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When simulating a stochastic system, simulationists often are interested in estimating various
steady-state performance measures. The classical point estimator for such a measure involves
simply taking the time average of an appropriate function of the process being simulated. Since
the simulation can not be initiated with the (unknown) steady-state distribution, the classical point
estimator is generally biased. In the context of regenerative steady-state simulation, a variety of
other point estimators have been developed in an attempt to minimize the bias. In this paper, we
provide an empirical comparison of these estimators in the context of four different continuous-
time Markov chain models. The bias of the point estimators and the coverage probabilities of the
associated confidence intervals are reported for the four models. Conclusions are drawn from this
experimental work as to which methods are most effective in reducing bias.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: probabilistic algorithms;
I.6.1 [Simulation and Modeling]: Simulation Theory

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Bias-reducing estimators, regeneration, simulation, steady-
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1. INTRODUCTION

Let Y = (Y (t) : t ≥ 0) be a real-valued stochastic process representing the
output of a simulation. Suppose that Y satisfies a law of large numbers (LLN)
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of the form

Ȳ (t)
�= 1

t

∫ t

0
Y (s)ds ⇒ α (1)

as t → ∞, for some (deterministic) constant α, where ⇒ denotes convergence
in distribution. The steady-state simulation problem is concerned with the effi-
cient estimation of the steady-state mean α, and the construction of associated
confidence intervals. Because steady-state performance measures are funda-
mental to the analysis of an enormous variety of stochastic systems arising in
production, inventory, telecommunications, computing, and service industries,
the steady-state simulation problem is of great practical importance.

One of the major difficulties associated with steady-state simulation is that
the system is typically initialized in a state that is atypical of steady-state
behavior. For example, a factory flow simulation is often initialized with no
work-in-process on the factory floor. Such an initial condition gives rise to an
“initial transient” during which the values of Y observed are not characteristic
of steady-state. As a consequence, the obvious estimator of α suggested by (1),
namely the time-average Ȳ (t), is biased as an estimator of α. In other words,
EȲ (t) �= α.

As might be expected, this bias problem is greatly magnified when paral-
lel processors are used to accelerate the steady-state calculation. In particular,
if independent replications of Y are simulated on each of the processors, the
initial transient will be replicated on each processor, so that the presence of
potentially massive parallelism then has no mitigating impact on the initial
transient problem; see Glynn and Heidelberger [1991a, 1991b, 1992a] for de-
tails. In this article, we focus on the traditional computing environment, in
which only a single processor is available.

In such a context, the bias in Ȳ (t) as an estimator of α (also known as the
“initial bias”) can be mitigated in two different ways. One approach is to delete
that initial segment of the simulation that is “contaminated” by initial bias.
Such an initial bias deletion approach has been studied by many authors; see,
for example, Cash et al. [1992], Glynn [1995], Goldsman et al. [1994], Nelson
[1992], Schruben [1982], Schruben et al. [1983], White [1997], and White et al.
[2000]. An alternative is to consider an estimator, based on simulating Y over
[0, t], that attempts to compensate for the bias present in Ȳ (t). We refer to such
estimators as “bias reducing” estimators.

In this article, we provide an empirical investigation of six bias-reducing
estimators that have been proposed in the context of processes Y that are re-
generative. A great variety of stochastic systems exhibit regenerative structure,
including discrete and continuous time Markov chains, as well as a broad class
of discrete-event simulations; see Glynn [1989] for a discussion of the regen-
erative structure of discrete event simulations. Theoretically all “well-posed”
steady-state simulation problem are regenerative, see Glynn [1994]. However,
identifying the regeneration times can be difficult for a general discrete-event
simulation, see Henderson and Glynn [2001]. Therefore, one should notice the
limitation that the bias-reducing estimators we studied can only apply to sim-
ulations with identifiable regeneration times. This article may be viewed as
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an update of an empirical study of Iglehart [1975] for regenerative processes,
in which three of the six estimators considered here were investigated on a
different time scale.

2. THEORETICAL BACKGROUND

Suppose that Y is the simulation output that is derived from the simulation
of a stochastic system that can be modeled in terms of a Markov process X . In
particular, suppose that Y (t) = f (X (t)), where X = (X (t) : t ≥ 0) is a Markov
process living on a state space S, and f : S → � is a real-valued performance
measure. Assuming that X exhibits positive recurrent behavior, it can be shown
in substantial generality that

EȲ (t) = α + b
t

+ o(exp(−βt)) (2)

as t → ∞, for some constants b and β (where β > 0), where o(a(t)) denotes a
function ψ(t) such that ψ(t)/a(t) → 0 as t → ∞. See, for example, Glynn [1984],
for such a result in the setting of finite-state continuous-time Markov chains
(CTMC’s).

Here, the time parameter t corresponds to simulated time. In other words,
Ȳ (t) is obtained by averaging the values of Y (·) associated with simulating X to
the deterministic time horizon t. It is important to recognize that different bias
expansions hold when the time horizon is specified differently. For example,
when X is simulated to the completion of nth regenerative cycle at (simulated)
time T (n), one obtains a bias expansion of the form

EȲ (T (n)) = α + b̃1

n
+ b̃2

n2
+ o

(
1
n2

)
(3)

as n → ∞, where b̃2 is generally nonzero. See Iglehart [1975] for a discussion
of (3). Note that because b̃2 �= 0, the bias expansion (3) is qualitatively (and
quantitatively) different from the expansion (2). The key point here is that bias
expansions are heavily impacted by the time scale which one chooses to use for
specifying the termination time for the simulation. In this article, we will focus
exclusively on estimators obtained from a given simulated time horizon [0, t],
so that the relevant bias expansion is (2).

A corresponding expansion to (2), focused on the variance of Ȳ (t), also exists
in substantial generality:

VarȲ (t) = σ 2

t
+ c

t2
+ o

(
1
t2

)
(4)

as t → ∞; see Glynn [1984] for details in the context of continuous-time Markov
chains. It turns out that the time-average variance constant σ 2 is unaffected
by the choice of the initial condition for X (although c is impacted by the ini-
tialization). Thus, the mean square error (MSE) of Ȳ (t) can be easily computed
via the formula

MSE(Ȳ (t)) = VarȲ (t) + (EȲ (t) − α)2 = σ 2

t
+ b2 + c

t2
+ o

(
1
t2

)
(5)
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as t → ∞. Note that the first-order term in the MSE expression, namely σ 2/t, is
unaffected by the choice of the initial condition. Thus, the initial transient has
only a second-order impact on the quality of the sample mean estimator Ȳ (t).
This suggests that use of a bias-reducing estimator, in preference to Ȳ (t), will
offer only second-order improvements to the quality of the simulation output
procedure.

This brings us to the question of how to measure the quality of a particular
steady-state estimator. Given an estimator α̂(t) for the steady-state mean α,
this paper will consider the two following measures:

(1) mean absolute percentage error,
100 · |Eα̂(t) − α|/|α|;

(2) median absolute percentage error,
100 · |(median of the distribution of α̂(t)) − α|/|α|;

We will evaluate both of these quality measures via simulation. In particular,
given a simulated time horizon t and an estimator α̂(t), we perform m indepen-
dent identically distributed (i.i.d.) replications of the random variable (r.v.) α̂(t),
thereby producing α̂1(t), . . . , α̂m(t), and estimate (1) via

100 · | 1
m

∑m
i=1 α̂i(t) − α|

|α|
and estimate (2) via

100 · |(sample median of {α̂1(t), . . . , α̂m(t)}) − α|/|α|
In most carefully designed simulations, the simulator will wish to produce a con-
fidence interval for α, in addition to an estimator for α. Approximately valid con-
fidence intervals can easily be derived from the central limit theorem (CLT) that
holds for all the bias reducing estimators α̂(t) considered in this paper, namely

√
t(α̂(t) − α) ⇒ σ N (0, 1) (6)

as t → ∞. The constant σ appearing here is precisely the time-average
variance constant of expressions (4) and (5). As noted earlier, σ 2 does not
depend on the choice of the initial condition. Consequently, the quality of the
confidence interval is affected by the initialization only in a second-order sense.

To gain an appreciation for the magnitude of this second-order effect, it is
appropriate to consider the coverage error of the confidence interval. Specifi-
cally, an approximate 100(1 − δ)% confidence interval for α is characterized via
a choice of a point estimator α̂(t) for α and a time-average variance constant
estimator v̂(t) for σ 2. Given α̂(t) satisfying (6) and v̂(t) satisfying v̂(t) ⇒ σ 2 as
t → ∞, a corresponding 100(1 − δ)% confidence interval for α is given by[

α̂(t) − z ·
√

v̂(t)
t

, α̂(t) + z ·
√

v̂(t)
t

]
,

where z is chosen so that P (−z ≤ N (0, 1) ≤ z) = 1−δ. Denote the above random
interval by [L(t), R(t)], so that L(t) and R(t) are, respectively, the left and right
end points of the confidence interval. The coverage error associated with the
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interval for simulated time horizon t is then given by

|P (α ∈ [L(t), R(t)]) − (1 − δ)|.
The one-side coverage error (to the left) is |P (α < L(t)) − δ/2|, whereas the
one-sided error (to the right) is |P (α > R(t)) − δ/2|.

In this article, we will numerically investigate the coverage associated with
a particular choice of α̂(t) and v̂(t), in addition to studying the quality of the
point estimator α̂(t) itself.

3. DESCRIPTION OF THE NUMERICAL EXPERIMENT

In this section, we will provide the details of our numerical experiment. We start
by describing three continuous-time Markov chain (CTMC) queueing models
and one CTMC inventory model that were used as test vehicles for our simula-
tions. We choose these four models both because they are somewhat represen-
tative of real applications and because they are simple enough to permit us to
compute exactly the theoretical values of certain parameters associated with
the simulation.

Model 1. The first model considered is a single-server queueing model with
a Poisson arrival process having an arrival rate of 0.95 customers per unit
time, and exponential processing times with a mean of 1. Any customer that
arrives to find at least 199 customers in the system balks and is permanently
lost to the system. Thus, the number-in-system process X = (X (t) : t ≥ 0) is
a birth–death process on S = {0, 1, . . . , 199} (often denoted as M/M/1/199). In
this model (as in all our others), X (t) ⇒ X (∞) as t → ∞. Our goal here is to
compute α = EX(∞) = 18.993.

Model 2. The second model is a non-Markovian server analog of our first
model. Here the arrival process is Poisson with arrival rate 0.95, and processing
times are gamma distributed with parameters (2, 2). Any customer that arrives
to find at least 199 customers in the system balks and is permanently lost to
the system. The number-in-system process X = (X (t) : t ≥ 0) is certainly not
a CTMC. However, a gamma(2,2) random variable is equivalent to the sum
of two independent exponential random variables with mean 0.5. If we use
Z = (Z (t) : t ≥ 0) to keep track of the current phase of the service time in
process, i.e. Z (t) = 1 if the server is consuming the first exponential random
variable at time t and Z (t) = 2 if the server is consuming the second one at
time t. Let �X (t) = (X (t), Z (t)). Then, �X = ( �X (t) : t ≥ 0) is a CTMC. Our goal
here is to compute α = Ef( �X (∞)) = 14.487, where f ( �X (t)) = X (t).

Model 3. This model is the queue-length process for two M/M/1/19 queues
in tandem. Here the arrival process is Poisson with arrival rate 1. The arrived
job is served at server 1 first. The service discipline is FCFS at all servers and
all servers generate independent identically distributed (i.i.d.) exponentially
distributed service times with mean 1/µi. When a job completes service at
server 1, it goes to server 2. If it finds at least 19 customers in the second queue,
it is permanently lost to the system. When a job completes service at server 2,
it goes to server 1 with probability p and leaves the system with probability
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1 − p. The parameter values we have selected are µ1 = 2.3, µ2 = 2.15, and
p = 0.5. Let X i(t), i = 1, 2, denote the number of jobs in server i at time t, and
X (t) = (X 1(t), X 2(t)). Our performance measure is α = Ef(X (∞)) = 11.523,
where f (X (t)) = X 1(t) + X 2(t).

Model 4. This model is the number-in-stock process of a single item inven-
tory management system. The system is operated under a stationary (s, S) pol-
icy. When the number-in-stock decreases to a fixed number s, an order amount
of S − s is placed. The delivery times are i.i.d. exponentially distributed with
a mean of 4/3. The demands for the item occur according to a Poisson process
with arrival rate 1. Demands that cannot be satisfied immediately are lost. We
select S = 15 and s = 2. Let X (t) denote the number-in-stock at time t. Our per-
formance measure is the steady-state operating cost α = Ef(X (∞)) = 401.696,
where

f (X (t)) =
{

50X (t), if X (t) > 0;
300, if X (t) = 0.

We turn next to a discussion of the specific estimators for α that we shall con-
sider in this article. The generic steady-state simulation problem that we are
considering in this article involves the computation of the steady-state mean α

of a real-valued process Y = (Y (t) : t ≥ 0). Given Y and a simulated time hori-
zon t, our first steady-state estimator is the “classical” (time-average) sample
mean, namely

α1(t) = 1
t

∫ t

0
Y (s) ds.

As mentioned in the Introduction, all our bias reducing estimators take advan-
tage of the presence of regenerative structure. In particular, the times at which
the underlying continuous-time Markov chain returns to any fixed state z ∈ S
is a sequence of regeneration times for Y . Let (T (n) : n ≥ 0) be the sequence of
times at which Y regenerates, and set

�i
�=

∫ T (i)

T (i−1)
Y (s) ds,

τi = T (i) − T (i − 1),
N (t) = max{n ≥ 0 : T (n) ≤ t},

for i ≥ 1 and t ≥ 0. A fundamental theoretical assumption for the validity of the
bias reducing estimators that we shall study is that the regenerative process
Y be non-delayed, so that a regeneration occurs at t = 0 (and so that T (0) =
0). Thus, once the initial state for the simulation is chosen, this necessarily
determines the regenerative return state to be used.

Our first bias-reducing estimator is due to Meketon and Heidelberger [1982].
It is defined as

α2(t) =
∑N (t)+1

i=1 �i∑N (t)+1
i=1 τi

.
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They established theoretically that α2(t) does indeed reduce bias, as evidenced
by the bias expansion

Eα2(t) = α + o(1/t) (7)

as t → ∞. (Compare with (2).) This bias expansion can be derived by using
Taylor series argument, see Glynn and Heidelberger [1990] for such an argu-
ment. All the bias-reducing estimators that we shall discuss here have the same
theoretical characteristic, namely, that their bias is of order o(1/t) as t → ∞.

The second bias-reducing estimator is obtained by using Taylor expansions
for the bias of a general function of sample means based on N (t) observations.
It was introduced by Glynn and Heidelberger [1990] and is given by

α3(t) =
{

α1(t), N (t) = 0;

α1(t) + 1
t2

[ ∑N (t)
i=1 �iτi − α1(t)

∑N (t)
i=1 τ 2

i

]
, N (t) ≥ 1.

See Glynn and Heidelberger [1990] for a discussion of its bias-reducing
properties.

Our third bias-reducing estimator is based on jack-knifing and is given as

α4(t) =


α1(t), N (t) ≤ 1;

N (t)
[∑N (t)

i=1 �i∑N (t)
i=1 τi

]
− N (t)−1

N (t)

[∑N (t)
i=1

∑
j �=i � j∑
j �=i τ j

]
, N (t) ≥ 2.

The bias-reducing theoretical behavior of α4(t) was established by Glynn and
Heidelberger [1992b].

Our final bias-reducing estimator is based on a renewal-theoretical asymp-
totic expansion for the bias of the sample mean up to time t of a regenerative
process. It was proposed in Glynn [1994] and is given by

α5(t) =
{

α1(t), N (t) = 0;

α1(t) + 1
t2

∑N (t)
i=1

(
Ai − α1(t)τ 2

i /2
)
, N (t) ≥ 1,

where

Ai =
∫ τi

0
sY(T (i − 1) + s) ds.

We also have an interest in studying the degree to which initial bias affects
the quality of an estimator. To this end, consider the estimator

α6(t) = α1(t) + (α − Eα1(t)).

Note that α6(t) is unbiased as an estimator for α. However, α6(t) can not be
employed practically, because it requires the ability to pre-compute both the
steady-state mean α and the “transient” expectation Eα1(t). Of course, for the
class of continuous-time Markov chain models we have selected, both α and
Eα1(t) can be computed numerically. (The quantity α can be found from the lin-
ear equations that characterize the steady-state of a continuous-time Markov
chain, whereas Eα1(t) can be computed, as we shall see next, by solving numer-
ically a system of linear differential equations.) By empirically studying α6(t),
we can see the degree of improvement that is theoretically possible when the
initialization bias is entirely eliminated.
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Suppose that Y takes the form Y (t) = f (X (t)), where X = (X (t), t ≥ 0) is a
S-valued continuous-time Markov chain with finite state space and f : S → �
is a “performance measure” that we choose to encode as a column vector (i.e.,
f = ( f (x) : x ∈ S) is a column vector.) Let w(t, x) = tExα1(t) = Ex

∫ t
0 f (X (s)) ds,

where Ex(·) denotes the expectation operator under which X (0) = x. For h > 0,
the Markov property implies that

w(t + h, x) = Ex

∫ h

0
f (X (s))ds + Exw(t, X (h))

= f (x)h + o(h) + Exw(t, X (h)).

But Exw(t, X (h)) = w(t, x) + (Aw(t))(x)h + o(h), where A = (A(x, y) : x, y ∈ S)
is the generator (or “rate matrix”) of X and w(t) = (w(t, x) : x ∈ S) is encoded
as a column vector. Hence,

h−1(w(t + h, x) − w(t, x)) = f (x) + (Aw(t))(x) + o(1) (8)

as h ↓ 0. So, letting h ↓ 0 in (8), we conclude that w′(t) exists and equals
f + Aw(t). So, Exα1(t) can be computed by solving the initial value problem

w′(t) = f + Aw(t)
subject to w(0) = 0.

This can be solved numerically by a finite difference method. An alternative is
available when X is irreducible. Then, X possesses a unique stationary distri-
bution π = (π (x) : x ∈ S), which we encode as a row vector. If 	 is the matrix
in which each row equals π , it is known that (A − 	)−1 exists and

w(t) = (A − 	)−1[(exp(At) − I )( f − 	f )] + 	f t;

See Glynn [1994].
As indicated in Section 2, the quality of the above estimators needs to be as-

sessed. Based on Section 2’s discussion, we will compute, for each combination
of estimator and model, the mean absolute percentage error and the median
absolute percentage error. This calculation will be based on 5000 independent
replications of the model. In addition, our experiments are concerned with cov-
erage error, and the degree to which coverage error is affected by initialization
issues. Thus, we will also numerically investigate the coverage errors described
in Section 2.

4. NUMERICAL RESULTS

We have run simulations for a variety of cases by varying the time interval.
Since we are interested in evaluating the performance of bias-reducing steady-
state estimators, we selected, for each model, three combinations of initial
state and simulated time that have non-trivial initial bias (1% to 25%), see
Figures 1–4 for details. For each combination of simulated time and model, we
run 5000 simulations. For each simulation run, we compute the estimators αi,
i = 1, . . . , 6, described in Section 3. In addition, we also run another set of
simulations starting from steady-state. We set the resulting estimator α7(t).
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Fig. 1. Mean APE and median APE for various estimators in Model 1 with λ = .95 and µ = 1
and initialized at X (0) = 0. Here, t is the simulated time horizon (chosen to be 64Eτ1, 256Eτ1, and
1024Eτ1) for estimators α1(t) and estimators α3(t) to α7(t). For α2(t), the simulated time t2 is the
average (over 5000 replications) of the time required to complete the cycle in progress at t.

Recall that α1(t) is the classical point estimator which having “high-bias” (bias
of order 1/t, see Eq. (2)); α2(t) to α5(t) are “low-bias” estimators (i.e., bias of
order o(1/t), see Eq. (7)); and α6(t) and α7(t) are unbiased estimators. The esti-
mators α2(t) to α6(t) can be regarded as “bias-reducing” estimators and α6(t) is
the “best” one. Initial transient deletion methods aim to collect sample paths
that are approximately in steady-state. Viewed in this light, α7(t) and other
initial transient deletion methods can be regarded as “approximated steady-
state” estimators and α7(t) is the “best” one. Therefore, we may consider that
we have done comparisons between bias-reducing estimators and a “perfect”
initial transient deletion estimator (i.e., α7(t)).

As mentioned in Section 2, we are interested in mean absolute percentage
error (APE) for these estimators. In Figures 1–4 we displayed the simulation
results for mean APE. The results are as expected: compared to the classical
estimator α1(t), the low-bias estimators generally reduced the bias. The only
exception is α4(t) which has more bias than α1(t) for some cases in Model 1 to
3. This exception theoretically can relate to the fact that Eq. (7) (theoretical
property of the low-bias estimators we considered) implies that the low-bias
estimators must reduce bias when the chosen t is sufficiently large. Empirically,
this exception can be explained as follows: α4(t) only uses simulated information

ACM Transactions on Modeling and Computer Simulation, Vol. 14, No. 4, October 2004.



334 • M.-H. Hsieh et al.

Fig. 2. Mean APE and median APE for various estimators in Model 2 with λ = .95 and gamma(2,2)
distributed processing times and initialized at X (0) = 0. Here, t is the simulated time horizon
(chosen to be 64Eτ1, 256Eτ1, and 1024Eτ1) for estimators α1(t) and estimators α3(t) to α7(t). For
α2(t), the simulated time t2 is the average (over 5000 replications) of the time required to complete
the cycle in progress at t.

up to T (N (t)) which is significant shorter than t for the exceptional cases, for
example, (ET(N (t)), t) ≈ (990, 1347) for the exceptional case in Model 1 (see
Figure 1). In short, the empirical results indicate that the low-bias estimators
are generally effective in reducing mean APE.

We are also interested in the bias-reducing effect on median APE of these
estimators. The experimental results are reported in Figures 1–4. From our
empirical study, we found that the bias-reducing effect on median APE of these
estimators is model dependent. For Models 1 and 2, the low-bias estimators
have limited use in reducing median APE. This is because the distribution of
α1(t) of these two models is highly skewed, and thus the magnitude of median
APE of α1(t) is much larger than that of mean APE of α1(t). Note that even
the unbiased estimators have the same limitation for these two models. For
Models 3 and 4, the low-bias estimators are effective in reducing median APE,
since the distributions of α1(t) of these two models are more symmetric, and
the magnitude of median APE of α1(t) and mean APE of α1(t) are about the
same. In brief, the empirical results indicate that the low-bias estimators can
effectively reduce median APE if the distribution of α1(t) is near symmetric and
is less effective if the distribution of α1(t) is skewed.
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Fig. 3. Mean APE and Median APE for Various Estimators in Model 3 with λ = 1, µ1 = 2.3,
µ2 = 2.15, and p = 0.5 and initialized at X (0) = (0, 0). Here, t is the simulated time horizon
(chosen to be 8Eτ1, 16Eτ1, and 32Eτ1) for estimators α1(t) and estimators α3(t) to α7(t). For α2(t),
the simulated time t2 is the average (over 5000 replications) of the time required to complete the
cycle in progress at t.

We turn next to the coverage issues of the confidence interval for α. Before
proceeding to the experimental results, let us introduce the time-average vari-
ance constant (TAVC) estimators we used.

The first TAVC estimator σ 2 is its theoretical value. We use it as a perfor-
mance benchmark.

The second TAVC estimator t · V̂ar(αi(t)) is based on Eq. (4). Here, V̂ar(αi(t))
is the sample variance of αi(t). That is,

V̂ar(αi(t)) = 1
4999

5000∑
k=1

α
(k)
i (t), for i = 1, . . . , 7,

where α
(k)
i (t) is the kth replication of αi(t).

The third TAVC estimator vi(t) is defined as

vi(t) =


0, N (t) = 0, 1;∑N (t)
j=1 (� j −αi (t)τ j )2∑N (t)

j=1 τ j
, N (t) ≥ 2.

for i = 1, . . . , 6. It is the classical TAVC estimator for the regenerative
method.
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Fig. 4. Mean APE and median APE for various estimators in Model 4 with s = 2 and S = 15
and initialized in State S = 15. Here, t is the simulated time horizon (chosen to be 2Eτ1, 4Eτ1,
and 8Eτ1) for estimators α1(t) and estimators α3(t) to α7(t). For α2(t), the simulated time t2 is the
average (over 5000 replications) of the time required to complete the cycle in progress at t.

The last TAVC estimator t · vJ (t)/N (t) is based on jackknife theory and vJ (t)
is defined as

vJ (t) =
{

0, N (t) = 0, 1;
1

N (t)−1

∑N (t)
j=1 (α̃ j (t) − α4(t))2, N (t) ≥ 2,

where

α̃ j (t) = N (t)

[∑N (t)
i=1 �i∑N (t)
i=1 τi

]
− (N (t) − 1)

[∑
i �= j �i∑
i �= j τi

]
.

It is noteworthy that only the third and fourth TAVC estimators can be
obtained from a single replication. Using these four TAVC estimators, we con-
structed four different 100(1 − δ)% confidence intervals of α. Namely,[

αi(t) − z
σ√
t
, αi(t) + z

σ√
t

]
, (9)

[
αi(t) − z

√
V̂ar(αi(t)), αi(t) + z

√
V̂ar(αi(t))

]
, (10)
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αi(t) − z

√
vi(t)

t
, αi(t) + z

√
vi(t)

t

]
, (11)

and αi(t) − z

√
vJ (t)
N (t)

, αi(t) + z

√
vJ (t)
N (t)

 , (12)

where z is chosen so that P (−z ≤ N (0, 1) ≤ z) = 1−δ. Let [L(t), R(t)] denote any
above random interval. To access the coverage quality of confidence intervals,
we computed the following measures:

m = P̂ (α ∈ [L(t), R(t)]) = 1
5000

5000∑
k=1

I
(
α ∈ [

L(k)(t), R(k)(t)
])

,

l = P̂ (α < L(t)) = 1
5000

5000∑
k=1

I
(
α < L(k)(t)

)
,

and

r = P̂ (α > R(t)) = 1
5000

5000∑
k=1

I
(
α > R(k)(t)

)
,

where I (·) is an indicator function and L(k)(t) and R(k)(t) are independent
copies of L(t) and R(t). We choose δ = 0.1, thus the ideal value of (l , m, r) is
(5%, 90%, 5%). Note that the coverage errors described in Section 2 are the ab-
solute difference between (l , m, r) and (5%, 90%, 5%). The experimental results
of these measures for various confidence intervals are reported in Tables I–IV.
A few interesting things were observed as follows:

(1) The coverage quality of confidence intervals is dominated by the quality
of TAVC estimator. For example, in Model 1 and 2, confidence intervals
formed by using α1(t) and vi(t) have very bad coverage quality. Replacing
α1(t) by unbiased estimators improves the cover quality only a bit. However,
replacing vi(t) by σ 2 has dramatic improvement. This is as expected, since
bias has only a second-order effect on the quality of confidence intervals,
see Eq. (5).

(2) The distribution of α1(t) plays an important role in coverage quality. This
can be seen from the following observations. Confidence intervals con-
structed from unbiased estimators and σ 2 are expected to have (l , m, r)
close to (5%, 90%, 5%). This is observed in Models 3 and 4, but not for Mod-
els 1 and 2. The problem in Models 1 and 2 is the highly skewed distribution
of α1(t). The skewed distribution of α1(t) also leads to a high median APE.

(3) Confidence intervals constructed from V̂ar(αi) have comparable coverage
quality of those formed by using σ 2.
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Table I. l , m, and r for Various Confidence Intervals in Model 1 (Displayed in Cells Below TAVC
Estimator.)

Estimator t̄ σ 2 t · V̂ar(αi)
α1(t) 1347.3 0.00% 99.50% ± 0.16% 0.50% 1.44% 94.62% ± 0.52% 3.94%
α2(t) 1699.4 0.00% 98.98% ± 0.23% 1.02% 0.00% 94.28% ± 0.54% 5.72%
α3(t) 1347.3 0.00% 99.52% ± 0.16% 0.48% 0.98% 95.08% ± 0.50% 3.94%
α4(t) 1347.3 0.00% 99.54% ± 0.16% 0.46% 4.72% 91.28% ± 0.66% 4.00%
α5(t) 1347.3 0.00% 99.52% ± 0.16% 0.48% 1.26% 94.86% ± 0.51% 3.88%
α6(t) 1347.3 0.00% 99.12% ± 0.22% 0.88% 0.00% 93.38% ± 0.58% 6.62%
α7(t) 1347.3 0.00% 96.34% ± 0.44% 3.66% 0.00% 93.76% ± 0.56% 6.24%

α1(t) 5389.3 0.00% 96.94% ± 0.40% 3.06% 0.02% 94.98% ± 0.51% 5.00%
α2(t) 5784.1 0.00% 95.64% ± 0.48% 4.36% 0.00% 94.16% ± 0.55% 5.84%
α3(t) 5389.3 0.00% 96.00% ± 0.46% 4.00% 0.00% 94.16% ± 0.55% 5.84%
α4(t) 5389.3 0.00% 95.72% ± 0.47% 4.28% 0.02% 95.44% ± 0.49% 4.54%
α5(t) 5389.3 0.00% 96.48% ± 0.43% 3.52% 0.00% 94.60% ± 0.53% 5.40%
α6(t) 5389.3 0.00% 96.50% ± 0.43% 3.50% 0.00% 93.90% ± 0.56% 6.10%
α7(t) 5389.3 0.00% 94.88% ± 0.51% 5.12% 0.00% 93.84% ± 0.56% 6.16%

α1(t) 21557.1 0.16% 94.52% ± 0.53% 5.32% 0.36% 93.76% ± 0.56% 5.88%
α2(t) 21917.3 0.12% 93.92% ± 0.56% 5.96% 0.20% 93.56% ± 0.57% 6.24%
α3(t) 21557.1 0.10% 93.00% ± 0.59% 6.90% 0.02% 93.68% ± 0.57% 6.30%
α4(t) 21557.1 0.16% 93.22% ± 0.58% 6.62% 0.02% 94.04% ± 0.55% 5.94%
α5(t) 21557.1 0.10% 93.96% ± 0.55% 5.94% 0.16% 93.80% ± 0.56% 6.04%
α6(t) 21557.1 0.02% 94.20% ± 0.54% 5.78% 0.24% 93.50% ± 0.57% 6.26%
α7(t) 21557.1 0.10% 94.20% ± 0.54% 5.70% 0.22% 93.68% ± 0.57% 6.10%

Estimator t̄ vi(t) t · vJ (t)/N (t)
α1(t) 1347.3 65.16% 25.46% ± 1.01% 9.38% 54.34% 36.88% ± 1.12% 8.78%
α2(t) 1699.4 57.80% 27.84% ± 1.04% 14.36% 47.40% 38.38% ± 1.13% 14.22%
α3(t) 1347.3 64.44% 24.14% ± 1.00% 11.42% 52.86% 38.60% ± 1.13% 8.54%
α4(t) 1347.3 76.68% 14.46% ± 0.82% 8.86% 65.38% 34.04% ± 1.10% 0.58%
α5(t) 1347.3 64.86% 24.98% ± 1.01% 10.16% 53.64% 37.70% ± 1.13% 8.66%
α6(t) 1347.3 47.98% 33.68% ± 1.10% 18.34% 35.60% 51.94% ± 1.16% 12.46%

α1(t) 5389.3 43.48% 47.54% ± 1.16% 8.98% 37.46% 58.54% ± 1.15% 4.00%
α2(t) 5784.1 39.76% 47.06% ± 1.16% 13.18% 33.88% 58.88% ± 1.14% 7.24%
α3(t) 5389.3 41.54% 45.50% ± 1.16% 12.96% 35.82% 60.16% ± 1.14% 4.02%
α4(t) 5389.3 47.40% 41.46% ± 1.15% 11.14% 41.40% 57.70% ± 1.15% 0.90%
α5(t) 5389.3 42.54% 46.62% ± 1.16% 10.84% 36.82% 59.18% ± 1.14% 4.00%
α6(t) 5389.3 37.92% 49.82% ± 1.16% 12.26% 31.00% 64.22% ± 1.12% 4.78%

α1(t) 21557.1 26.66% 70.22% ± 1.06% 3.12% 24.50% 73.84% ± 1.02% 1.66%
α2(t) 21917.3 25.28% 70.00% ± 1.07% 4.72% 22.96% 74.52% ± 1.01% 2.52%
α3(t) 21557.1 25.26% 69.26% ± 1.07% 5.48% 23.08% 74.74% ± 1.01% 2.18%
α4(t) 21557.1 27.04% 68.40% ± 1.08% 4.56% 24.80% 73.90% ± 1.02% 1.30%
α5(t) 21557.1 26.00% 69.98% ± 1.07% 4.02% 23.76% 74.28% ± 1.02% 1.96%
α6(t) 21557.1 24.38% 71.82% ± 1.05% 3.80% 22.34% 75.74% ± 1.00% 1.92%

Note that m is reported in terms of a 95% confidence interval and t̄ is the average simulated time for each
steady-state mean estimator.

(4) Confidence intervals constructed from vJ (t) have consistently better cover-
age quality than those constructed from vi(t).

(5) Confidence intervals constructed from low-bias estimators have similar cov-
erage quality to those constructed from unbiased estimators, and have bet-
ter coverage quality to those constructed from α1(t).
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Table II. l , m, and r for Various Confidence Intervals in Model 2 (Displayed in Cells Below TAVC
Estimator.)

Estimator t̄ σ 2 t · V̂ar(αi)
α1(t) 1347.4 0.00% 99.34% ± 0.19% 0.66% 0.52% 94.70% ± 0.52% 4.78%
α2(t) 1613.4 0.00% 98.78% ± 0.26% 1.22% 0.00% 94.08% ± 0.55% 5.92%
α3(t) 1347.4 0.00% 99.30% ± 0.19% 0.70% 0.18% 94.70% ± 0.52% 5.12%
α4(t) 1347.4 0.00% 98.28% ± 0.30% 1.72% 0.86% 94.80% ± 0.52% 4.34%
α5(t) 1347.4 0.00% 99.30% ± 0.19% 0.70% 0.28% 94.70% ± 0.52% 5.02%
α6(t) 1347.4 0.00% 98.96% ± 0.24% 1.04% 0.00% 93.06% ± 0.59% 6.94%
α7(t) 1347.4 0.00% 95.96% ± 0.46% 4.04% 0.00% 93.86% ± 0.56% 6.14%

α1(t) 5389.5 0.00% 95.94% ± 0.46% 4.06% 0.00% 94.24% ± 0.54% 5.76%
α2(t) 5676.1 0.00% 94.88% ± 0.51% 5.12% 0.00% 93.72% ± 0.56% 6.28%
α3(t) 5389.5 0.00% 94.32% ± 0.54% 5.68% 0.00% 93.30% ± 0.58% 6.70%
α4(t) 5389.5 0.02% 94.10% ± 0.55% 5.88% 0.02% 94.24% ± 0.54% 5.74%
α5(t) 5389.5 0.00% 95.12% ± 0.50% 4.88% 0.00% 93.72% ± 0.56% 6.28%
α6(t) 5389.5 0.00% 95.30% ± 0.49% 4.70% 0.00% 93.32% ± 0.58% 6.68%
α7(t) 5389.5 0.00% 94.98% ± 0.51% 5.02% 0.00% 94.74% ± 0.52% 5.26%

α1(t) 21557.9 0.38% 94.86% ± 0.51% 4.76% 0.98% 93.56% ± 0.57% 5.46%
α2(t) 21845.6 0.34% 94.20% ± 0.54% 5.46% 0.48% 93.70% ± 0.57% 5.82%
α3(t) 21557.9 0.32% 93.50% ± 0.57% 6.18% 0.26% 93.70% ± 0.57% 6.04%
α4(t) 21557.9 0.36% 94.00% ± 0.55% 5.64% 0.26% 94.34% ± 0.54% 5.40%
α5(t) 21557.9 0.36% 94.22% ± 0.54% 5.42% 0.40% 93.90% ± 0.56% 5.70%
α6(t) 21557.9 0.20% 94.62% ± 0.52% 5.18% 0.50% 93.60% ± 0.57% 5.90%
α7(t) 21557.9 0.38% 93.44% ± 0.58% 6.18% 0.50% 93.08% ± 0.59% 6.42%

Estimator t̄ vi(t) t · vJ (t)/N (t)
α1(t) 1347.4 60.70% 29.28% ± 1.06% 10.02% 51.38% 41.12% ± 1.14% 7.50%
α2(t) 1613.4 53.86% 30.80% ± 1.07% 15.34% 45.12% 42.52% ± 1.15% 12.36%
α3(t) 1347.4 59.50% 27.58% ± 1.04% 12.92% 49.54% 43.18% ± 1.15% 7.28%
α4(t) 1347.4 70.36% 19.28% ± 0.92% 10.36% 59.86% 39.82% ± 1.14% 0.32%
α5(t) 1347.4 60.24% 28.40% ± 1.05% 11.36% 50.48% 42.16% ± 1.15% 7.36%
α6(t) 1347.4 47.38% 35.06% ± 1.11% 17.56% 34.94% 54.62% ± 1.16% 10.44%

α1(t) 5389.5 37.24% 54.92% ± 1.16% 7.84% 33.22% 63.64% ± 1.12% 3.14%
α2(t) 5676.1 34.36% 54.20% ± 1.16% 11.44% 30.50% 63.92% ± 1.12% 5.58%
α3(t) 5389.5 36.04% 51.80% ± 1.16% 12.16% 31.28% 65.16% ± 1.11% 3.56%
α4(t) 5389.5 40.50% 49.16% ± 1.16% 10.34% 35.56% 63.22% ± 1.12% 1.22%
α5(t) 5389.5 36.64% 53.62% ± 1.16% 9.74% 32.34% 64.36% ± 1.11% 3.30%
α6(t) 5389.5 33.62% 56.40% ± 1.15% 9.98% 28.24% 68.06% ± 1.08% 3.70%

α1(t) 21557.9 24.90% 72.18% ± 1.04% 2.92% 23.06% 75.32% ± 1.00% 1.62%
α2(t) 21845.6 23.68% 71.92% ± 1.05% 4.40% 21.68% 75.82% ± 1.00% 2.50%
α3(t) 21557.9 23.72% 71.80% ± 1.05% 4.48% 21.64% 76.20% ± 0.99% 2.16%
α4(t) 21557.9 25.30% 71.58% ± 1.05% 3.12% 23.28% 75.74% ± 1.00% 0.98%
α5(t) 21557.9 24.26% 72.10% ± 1.04% 3.64% 22.38% 75.70% ± 1.00% 1.92%
α6(t) 21557.9 23.30% 73.32% ± 1.03% 3.38% 20.96% 77.12% ± 0.98% 1.92%

Note that m is reported in terms of a 95% confidence interval and t̄ is the average simulated time for each
steady-state mean estimator.

5. CONCLUSIONS

We have studied seven estimation methods for four stochastic models. For the
four low-bias estimators we have studied, we found

(1) In terms of mean APE: α2(t) and α3(t) have superior performance to others.
The performance of α5(t) is generally better than that of α1(t), but on average
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Table III. l , m, and r for Various Confidence Intervals in Model 3 (Displayed in Cells Below
TAVC Estimator.)

Estimator t̄ σ 2 t · V̂ar(αi)
α1(t) 589.7 6.46% 90.80% ± 0.67% 2.74% 8.22% 88.30% ± 0.75% 3.48%
α2(t) 814.7 3.16% 94.84% ± 0.51% 2.00% 6.56% 89.60% ± 0.71% 3.84%
α3(t) 589.7 5.16% 91.58% ± 0.65% 3.26% 6.50% 89.44% ± 0.72% 4.06%
α4(t) 589.7 19.90% 60.78% ± 1.14% 19.32% 4.16% 88.66% ± 0.74% 7.18%
α5(t) 589.7 5.66% 91.38% ± 0.65% 2.96% 7.40% 88.76% ± 0.73% 3.84%
α6(t) 589.7 3.06% 92.02% ± 0.63% 4.92% 4.12% 89.94% ± 0.70% 5.94%
α7(t) 589.7 3.46% 91.42% ± 0.65% 5.12% 4.22% 90.08% ± 0.70% 5.70%

α1(t) 1179.3 5.50% 91.62% ± 0.64% 2.88% 7.02% 89.26% ± 0.72% 3.72%
α2(t) 1399.6 3.54% 93.56% ± 0.57% 2.90% 5.42% 90.08% ± 0.70% 4.50%
α3(t) 1179.3 4.26% 91.34% ± 0.65% 4.40% 4.94% 89.96% ± 0.70% 5.10%
α4(t) 1179.3 9.42% 75.88% ± 1.00% 14.70% 1.40% 92.24% ± 0.62% 6.36%
α5(t) 1179.3 4.90% 91.54% ± 0.65% 3.56% 5.86% 89.90% ± 0.70% 4.24%
α6(t) 1179.3 3.56% 92.04% ± 0.63% 4.40% 4.58% 89.98% ± 0.70% 5.44%
α7(t) 1179.3 4.22% 90.44% ± 0.68% 5.34% 4.38% 90.08% ± 0.70% 5.54%

α1(t) 2358.7 5.62% 90.92% ± 0.67% 3.46% 6.14% 90.18% ± 0.69% 3.68%
α2(t) 2573.9 4.10% 92.30% ± 0.62% 3.60% 5.36% 90.40% ± 0.69% 4.24%
α3(t) 2358.7 4.24% 90.52% ± 0.68% 5.24% 4.22% 90.62% ± 0.68% 5.16%
α4(t) 2358.7 6.00% 85.74% ± 0.81% 8.26% 2.92% 91.70% ± 0.64% 5.38%
α5(t) 2358.7 4.96% 90.80% ± 0.67% 4.24% 5.10% 90.52% ± 0.68% 4.38%
α6(t) 2358.7 4.30% 91.10% ± 0.66% 4.60% 4.58% 90.46% ± 0.68% 4.96%
α7(t) 2358.7 4.08% 90.86% ± 0.67% 5.06% 4.64% 89.86% ± 0.70% 5.50%

Estimator t̄ vi(t) t · vJ (t)/N (t)
α1(t) 589.7 29.86% 55.82% ± 1.16% 14.32% 16.08% 74.58% ± 1.01% 9.34%
α2(t) 814.7 21.12% 64.14% ± 1.12% 14.74% 11.18% 78.46% ± 0.96% 10.36%
α3(t) 589.7 29.72% 52.14% ± 1.16% 18.14% 15.70% 74.96% ± 1.01% 9.34%
α4(t) 589.7 39.30% 38.62% ± 1.13% 22.08% 26.84% 67.02% ± 1.09% 6.14%
α5(t) 589.7 29.70% 54.26% ± 1.16% 16.04% 15.86% 74.82% ± 1.01% 9.32%
α6(t) 589.7 23.36% 57.00% ± 1.15% 19.64% 11.80% 77.08% ± 0.98% 11.12%
α1(t) 1179.3 18.62% 70.72% ± 1.06% 10.66% 9.98% 87.06% ± 0.78% 2.96%
α2(t) 1399.6 14.24% 73.70% ± 1.02% 12.06% 7.22% 89.60% ± 0.71% 3.18%
α3(t) 1179.3 17.22% 67.90% ± 1.09% 14.88% 9.00% 87.76% ± 0.76% 3.24%
α4(t) 1179.3 22.82% 53.78% ± 1.16% 23.40% 12.90% 83.42% ± 0.87% 3.68%
α5(t) 1179.3 18.04% 69.92% ± 1.07% 12.04% 9.48% 87.44% ± 0.77% 3.08%
α6(t) 1179.3 15.24% 70.20% ± 1.06% 14.56% 7.64% 88.48% ± 0.74% 3.88%

α1(t) 2358.7 13.58% 78.40% ± 0.96% 8.02% 8.44% 88.62% ± 0.74% 2.94%
α2(t) 2573.9 11.18% 79.56% ± 0.94% 9.26% 6.94% 89.80% ± 0.70% 3.26%
α3(t) 2358.7 11.80% 76.18% ± 0.99% 12.02% 7.08% 89.36% ± 0.72% 3.56%
α4(t) 2358.7 14.50% 69.90% ± 1.07% 15.60% 8.50% 87.22% ± 0.78% 4.28%
α5(t) 2358.7 12.66% 77.76% ± 0.97% 9.58% 7.64% 89.08% ± 0.73% 3.28%
α6(t) 2358.7 11.48% 77.84% ± 0.97% 10.68% 6.80% 89.56% ± 0.71% 3.64%

Note that m is reported in terms of a 95% confidence interval and t̄ is the average simulated time for each
steady-state mean estimator.

is not as good as that of α2(t) and α3(t). The estimator α4(t) is unstable for
a few simulation runs because it only uses sample information up to time
T (N (t)) which can be significant shorter than t. To sum up, α2(t) and α3(t)
are the best choices.

(2) In terms of median APE: the performance ranking of low-bias estimators
is about the same of that in terms of mean APE. That is, α2(t) and α3(t) are
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Table IV. l , m, and r for Various Confidence Intervals in Model 4 (Displayed in Cells Below
TAVC Estimator.)

Estimator t̄ σ 2 t · V̂ar(αi)
α1(t) 62.7 1.08% 83.96% ± 0.85% 14.96% 1.06% 84.12% ± 0.85% 14.82%
α2(t) 87.9 1.84% 94.44% ± 0.53% 3.72% 3.60% 90.10% ± 0.69% 6.30%
α3(t) 62.7 1.68% 86.00% ± 0.81% 12.32% 1.56% 86.66% ± 0.79% 11.78%
α4(t) 62.7 3.02% 85.70% ± 0.81% 11.28% 2.06% 89.32% ± 0.72% 8.62%
α5(t) 62.7 2.36% 90.18% ± 0.69% 7.46% 2.48% 89.54% ± 0.71% 7.98%
α6(t) 62.7 4.88% 89.86% ± 0.70% 5.26% 4.76% 90.08% ± 0.70% 5.16%
α7(t) 62.7 5.22% 88.94% ± 0.73% 5.84% 4.56% 90.16% ± 0.69% 5.28%

α1(t) 125.4 1.70% 86.66% ± 0.79% 11.64% 1.70% 86.66% ± 0.79% 11.64%
α2(t) 150.1 2.88% 92.62% ± 0.61% 4.50% 4.50% 89.38% ± 0.72% 6.12%
α3(t) 125.4 2.62% 87.50% ± 0.77% 9.88% 2.50% 88.12% ± 0.75% 9.38%
α4(t) 125.4 7.62% 83.60% ± 0.86% 8.78% 4.16% 90.94% ± 0.67% 4.90%
α5(t) 125.4 3.74% 89.94% ± 0.70% 6.32% 3.86% 89.44% ± 0.72% 6.70%
α6(t) 125.4 4.74% 89.78% ± 0.70% 5.48% 4.74% 89.80% ± 0.70% 5.46%
α7(t) 125.4 4.86% 89.38% ± 0.72% 5.76% 4.40% 90.24% ± 0.69% 5.36%

α1(t) 250.8 2.64% 88.60% ± 0.74% 8.76% 2.64% 88.54% ± 0.74% 8.82%
α2(t) 276.1 4.00% 91.46% ± 0.65% 4.54% 4.78% 89.80% ± 0.70% 5.42%
α3(t) 250.8 3.68% 89.00% ± 0.73% 7.32% 3.38% 89.60% ± 0.71% 7.02%
α4(t) 250.8 6.74% 86.34% ± 0.80% 6.92% 4.88% 90.14% ± 0.69% 4.98%
α5(t) 250.8 4.70% 89.78% ± 0.70% 5.52% 4.70% 89.78% ± 0.70% 5.52%
α6(t) 250.8 4.98% 89.86% ± 0.70% 5.16% 5.00% 89.82% ± 0.70% 5.18%
α7(t) 250.8 5.02% 89.76% ± 0.71% 5.22% 4.88% 90.08% ± 0.70% 5.04%

Estimator t̄ vi(t) t · vJ (t)/N (t)
α1(t) 62.7 19.02% 34.40% ± 1.11% 46.58% 19.18% 37.00% ± 1.12% 43.82%
α2(t) 87.9 30.52% 44.18% ± 1.16% 25.30% 30.36% 45.60% ± 1.16% 24.04%
α3(t) 62.7 22.80% 33.26% ± 1.10% 43.94% 22.00% 38.86% ± 1.13% 39.14%
α4(t) 62.7 26.70% 27.92% ± 1.04% 45.38% 22.18% 39.24% ± 1.14% 38.58%
α5(t) 62.7 26.78% 37.04% ± 1.12% 36.18% 25.40% 42.30% ± 1.15% 32.30%
α6(t) 62.7 33.24% 40.02% ± 1.14% 26.74% 31.98% 43.54% ± 1.15% 24.48%

α1(t) 125.4 9.74% 68.38% ± 1.08% 21.88% 8.10% 73.68% ± 1.02% 18.22%
α2(t) 150.1 14.72% 73.54% ± 1.03% 11.74% 11.74% 78.94% ± 0.95% 9.32%
α3(t) 125.4 12.82% 66.26% ± 1.10% 20.92% 9.36% 74.48% ± 1.01% 16.16%
α4(t) 125.4 21.74% 57.22% ± 1.15% 21.04% 12.26% 73.50% ± 1.03% 14.24%
α5(t) 125.4 16.00% 67.96% ± 1.09% 16.04% 11.46% 76.62% ± 0.98% 11.92%
α6(t) 125.4 17.50% 68.52% ± 1.08% 13.98% 12.76% 77.36% ± 0.97% 9.88%

α1(t) 250.8 6.86% 78.70% ± 0.95% 14.44% 4.86% 83.56% ± 0.86% 11.58%
α2(t) 276.1 10.08% 81.32% ± 0.91% 8.60% 6.80% 86.78% ± 0.79% 6.42%
α3(t) 250.8 8.82% 77.64% ± 0.97% 13.54% 5.34% 84.34% ± 0.85% 10.32%
α4(t) 250.8 13.58% 74.04% ± 1.02% 12.38% 8.16% 83.46% ± 0.86% 8.38%
α5(t) 250.8 11.12% 78.56% ± 0.95% 10.32% 7.28% 85.38% ± 0.82% 7.34%
α6(t) 250.8 11.62% 78.84% ± 0.95% 9.54% 7.72% 85.62% ± 0.82% 6.66%

Note that m is reported in terms of a 95% confidence interval and t̄ is the average simulated time for each
steady-state mean estimator.

also the best choices. However, for some models, the improvement can be
quite limited.

(3) In term of computational effort: α2(t) has the drawback of using longer sim-
ulated time, since it require (N (t)+1)th regeneration cycle to complete. One
might think the extra simulated time is negligible, but it is not true for some
situations. For example, the extra simulated time T (N (t) + 1) − t ≈ 15Eτ1
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in Model 1. The estimator α5(t) has the drawback of needing extra computer
memory for storing more detailed sample path information for computing
Ai. The work for computing α3(t) and α4(t) is negligible, since the needed
path information is also needed by TAVC estimators and thus the extra
work is fairly minimal.

For the TAVC estimators, the jackknife variance estimator vJ (t) generally
gives more accurate coverage than the classical variance estimator vi(t); and
both estimators use about the same amount of computer time (which is negli-
gible). However, it must be noted that vJ (t) and vi(t) both underestimated the
TAVC and thus produced confidence intervals that under covered for the short
simulation runs (unlike the second TAVC estimator which does quite well but
requires much more computation due to replications).

From what has been said above, we may conclude that the confidence inter-
val constructed from α3(t) and vJ (t) is our recommendation for estimating the
steady-state mean α in a regenerative steady-state simulation if the simulated
time is sufficiently long. In addition, simulationists may wish to use α3(t) in
place of α1(t), since from the experimental results, α3(t) is consistantly better
than α1(t) in terms of mean APE and median APE, and the extra computational
work in computing α3(t) is negligible. Although it may be risky to extrapolate
the recommendations from experimental results of these four models to gen-
eral discrete-event simulations, we feel these experimental experiences will be
useful to other simulationists.
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