also γ (0) = 1 and γ0 (0) = 0. Therefore,

|Fα (x)−G (x)| ≤ 1

π

Z T

−T

1

|θ|
¯̄
φ
¡√

αθ,α
¢− γ (θ)

¯̄
dθ +

24C

πT
.
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Let T =M/
√
α, for some M > 0 big. Then, for any δ > 0 small, we have

|Fα (x)−G (x)| ≤ I1 + I2 + I3 +
√
α
24C

πM
,

where

I1 =
1

π

Z δ/
√
α

−δ/√α

1

|θ|
¯̄
φ
¡√

αθ,α
¢− γ (θ)

¯̄
dθ,

I2 =
1

π

Z M/
√
α

δ/
√
α

1

|θ|
¯̄
φ
¡√

αθ,α
¢− γ (θ)

¯̄
dθ,

I3 =
1

π

Z δ/
√
α

−M/√α

1

|θ|
¯̄
φ
¡√

αθ,α
¢− γ (θ)

¯̄
dθ.

Observe that

I2 ≤ 1

π

Z M/
√
α

δ/
√
α

1

|θ|
¯̄
φ
¡√

αθ,α
¢¯̄
dθ +

1

π

Z M/
√
α

δ/
√
α

1

|θ| |γ (θ)| dθ

=
1

π

Z M

δ

1

|θ| |φ (θ,α)| dθ +
1

π

Z M/
√
α

δ/
√
α

1

|θ| |γ (θ)| dθ.

By virtue of our previous lemma, it is clear that I2 goes to zero faster than
√
α,

similarly for I3. Thus, we just have to study I1. Let

ζ (θ,α) , log (φ (θ,α)) +
θ22γ

2 (1−m (−2α))
= log (φ (θ,α)) +

θ2γ

(1−m (−2α))
where m (−λ) = E ¡e−λZ1¢. Hence, we can write

I1 =
1

π

Z δ/
√
α

−δ/√α

1

|θ|
¯̄
φ
¡√

αθ,α
¢− γ (θ)

¯̄
dθ

=
1

π

Z δ/
√
α

−δ/√α

1

|θ|
¯̄̄̄
exp

µ
ζ
¡√

αθ,α
¢− θ2γ

(1−m (−2α))
¶
− γ (θ)

¯̄̄̄
dθ

=
1

π

Z δ/
√
α

−δ/√α

1

|θ|e
−θ2/2

¯̄̄̄
¯e
³
ζ(
√
αθ,α)− θ2

2 (
αγ

(1−m(−2α))−1)
´

− 1− (iθ)
3 µ3
√
α

18

¯̄̄̄
¯ dθ.

Using Feller (1968), p. 507, we have that for any eβ1 and eβ2 complex numbers,¯̄̄
e
eβ1 − 1− eβ2 ¯̄̄ ≤ µ¯̄̄eβ1 − eβ2 ¯̄̄+ 12eβ22

¶
exp (υ) , (26)
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where υ ≥ max
³¯̄̄eβ1 ¯̄̄ , ¯̄̄eβ2 ¯̄̄´ . Given ε > 0, we can choose δ > 0 small enough so that

|θ√α| < δ (as in Feller (1968), p. 507) and¯̄̄̄
¯ζ ¡θ√α,α¢− α3/2 (iθ)3 κ

(3)
X

3! (1−m (−3α))

¯̄̄̄
¯ ≤ ε

θ3α3/2

|(1−m (−3α))| ≤ εKθ3α1/2

for α small enough and some constant K1 independent of α (because
α3/2κ

(3)
X

(1−m(−3α)) is
the cumulant of order 3 for the random variable

√
αD (α)). At the same time, δ can

also be chosen satisfying

¯̄
ζ
¡
θ
√
α,α

¢¯̄
<
1

2

γαθ2

(1−m (−2α)) ≤
K2

3
θ2

for some K2 ≤ 1 for α small enough. Now, δ can be chosen also with the property
that ¯̄̄̄

¯ α3/2 (iθ)3 κ
(3)
X

3! (1−m (−3α))

¯̄̄̄
¯ < K2

3
θ2.

Notice that ¯̄̄̄
¯e
³
ζ(
√
αθ,α)− θ2

2 (
αγ

(1−m(−2α))−1)
´

− 1− (iθ)
3 κ

(3)
X

18

¯̄̄̄
¯

≤
¯̄̄̄
¯e
³
ζ(
√
αθ,α)− θ2

2 (
αγ

(1−m(−2α))−1)
´

− 1− α3/2 (iθ)3 κ
(3)
X

3! (1−m (−3α))

¯̄̄̄
¯+¯̄̄̄

¯ α3/2 (iθ)3 κ
(3)
X

3! (1−m (−3α)) −
(iθ)3 κ

(3)
X

18

√
α

¯̄̄̄
¯ ,

and observe that ¯̄̄̄
¯ α3/2 (iθ)3 κ

(3)
X

3! (1−m (−3α)) −
(iθ)3 κ

(3)
X

18

√
α

¯̄̄̄
¯ ≤ √αθ3o (1) .

Finally, we apply inequality (26) with eβ1 = ζ (
√
αθ,α) − θ2

2

³
αγ

(1−m(−2α)) − 1
´
andeβ2 = α3/2(iθ)3κ

(3)
X

3!(1−m(−3α)) for δ > 0 small enough so that

I1 ≤ ε

π
κ1
√
α

Z ∞

−∞
θ2e−θ

2/6dθ +
α

π
K2
1

Z ∞

−∞
e−θ

2/6θ6dθ +

√
α

π
o (1)

Z ∞

−∞
|θ|3 e−θ2/6dθ.
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Hence we conclude that

lim sup
α→0

1√
α
sup
x
|Fα (x)−G (x)| ≤ εκ,

for some constant κ. Since ε was arbitrary, this concludes the proof of the theorem.

4.2 The continuous time setting

A popular model in the risk theory setting discussed in Section 2 consists of con-
sidering the processes Γ as Λ two independent Levy processes (i.e. two stationary
independent increment processes, see Gjessing and Paulsen (1997)). The stationary
independent increment assumption of the risk process Λ has been argued to hold by
several authors in the risk theory community (this setting includes the so-called clas-
sical risk model, see Asmussen (2001) and Grandell (1991)). On the other hand, in
finance, short rate processes usually are modelled as positive functions of a Markov
process (typically with mean reverting characteristics). This motivates the following
setting in which we develop the desired Edgeworth expansion.
Suppose that Λ = (Λ (t) : t ≥ 0) is a Levy process. In addition, let Y = (Y (s) :

s ≥ 0) be a homogeneous Markov process taking values in a compact Polish space
Ξ and let B (Ξ) be the Borel sigma-field in Ξ. Let P (t, y, B) (t ∈ R+, y ∈ Ξ and
B ∈ B (Ξ)) be the corresponding transition probability function. Assume that Y
satisfies the Feller condition (i.e. P (t, y, Bδ (x)) → 1 as t & 0, for all δ > 0) and
that the mapping y → Eyf (Y (t)) is continuous for all f (·) ∈ C (Ξ) (the space
of continuous function taking values on Ξ). Let A be the associated infinitesimal
generator of the process Y , defined via the relation

Af (y) = lim
t↓0
Eyf (Y (t))− f (y)

t
,

where f ∈ C(Ξ). The domain D (A) of A is composed by those functions f ∈ C (Ξ)
for which the previous limit exists (uniformly, for all y ∈ Ξ) (See Skorohod, Hoppen-
steadt and Salehi (2002)). In addition, suppose that Y (·) has right continuous with
left limits sample paths and that it is geometrically ergodic (see Kontoyiannis and
Meyn (2003), p. 9).
The following set of assumptions are in force throughout this section.

EC1 Λ and Γ are independent and the distribution of Λ (1) is non-lattice with mo-
ments of order greater or equal than 3.

EC2 Suppose Y is geometrically ergodic (see Kontoyiannis and Meyn (2003) p. 9).

Suppose that eγ (·) : Ξ → R is a continuous mapping such that eγ (x) > 0 for all
x ∈ Ξ and define Γ as

Γ (t) =

Z t

0

eγ (Y (s)) ds.
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Under EC1 and EC2, we shall provide rigorous support for the approximation

Py0 (D ≤ y) ≈ P
¡
N
¡
λ/γ,χ(2) (0) /2

¢ ≤ y¢−√γλ
γ
F (y0) η

µ
(y − λ/γ)

q
2/χ(2) (0)

¶
−
√
γ

18
χ(3) (0)H

µ
(y − λ/γ)

q
2/χ(2) (0)

¶
, (27)

where (if π (dy) denotes the stationary distribution of Y ), F can be characterized as
the solution of the Poisson equation

AF = Eπγ (Y (1))− γ (y) ,

and χ (·) depends on the log-moment generating function of Λ and the Perron-
Frobenius eigenvalue associated with cumulative Markov reward Γ. More pre-
cisely, for every θ ∈ R consider the (unique) solution pair (u (y, θ) ,ψΓ (θ)) (such
that u (y, 0) = 1) satisfying

(Au) (y, θ) = (ψΓ (θ)− θeγ (y))u (y, θ) . (28)

Note that the geometric ergodicity guarantees existence and uniqueness of the solution
pair (u,ψΓ), see Kontoyiannis and Meyn (2003)). Let ψΛ (iθ) = log (E exp (iθΛ (1)))
(we work with the branch {arg (z) ∈ [0, 2π)} when operating with complex loga-
rithms) then χ (iθ) = −ψ−1Γ (−ψΛ (iθ)) (note that χ0 (0) = λ/γ). Just as in the
discrete time case, the approximation (27) will be supported in the context of small
interest rates for a suitably parameterized family of discounted rewards. In particu-
lar, we shall prove that the approximation

P
¡√

α (D (α)− λ/ (γα)) ≤ y¢
≈ P

¡
N
¡
0,χ(2) (0) /2

¢ ≤ y¢−√γαλ
γ
F (y0) η

µ
y
q
2/χ(2) (0)

¶
−
√
γα

18
χ(3) (0)H

µ
y
q
2/χ(2) (0)

¶
holds with an error of order o (

√
α) (uniformly on y), where

D (α) =

Z ∞

0

exp (−αΓ (t)) dΛ (t) .

(Note that the previous integral can be interpreted, via integration by parts, path by
path as a Lebesgue-Stieltjes integral.)

Theorem 9 Suppose that EC1 and EC2 hold. Then,

P
¡√

α (D (α)− χ0 (0) /α) ≤ y¢
= P

¡
N
¡
0,χ(2) (0) /2

¢ ≤ y¢−√γαF (y0) ηµyq2/χ(2) (0)¶
−
√
γα

18
χ(3) (0)H

µ
y
q
2/χ(2) (0)

¶
+Gα([−∞, y));
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where Gα represents a signed measure with G
+
α (R) +G−α (R) , kGαk = o (√α) .

The proof of the previous theorem parallels its corresponding continuous time
analogue described in the previous section. We first obtain a local description of
ψα (θ) = logE exp (iθ

√
α (D (α)− λ/ (γα))).

Lemma 10 Under assumptions EC1 and EC2 we have that

ψα (θ) = −
χ(2) (0)

2
θ2 +

√
α

µ
χ(3) (0)

18
(iθ)3 − λ

γ
F (y0) iθ

¶
+ o

¡√
α
¢

(uniformly in θ ∈ (−δ, δ), δ > 0).

Proof. It is known that for every u ∈ D (A) such that inf x∈Ξ|u (x) | > 0 we have
that

Mt (z) =
u (Y (t) , θ)

u (Y0, θ)
exp

µ
−
Z t

0

µ
Au

u

¶
(Y (s) , θ) ds

¶
(29)

is a Martingale with respect to the filtration generated by Y (see Lemma 2, p. 82
of Skorohod, Hoppensteadt and Salehi (2001)). Since Y is geometrically ergodic it
follows that the generalized eigenvalue problem

(Au) (y, θ) = (ψΓ (θ)− θeγ (y))u (y, θ) , u (y, 0) = 1 (30)

has a unique solution pair (u (y, θ) ,ψΓ (θ)) for every θ ∈ R. In addition, infθ∈Ξ u (y, θ) >
0 for all θ ∈ R and ψΓ (·) is a strictly increasing function (since

ψΓ (θ) = lim
t→∞

1

t
logE exp (θΓ (t)) ).

Observe that the solution to (30) automatically provides the solution to the problem

1eγ (y) (Au) (y, θ) =

µ
ψΓ (θ)eγ (y) − θ

¶
u (y, θ)

=

µ
−ψ−1Γ (−ν)− νeγ (y)

¶
u
¡
y,ψ−1Γ (−ν)¢ ,

(where ν = −ψΓ (θ)). In addition, Proposition 4.8 of Kontoyiannis and Meyn (2003)
states that for each θ ∈ Ξ, both u (y, ·) and ψΓ (·) are analytic inN ={z ∈ C : |z| ≤ δ}
for some δ > 0 (which immediately implies the analyticity of ζ (·) = −ψ−1Γ (−·)) and
inf x∈Ξ,z∈N |u (x, z) | > 0. Note that the Markov process eY = ³eY (t) : t ≥ 0´ defined
as eY (t) = Y (Γ−1 (t)) is also a geometrically ergodic Markov process with generatoreA = 1

eγA (the reason is that eγ being continuous and positive implies infx∈Ξ eγ (x) > 0,
which yields that the Lyaponuv bound needed in the definition of geometric ergodic-
ity is immediately satisfied after scaling factors (see Kontoyiannis and Meyn (2003)
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p. 9). Therefore, by considering the Markov generator ∂t + eA and the function
u (y,ψΛ(iθe

−αt)), (for θ ∈ R with |θ| < δ) in the relation (29) we can build the
Martingales

Mt (iθ) =
u
³eY (t) ,−χ (iθe−αt)´
u (Y0,−χ (iθe−αt)) exp

Z t

0

ψΛ (iθe
−αt)eγ ³eY (t)´ dt−

Z t

0

χ
¡
iθe−αt

¢
dt


exp

−αZ t

0

iθe−αt
uθ
³eY (t) ,−χ (iθe−αt)´

u
³eY (t) ,−χ (iθe−αt)´ χ̇

¡
iθe−αt

¢
dt

 .
Note thatMt (iθ) is a bounded martingale (in particular, uniformly integrable). Thus
it possesses a last element M∞ (iθ), which implies that

exp

µZ ∞

0

χ
¡
iθe−αt

¢
dt

¶
u (Y0, iθ) = E exp

Z ∞

0

ψΛ (iθe
−αt)eγ ³eY (t)´ dt− ξ (α, iθ)

 ,
where

ξ (α, iθ) = α

Z t

0

iθe−αt
uθ
³eY (t) ,−χ (iθe−αt)´

u
³eY (t) ,−χ (iθe−αt)´ χ̇

¡
iθe−αt

¢
dt.

Therefore, we conclude that

exp

µZ ∞

0

¡
χ
¡√

αiθe−αt
¢−√αiθe−αtλ/γ¢ dt¶u ¡Y0,−χ ¡√αiθ¢¢

= E exp

Z ∞

0

ψΛ (
√
αiθe−αt)eγ ³eY (t)´ dt− iθ λ

γ
√
α
− ξ

¡
α,
√
αiθ
¢

= E exp

Z ∞

0

ψΛ (
√
αiθe−αt)eγ ³eY (t)´ dt− iθ λ

γ
√
α

+ o ¡√α¢ (31)

(uniformly in θ ∈ (−δ, δ)). The previous equality follows because

Eξ
¡
α,
√
αiθ
¢
=
√
αiθαE

Z ∞

0

e−αt
uθ
³eY (t) ,−χ (√αiθ)´

u
³eY (t) ,−χ (√αiθ)´ χ̇

¡√
αiθe−αt

¢
dt

=
√
αiθ

λ

γ
Eα

Z ∞

0

e−αtuθ
³eY (t) , 0´ dt+O (α) .

Hence, using the bounded convergence theorem, we obtain

αE

Z ∞

0

e−αtuθ
³eY (t) , 0´ dt =

Z ∞

0

e−uαE
Z u/α

0

uθ
³eY (t) , 0´ dtdu

* Euθ (Y (∞) , 0) = EπF (Y (1)) = 0
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(since uθ (y, 0) = F (y)). The previous estimate combined with the asymptotic inde-
pendence of ξ (α,

√
αiθ) and On the other hand, notice that

E exp (iθD (α)) = E

µ
E

µ
exp

µ
iθ

Z ∞

0

exp (−αΓ (t)) dΛ (t)
¶¯̄̄̄

Γ

¶¶
= E exp

µZ ∞

0

ψΛ (iθ exp (−αΓ (t))) dt
¶

= E exp

Z ∞

0

ψΛ (iθe
−αu)eγ ³eY (t)´ du

 . (32)

Combining expressions (25) and (32) with a Taylor expansion of χ (·) and u (Y0, ·)
yields the conclusion of the Theorem.

The proof of Theorem 9 can be completed along the same lines as in the discrete
time case after showing that φ (θ,α) , E exp (iθD (α)) goes to zero fast enough for
|θ| ∈ (w0, w1) for any 0 < w0 < w1 <∞.

Lemma 11 Suppose that EC1 and EC2 are in force, then φ (θ,α) , E exp (iθD (α))
satisfies

sup
|θ|∈(θ0,θ1)

|φ (θ,α)| = o ¡√α¢ ,
for all 0 < θ0 < θ1 <∞.

Proof. Note that

|φ (θ,α)| =
¯̄̄̄
E exp

µZ ∞

0

ψΛ (iθ exp (−αΓ (t))) dt
¶¯̄̄̄

≤ E

¯̄̄̄
¯exp

ÃZ Γ−1(1/α)

0

ψΛ (iθ exp (−αΓ (t))) dt
!¯̄̄̄
¯ .

Define ∆ (θ) = sup{|exp (ψΛ (θ
∗))| : |θ∗| > |θe−1|}. Since Λ (1) is non-lattice, we have

that ∆ (θ) ∈ (0, 1). On the other hand, if 0 < b = supx∈Ξ eγ (x) < ∞, then 1/(αb) ≤
Γ−1 (1/α). Hence, |φ (θ,α)| ≤ ∆ (θ)b/α and we actually obtain an exponential rate of
convergence instead of the rate o

¡
α1/2

¢
which is more than we need.

Remarks
a) The assumption that Ξ is compact does not really play an essential role. It was

only used to ensure that the martingale property of Mt (iθ) in the proof of Lemma
10. A local description for ψα (iθ) could also have been obtained by computing the
moments of D (α), which is relatively easy in the present setting.
b) The independence between Γ and Λ can definitely be relaxed. For example, one

could have assumed that both processes are conditionally independent given another
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Markov process, say Z, provided that Λ remains a possibly non-time homogeneous
Levy process with a non-lattice conditional distribution type assumption analogous
to condition ED3 in the previous subsection.
c) Following the same ideas as in Lemma 10, a local expansion for ψα (θ) can be

obtained for the case in which

D (a) =

Z ∞

0

exp

µ
−α

Z t

0

eγ (Y (s)) ds¶eλ (Y (s)) .
(where eλ is, say, continuous on the compact Polish space Ξ). In this case, the corre-
sponding generalized eigenvalue problem takes the form

1eγ (Au) (y, θ) =
Ã
χ (θ)−

eλ (y)eγ (y)
!
u (y, θ) , u (y, 0) = 1, (33)

and a formal corrected approximation can be written as

P (D ≤ y) ≈ P
¡
N
¡
λ/γ,χ(2) (0) /2

¢ ≤ y¢−√γuθ (y0, 0) ηµ(y − λ/γ)
q
2/χ(2) (0)

¶
−
√
γ

18
χ(3) (0)H

µ
(y − λ/γ)

q
2/χ(2) (0)

¶
.

The only step (in addition to the existence of a solution to (33)) required to make
the previous approximation rigorous is to show that for all 0 < θ0 < θ1 < ∞,
sup|θ|∈(θ0,θ1) |φ (θ,α)| = o (

√
α) as in Lemma 11. This essentially involves assuming

enough structure to ensure strongly non-lattice properties of D. We have chosen
Levy processes in our exposition because they provide a convenient framework to
easily verify, from the model primitives, the non-lattice conditions that yield the
described Edgeworth expansions.
NOW THAT WE DIVIDED THE PAPER IN TWO PARTS I HAVE TO RE-

MOVE SOME OF THE REFERENCES BELOW (I’LL TAKE CARE OF THAT).
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