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ESTIMATION OF CONTINUOUS-TIME MARKOV PROCESSES
SAMPLED AT RANDOM TIME INTERVALS

BY DARRELL DUFFIE AND PETER GLYNN1

We introduce a family of generalized-method-of-moments estimators of the pa-
rameters of a continuous-time Markov process observed at random time intervals.
The results include strong consistency, asymptotic normality, and a characterization
of standard errors. Sampling is at an arrival intensity that is allowed to depend on the
underlying Markov process and on the parameter vector to be estimated. We focus
on financial applications, including tick-based sampling, allowing for jump diffusions,
regime-switching diffusions, and reflected diffusions.

KEYWORDS: Method of moments, parameter estimation, Markov process, continuous-
time.

1. INTRODUCTION

WE INTRODUCE A FAMILY of generalized-method-of-moments (GMM) es-
timators for continuous-time Markov processes observed at random time
intervals. The results, in parallel with GMM estimation in a discrete-time set-
ting, include strong consistency, asymptotic normality, and a characterization
of standard errors. We allow for a range of sampling schemes. A special case
is sampling at the event epochs of a Poisson process. More generally, we al-
low for the arrival of observations at an intensity that varies with the under-
lying Markov process. The unknown statistical parameters may determine the
arrival intensity that governs the sampling times. Our approach is motivated
by (i) the fact that certain financial data, particularly intra-day, are sampled
at random times, (ii) by the fact that it offers structural econometric identifi-
cation, and (iii) by its computational advantages in calculating moment con-
ditions. The approach does not apply if the sampling times are deterministic
unless the model assumptions apply after a random time change induced, for
example, by variation in the arrival rate of market information.

We are particularly interested in applications to financial time series, includ-
ing tick-based sampling, allowing for jump diffusions, regime-switching diffu-
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Berlin; Department of Mathematics, Stanford University; Department of Statistics, Columbia
University; The Institute of Advanced Studies, Princeton University; The Mathematical Sci-
ences Research Institute, Berkeley; The Graduate School of Business, University of Chicago;
and CREST-INSEE, Paris. We acknowledge hospitality offered to the first author by Mishkenot
Sha’ananim, Jerusalem.
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sions, and reflected diffusions. A companion paper, Dai, Duffie, and Glynn
(1997), gives a fully worked example, with explicit solutions for the asymp-
totic variances associated with “typical” moment conditions suggested by our
approach, including maximum likelihood estimation, for Ornstein–Uhlenbeck
processes sampled at Poisson times.

The goal is to estimate the parameters governing the probabilistic behav-
ior of a time-homogeneous continuous-time Markov process X . We defer to
Section 3 a more careful and complete description of the problem setting. For
informal purposes, we define X in terms of its state space S (for example,
a subset of R

k for some k ≥ 1) and its infinitesimal generator A. At each ap-
propriately well behaved G :S → R, the function AG :S → R is defined by

AG(x)= d

dt
Ex

[
G(X(t))

]∣∣∣∣
t=0+

� x ∈ S�(1.1)

where Ex denotes expectation associated with a given initial condition x for X .
The transition probabilities of X are determined by its generator A. In our
setting, the generator A is unknown, and assumed to be one of a family
{Aθ :θ ∈ Θ} of generators that is one-to-one with a set Θ ⊂ R

d of parameters.
(Some of our results apply to nonparametric settings.)

In many financial and other applications, the Markov process X cannot be
observed continuously. We propose an estimator of the unknown “true” para-
meter θ∗ ∈ Θ based on observation of X at random times T1�T2�T3� � � � � We as-
sume, for later discussion and generalization, that Ti = inf{t :N(t) = i}, the ith
event time of a doubly-stochastic counting process (Brémaud (1981)) N driven
by X , for some state-dependent arrival intensity function λ :S → (0�∞).
That is, conditional on {X(t) : t ≥ 0}, the counting process N is distributed
as a Poisson process with time-varying intensity {λ(X(t)) : t ≥ 0}. The idea is
roughly that, conditional on {(X(u)�N(u)) : 0 ≤ u ≤ t}, the probability of an
observation between t and t +�t for small �t is approximately λ(X(t))�t. We
allow for the possibility that the intensity function λ(·) is not “known.” That is,
we suppose that λ(x) = λ(θ∗� x) for all x, where λ :Θ × S → (0�∞). For ex-
ample, N could be a Poisson process of unknown intensity.

In some cases, we interpret the sampling times T1�T2� � � � as the times at
which observations are generated by the underlying economic process, for ex-
ample, the times of quotes or reported trades of a financial security whose
prices are determined by X . In other cases, an econometrician might simulate
times at which to sample X . An extension to the case of subordination of X to
a “market-time” process is discussed in Section 7.

Our objective is to estimate the “true” generator A = Aθ∗ based on obser-
vation of Z0�Z1�Z2� � � � �Zn, where Zi = X(Ti), taking T0 = 0. In some cases,
we also assume observation of the arrival times T1�T2� � � � � Tn. The basic idea
of our approach is as follows. We choose some “test function” of the form
g :Θ× S × S → R. We suppose that g is measurable and, for each state x in S
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and each θ in Θ, that Aθg
(θ�x)(·) =Aθg(θ�x� ·) is well defined. We show, under

technical regularity, that

E

[
g(θ∗�Zi�Zi+1)− Ag(θ∗�Zi)(Zi+1)

λ(θ∗�Zi+1)
− g(θ∗�Zi�Zi)

∣∣∣Zi

]
= 0�(1.2)

We therefore construct the sample-moment analogue

Γn(θ)= 1
n

n−1∑
i=0

γ(θ�Zi�Zi+1)�

where

γ(θ�x� y)= g(θ�x� y)− Aθg
(θ�x)(y)

λ(θ� y)
− g(θ�x�x)�

Assuming the positive recurrence of X and technical conditions pro-
vided below, the sample moment Γn(θ) converges with n to its population
counterpart almost surely, uniformly in the parameter θ. From (1.2), in
particular, Γn(θ

∗) → 0 almost surely. This suggests stacking together some
number m ≥ d = dim(Θ) of such moment conditions, so that Γn takes values
in R

m. Then, under identification conditions, the parameter θn that minimizes
‖Γn(θ)‖ converges to θ∗. (Here, we could take ‖ · ‖ to be the usual Euclidean
norm, but for reasons of efficiency some other norm that may depend on the
data is often chosen.) This is standard for GMM estimation (Hansen (1982)).
Efficiency and identification are influenced by the number and choice of differ-
ent such test functions g, by the use of instrumental variables, and by suitable
“weighting” of different moment conditions, as explained in Appendix B. In
principle, maximum likelihood estimation (MLE) is included as a special case,
but may be computationally intractable. In such cases, it may be reasonable to
use moment conditions based on the first-order conditions for MLE associated
with a related model for which MLE is tractable. We do not, however, have any
theory showing that this would achieve “near efficiency” if the related model
is “sufficiently near.”

Section 2 gives some motivation for our approach. Section 3 provides a more
careful problem statement and defines our class of estimators. Section 4 shows
that there exist test functions that identify the “true” parameter. Section 5 sum-
marizes the use of our approach to estimation. Section 6 gives some illustrative
examples. Section 7 discusses some alternative formulations for random sam-
pling times, including subordination to “market time,” particularly with an eye
toward financial time series. Appendices A–E contain proofs and supporting
technical results.
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2. MOTIVATION AND ALTERNATIVE APPROACHES

This section is an informal introduction to our approach, and offers some
comparison with other approaches.

We are partly motivated by the computational difficulties associated with tra-
ditional moment conditions that are based on deterministic sampling times.2
In this previous work, the general idea is to obtain moment conditions for in-
ference based on some function f :Θ×S×S → R

m, for some m ≥ d, such that
h :Θ× S → R

m is well defined by

h(θ�x)=Eθ
x[f (θ�x�Z1)]�(2.1)

where Eθ
x denotes expectation under the assumption that X has infinitesimal

generator Aθ and initial condition x. One then considers an estimator θn that
minimizes a sample-moment criterion such as∥∥∥∥∥

n−1∑
i=0

f (θ�Zi�Zi+1)− h(θ�Zi)

∥∥∥∥∥�(2.2)

A difficulty with this traditional approach is that h(θ� ·) is typically difficult
to compute from (2.1), whether or not T1 is a random time. We now consider
this computational issue.

Under the model with parameter θ, the density p(·) of T1 conditional
on {X(t) : t ≥ 0} is that of a Poisson arrival time with time-varying intensity
λ(θ�X(t)) (Brémaud (1981)), so that

p(t)= exp
(∫ t

0
−λ(θ�X(s))ds

)
λ(θ�X(t))� t ≥ 0�

The definition (2.1) of h and the law of iterated expectations then imply that

h(θ�x) = Eθ
x

[
Eθ

x

(
f (θ�x�X(T1))|{X(t) : t ≥ 0})](2.3)

= Eθ
x

[∫ ∞

0
p(t)f (θ�x�X(t))dt

]

= Eθ
x

[∫ ∞

0
exp

(∫ t

0
−λ(θ�X(s))ds

)

× λ(θ�X(t))f (θ�x�X(t))dt

]
�

2See, for example, Bibby and Sorensen (1995, 1997), Broze, Scaillet, and Zakoïan (1998),
Clement (1995), Gallant and Long (1997), Gallant and Tauchen (1996, 1997), He (1990), Kessler
(1996, 1997, 2000), Kessler and Sorensen (1999), and Stanton (1997).
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Provided technical conditions are satisfied, it follows that h(θ�x)= g(θ�x�x),
where g :Θ× S × S → R

m solves

λ(θ� y)g(θ�x� y)−Aθg
(θ�x)(y)= λ(θ� y)f (θ�x� y)�(2.4)

(We apply Aθ to R
m-valued functions, component-wise.) For the case of con-

stant λ, (2.4) follows from the fact that g(θ�x� ·) is seen from (2.3) to be the
λ-potential of λf (θ�x� ·). (See Ethier and Kurtz (1986, Proposition 2.1, p. 10).)
More generally, (2.4) is established later in Proposition 3.

For example, if X is a diffusion process, then (2.3) is the probabilistic
“Feynman–Kac” solution of the elliptic partial differential equation (PDE)
(2.4). In this case, X satisfies a stochastic differential equation of the form

dX(t)= µ(θ∗�X(t))dt + σ(θ∗�X(t))dBt�(2.5)

where B is a standard Brownian motion in R
k for some integer k ≥ 1, and

where µ and σ are measurable functions on Θ× R
k into R

k and R
k×k, respec-

tively, such that there is a unique (strong) solution3 to (2.5) for each θ in Θ
and each initial condition x in the state space S ⊂ R

k. With (2.5) and any twice
continuously differentiable G :S → R such that AθG is well defined,

AθG(x) = ∂xG(x)µ(θ�x)+ 1
2

trace
[
∂2
xxG(x)σ(θ�x)σ(θ�x)	]

�(2.6)

The PDE (2.4) for this generator Aθ could typically be solved numerically,
say by finite-difference methods, except for special cases that admit explicit
solutions. The computational burden of numerical solutions to (2.4), however,
is an impediment. In any case, this introduces a source of approximation that,
while potentially negligible with a sufficient computational budget, is difficult
to treat theoretically.

An alternative numerical approach is Monte Carlo simulation of X , us-
ing the distribution associated with θ, for each candidate parameter θ. In
some cases, one can directly simulate from the distribution of X(T1) = Z1

given X(0). Because Z1�Z2� � � � is a discrete-time time-homogeneous Markov
process, moment conditions developed in this fashion amount to simulated-
method-of-moments estimation. (See Duffie and Singleton (1993) or Ingram
and Lee (1991).) If one assumes, for example, that λ is constant, then in or-
der to simulate X(Ti+1) given X(Ti) it would be enough to simulate Ti+1 − Ti

with the exponential (λ) density, and then to simulate the outcome of the
increment of X associated with a deterministic time period whose length is
the outcome of Ti+1 − Ti. For related econometric methods, see Corradi and
Swanson (2001), Gallant and Tauchen (1996, 1997), and Gourieroux, Monfort,

3For sufficient technical conditions, see, for example, Karatzas and Shreve (1988). It is enough
that µ and σ are Lipschitz with respect to x.
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and Renault (1993). Simulation with a stochastic arrival intensity driven by X
is outlined in Section 7. For cases in which simulation directly from the distrib-
ution of the increments of X is unavailable, one could simulate a discrete-time
approximation of X . For example, the Euler approximation of a stochastic dif-
ferential equation, or the approximations of Milshtein (1978, 1985), have weak
convergence properties that have been characterized and extended.4 Simu-
lated method-of-moments estimation has been based on the assumption that
the approximation error associated with time discretization is negligible, at
least asymptotically, as the length of a time increment shrinks to zero. (See,
for example, Clement (1995), Gallant and Long (1997), Gallant and Tauchen
(1996, 1997), Lesne and Renault (1995).)

Even simulation based on the exact probability distribution of increments
of X involves loss of efficiency over explicitly given moments, and an associ-
ated computational burden. With time discretization, one is also faced with
the theoretical issue of joint convergence, with both discretization interval and
sample size, that is uniform over the parameter space.

Yet another computational alternative, proposed by Stanton (1997) and
Aït-Sahalia (2002), for deterministic observation times, is to approximate the
transition operator that maps f to h defined by (2.1) through an analytic expan-
sion of the infinitesimal generator A. This is relatively more effective for small
time periods, and provides straightforward approximate nonparametric esti-
mators for the drift and diffusion functions associated with stochastic differ-
ential equations. In another nonparametric estimation approach, Aït-Sahalia
(1996) uses a mixed procedure involving transition moment conditions for a
parameterized drift function, as well as a nonparametric estimator for the
diffusion in terms of the estimated drift and estimated stationary density of
the process.

Our approach is to fix some judiciously chosen test function g :Θ × S ×
S → R

m such that Aθg
(θ�x) is well defined, and only then to define f via (2.4).

That is, we let

f (θ�x� y)= g(θ�x� y)− Aθg
(θ�x)(y)

λ(θ� y)
� (θ�x� y) ∈ Θ× S × S�(2.7)

Proposition 3, to follow, gives technical conditions under which

g(θ�x�x)=Eθ
x[f (θ�x�Z1)]�(2.8)

We emphasize that, by first selecting g and only then evaluating f from (2.7),
we avoid the difficult numerical step of computing Eθ

x[f (θ�x�Z1)]. Applying

4See Bally and Talav (1996), Duffie and Glynn (1995), Klöden and Platen (1992), Protter and
Talay (1997), and Talay and Tubaro (1990).
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the law of iterated expectations to (2.8), we can therefore base our estimating
equations on the moment condition

Eπ[f (θ∗�Zi�Zi+1)− g(θ∗�Zi�Zi)] = 0�(2.9)

where π is the invariant probability measure for {Z1�Z2� � � � }, to be established
in Proposition 3 under recurrence conditions on X .

Fixing a test function g, our estimator θn for θ∗ given {Z0� � � � �Zn} is an ele-
ment of Θ that minimizes the norm (possibly after applying a weighting matrix)
of

Γn(θ)= 1
n

n−1∑
i=0

γ(θ�Zi�Zi+1)�(2.10)

where γ :Θ× S × S → R
m is defined by

γ(θ�x� y)= f (θ�x� y)− g(θ�x�x)�(2.11)

Appendix B offers a typical extension with instrumental variables based on
lagged values of Zi. We are exploiting the fact that, under stationarity condi-
tions given in Proposition 3,

lim
n
Γn(θ

∗)=Eπ[γ(θ∗�Zi�Zi+1)] = 0 a.s.(2.12)

A comparison of the estimator proposed here with that of Hansen and
Scheinkman (1995) is provided in Appendix E.

3. BASIC MOMENT CONDITION

We now give a more complete statement of the econometric setting and jus-
tification of our class of moment conditions.

3.1. Setup: Time-Homogeneous Markov Processes

The following definitions are typically found in any basic source treating
continuous-parameter Markov processes. (See, for example, Dellacherie and
Meyer (1988), Ethier and Kurtz (1986), Meyer (1966), and Sigman (1990).)

We fix a probability space (Ω�F�P) and a filtration {Ft : t ≥ 0} of
sub-σ-algebras of F satisfying the usual conditions.5 For our purposes, a state
process X is defined to be a progressively measurable6 time-homogeneous
Harris-recurrent Markov process valued in a complete separable metric

5See, for example, Ethier and Kurtz (1986) for technical definitions not given here.
6For progressive measurability, it is enough that X has right- or left-continuous sample paths.
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space S, with transition function P :S × [0�∞) × B(S) → [0�1], where B(S)
denotes the Borel subsets of S. In particular, for any t and u ≥ 0, and any
measurable subset B of the state space, the Ft -conditional probability that
X(t + u) is in B is P(X(t)�u�B). We let Px denote the associated distribution
of the sample paths of X determined by7 initial condition x.

Because of its Harris-recurrence, X has a unique (up to constant multiples)
nontrivial σ-finite invariant measure η, with the property that η(B) > 0 if and
only if, for any x in S,

Px

(∫ ∞

0
I(X(t) ∈ B)dt = +∞

)
= 1�

where I(·) denotes the indicator function. We let L be the space of bounded
measurable f :S → R, endowed with the norm ‖ · ‖ defined by

‖f‖ = η− ess sup
x∈S

|f (x)|�

This implies that we equate two functions in L if they agree almost everywhere
with respect to the invariant measure of X . The transition function P has a
transition semi-group T = {T (t) :L → L : t ≥ 0} defined by

[T (t)f ](x)=Ex

[
f (X(t))

] =
∫
S

f (y)P(x� t� dy)�

where Ex denotes expectation with respect to Px. We always assume that
{T (t) : t ≥ 0} is strongly continuous.8

The generator A of the semi-group {T (t) : t ≥ 0} is defined at some g in L if
Ag is well defined in L by

Ag(x)= lim
t↓0

[T (t)g](x)− g(x)

t
� x ∈ S�

The set of such g is the domain of A, denoted D(A). In some applications, we
might consider Ag, defined by (1.1), even if g or Ag are not in L, and treat
integrability as a separate issue.

7For each probability measure ν on S (endowed with the σ-algebra of its Borel sets), the
transition function P determines a unique probability distribution, denoted Pν , on the space S[0�∞)

of sample paths of X , endowed with the product σ-algebra, such that the distribution of X(0)
under Pν is ν. See Ethier and Kurtz (1986, p. 157). For any given x in S, we let Px denote the
distribution Pν for the case of ν = δx, the Dirac measure at x.

8Strong continuity means that for each bounded measurable f :S → R, we have
limt→0 ‖T (t)f − f‖ = 0. Hansen and Scheinkman (1995) propose, for the domain of T , the space
of functions that are square-integrable with respect to η. They establish the analogous notion of
strong continuity under weak conditions. A similar approach could be used here.
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Given a constant ρ ∈ (0�∞), the ρ-resolvent operator Uρ :L → L of X is
defined by

[Uρf ](x)=Ex

[∫ ∞

0
e−ρtf (X(t))dt

]
=

∫ ∞

0
e−ρt[T (t)f ](x)dt�

With no further assumptions, for any f in L, we have Uρf in D(A) and

f = (ρI −A)[Uρf ]�(3.1)

where I is the identity operator. (See Ethier and Kurtz (1986, Proposi-
tion 1.2.1).) For constant observation arrival intensity, (3.1) justifies our basic
moment condition (2.8), using the calculation (2.3).

For some integer d ≥ 1, a measurable set Θ ⊂ R
d parameterizes a family

{Pθ :θ ∈ Θ} of transition functions on the same state space S, with strongly con-
tinuous semi-groups. For each θ in Θ, we let Pθ

x�E
θ
x�T θ�Uθ

ρ�Aθ� and D(Aθ) be
defined in relation to Pθ just as Px�Ex�T �Uρ�A� and D(A) were defined9 in
relation to P . The “true” parameter is some θ∗ in Θ, so that Pθ∗

x = Px, Eθ∗
x =Ex�

and so on.

3.2. The Data-Generating Process

For our purposes, a data-generating process is a pair (X�N) consisting of
a state process X and a counting process N whose ith jump time Ti =
inf{t :N(t) = i} is the ith time at which X is sampled. Provisionally, with a
generalization adopted below, we take it that N is a doubly-stochastic point
process driven by X . (See, for example, Daley and Vere-Jones (1988).) That
is, conditional on {X(t) : t ≥ 0}, N has the law of a Poisson process with time-
varying intensity {λ(X(t)) : t ≥ 0}, for some measurable λ :S → (0�∞).

For each parameter θ, we let λ(θ� ·) :S → (0�∞) denote the intensity asso-
ciated with θ. In particular, λ(·) = λ(θ∗� ·). The data available for inference
are {Z0�Z1�Z2� � � � }, where Zi = X(Ti), with T0 = 0. We always take it that
there is a unique parameter vector θ associated with each generator-intensity
pair (Aθ�λ(θ� · )), because the probability distribution of a data-generating
process (X�N) is uniquely determined by its generator-intensity pair (once
the distribution of the initial state X0 is fixed).

If the sampling times T0�T1�T2� � � � � Tn are observable, and thus available for
purposes of forming moment conditions, we can assume without loss of gen-
erality that the inter-sampling times are “part of” the state vector in the sense
of the above definition. That is, we can take it that X(t) = (Y(t)� t − T(t)),
where T(t) = t − maxi{Ti : t > Ti}, that Y is a state process with some gener-
ator AY and state space SY , and that the point process N is doubly stochastic

9The fact that D(Aθ) is treated as a subset of L, in which two functions are the same if equal
η-almost everywhere, is a limitation of this modeling approach that can perhaps be relaxed.
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driven by Y , with an intensity λY(Yt). Then, for X , we take the state space
S = SY × (0�∞) and the generator A defined by

Ag(y� t)= [AYg(·� t)](y)+ λY(y)[g(y�0)− g(y� t)] + ∂

∂t
g(y� t)�

We thus use the following definitions to distinguish cases in which sampling
times are observable or not, for purposes of inference.

DEFINITION 1: For a given data-generating process (X�N), sampling times
are not observable if N is a doubly-stochastic point process driven by X with in-
tensity {λ(Xt) : t ≥ 0}. Sampling times are observable if there is a state process
Y such that Xt = (Yt� t − T(t)), and N is doubly stochastic driven by Y .

If sampling times are observable, then, by definition, the intensity
λ(Yt� t − T(t)) does not depend on its second argument. These definitions
allow us to treat most of the theory with results that apply whether or not
sampling times are observable.

3.3. The Law of Large Numbers

In order to obtain the effect of the law of large numbers for our se-
quence of observations of X over time, we require X to be positive-recurrent,
so that its invariant measure η may be taken to be a probability measure.
Sufficient conditions for this can be based, for example, on the conditions of
Meyn and Tweedie (1994) for geometric ergodicity. For the case of diffusions,
Has’minskǐi (1980) has sufficient conditions.

We are concerned with the stationary behavior of the observed discrete-time
process Z = {Z0�Z1�Z2� � � � }. Proofs of the following are found in Appendix A.

PROPOSITION 1: Suppose that X is Harris-recurrent with invariant probability
measure η. If

∫
S
λ(x)η(dx) > 0, then Z is a Harris-recurrent Markov chain in

discrete time.

PROPOSITION 2: Suppose X is Harris-recurrent with invariant probability mea-
sure η and 0 <

∫
S
λ(x)η(dx) <∞. Then Z is a Harris-recurrent Markov process

in discrete time with invariant probability measure π defined by

π(B)=
∫
B
λ(x)η(dx)∫

S
λ(x)η(dx)

�

In order to address the case in which sampling times are observable, we
also establish Harris-recurrence for the augmented state process (Z�τ) =
{(Zi� τi) : i ≥ 0}, with τi = Ti − Ti−1 and τ0 = 0.
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COROLLARY 1: Suppose the conditions of Proposition 2 apply. Then (Z�τ) is
a Harris-recurrent Markov chain in discrete time, with invariant probability mea-
sure π̂ defined by π̂(B) = Eπ(I[(Z1� τ1) ∈ B]), where I[·] is the event-indicator
function. In particular, for any measurable f :S × [0�∞) → R that is integrable
with respect to π̂, and for any x in S,

lim
n→∞

1
n

n∑
i=1

f (Zi� τi)=Eπ

[
f (X(T1)�T1)

]
Px-a.s.

3.4. Generic Moment Condition

Our basic moment condition (2.12) is a consequence of the following result.
The proof of the first assertion is in Appendix A; the remainder then follows
from Corollary 1. We call a measurable g :Θ × S × S → R

m a test function if,
for each x and θ, we have g(θ�x) = g(θ�x� ·) in D(Aθ) and if f (θ�x�Z1), defined
by (2.7), is integrable with respect to Pθ

x .

PROPOSITION 3: Let g be a test function. Then, for each θ, we have
g(θ�x�x) = Ex[f (θ�x�Z1)]. Suppose, moreover, that the conditions of Proposi-
tion 2 apply. Let γ(θ�x� y)= g(θ�x� y)−f (θ�x� y). If γ(θ�Zi�Zi+1) is integrable
with respect to π, then, for any x in S,

lim
n→∞

1
n

n−1∑
i=0

γ(θ�Zi�Zi+1)=Eπ[γ(θ�Z1�Z2)] Px-a.s.

4. IDENTIFICATION

Following Definition 3.10 of Gourieroux and Monfort (1995), we describe
our model as “identified” if there is a one-to-one mapping between the para-
meter θ and the probability distribution of the data {Z0�Z1�Z2� � � � }. Identifi-
cation may be impossible if the observation times are not observable and the
sampling intensity λ(θ�Xt) depends nontrivially on the unknown parameter
vector θ. For example, suppose that Y is a Brownian motion with drift para-
meter µ and variance parameter σ 2, and suppose that the sampling intensity is
an unknown constant λ(θ�x)= ρ ∈ (0�∞). The parameter vector may then be
taken to be θ = (µ�σ 2�ρ). From Definition 1, to say that the sampling times
are not observable means that we observe Zi = Y(Ti), but not Ti. In this case,
the model is clearly not identified, for (from the scaling property of Brownian
motion) the distribution of {Y(T1)�Y(T2)� � � � } is the same for all parameter
vectors in a set of the form {(kµ�kσ 2�kρ) :k ∈ (0�∞)}. For instance, it would
be impossible to tell from observing the data if the parameters were doubled.
On the other hand, as we shall show, it is possible (quite generally) to identify
the model if the sampling times are observable.
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It is not immediately obvious whether a model that admits identification can
actually be identified by using moment conditions of the test-function type that
we propose. We show, however, that this is indeed the case. That is, suppose
ϕ �= θ∗. The two propositions in this section show that, provided the sampling
times are observable or the intensity function λ(θ� ·) is known (that is, does not
depend on θ), then there is a test function g such that the associated moment
condition Γn(θ

∗) converges to 0 (under the usual technical conditions) as re-
quired by (2.12), but Γn(ϕ) converges to something nonzero. That is, we can
tell the two models apart with a moment condition of the test-function type. We
do not, however, propose a recipe for finding such a test function; we merely
show that it exists. This is not an unusual shortcoming of GMM estimation
theory, which rarely provides a practical method for the selection of moment
conditions. In practice, GMM moment conditions are typically ad hoc.

The fact that our moment conditions can distinguish, in this sense, between
distinct underlying continuous-time models depends in part on the random-
ness of the sampling times. The well known “aliasing problem” implies that
the same probability distribution may apply to observations at fixed determin-
istic time intervals of two distinct continuous-time Markov processes, despite
the fact that the two processes have different probability transition functions in
continuous-time.10 In our setting, the aliasing problem is avoided because ran-
dom sampling at an intensity effectively captures information regarding tran-
sition behavior over arbitrarily short time intervals.11

DEFINITION 2: The model is identified by test functions if, whenever ϕ �= θ∗,
there is some test function g satisfying

Eπ[f (θ∗�Zi�Zi+1)− g(θ∗�Zi�Zi+1)] = 0(4.1)

and

Eπ[f (ϕ�Zi�Zi+1)− g(ϕ�Zi�Zi+1)]> 0�(4.2)

where f is defined by (2.7).

Under the recurrence conditions of Proposition 3, we could equally well have
replaced (4.1) and (4.2) with their asymptotic sample counterparts.

PROPOSITION 4: Suppose λ is bounded away from zero. If λ(θ� ·) does not
depend on θ� then the model is identified by test functions.

10See Bergstrom (1990), Harvey and Stock (1985), Phillips (1973), and Robinson (1976) for
Gaussian vector-autoregressive processes, and Banon (1978) for more general aliasing issues.

11Masry (1983) and Solo (1983) have previously noted that random sampling times may defeat
the aliasing problem.
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The condition that λ is bounded away from zero is used only to ensure that
a strongly continuous semi-group is associated with the “time-changed” gener-
ator A/λ. Weaker technical conditions would suffice.

The idea of the proof is roughly that, under technical conditions, for any
fixed ρ ∈ (0�1), two state processes have the same generator if and only if they
have the same ρ-resolvent operators. That is, A = Aϕ if and only if Uρ = Uϕ

ρ .
This would be enough if the observation arrival intensity function λ is some
constant, say ρ, for in this case g(θ� ·)= ρ[Uθ

ρf (θ� ·)]. We can, however, reduce
it to the case of constant arrival intensity by a random time change. A complete
proof is found in Appendix A.

For the general case of an arrival intensity λ(θ�X(t)) that depends on θ, we
consider the “speed-corrected” generators

B �= A
λ(θ∗� ·) and Bϕ �= Aϕ

λ(ϕ� ·) �(4.3)

If the sampling times are not observable, it may be that any difference be-
tween the two underlying generators A and Aϕ is precisely offset by the as-
sociated arrival intensities, in that B = Bϕ. For example, if A = 2Aϕ and
λ(θ∗� x)= 2λ(ϕ�x), then the distribution of Z1�Z2� � � � could be identical un-
der Px and under Pϕ

x , although we will collect data at twice the average
speed that we would under the “incorrect” generator Aϕ. Without use of the
sampling-time data, there might be no way to distinguish whether A or Aϕ is
the correct generator.

PROPOSITION 5: Suppose, for each θ, that λ(θ� ·) is bounded away from zero.
If sampling times are observable, then the model is identified by test functions.

5. ESTIMATION

With the results at hand, we have reduced the problem of estimation to that
of a relatively standard GMM setting. The data {Z0�Z1�Z2� � � � } form a Harris-
recurrent Markov chain under the technical conditions of Proposition 2, for
the case without observation of sampling times, and by its Corollary 1, for the
case with observation of sampling times. Thus, under integrability, sample mo-
ments converge to their population counterparts (Proposition 3), and it is a
question of selecting moments. The test-function moments of our approach
can in principle identify the model provided the sampling times are observable
(Proposition 5), or if the sampling intensity function is known (Proposition 4).
At this point, one can bring in standard GMM theory (Hansen (1982)) for con-
sistency and asymptotic normality of the estimators. Because GMM estimation
theory is relatively well known, we relegate typical conditions for consistency
and asymptotic normality, as well as the use of instrumental variables, to Ap-
pendix B. Some of the integrability conditions for this theory are treated for
our setting in Appendix D.
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Under technical conditions, maximum likelihood estimation (MLE) is in-
cluded as a special case of our estimation approach, as shown in Appendix C,
by using a special test function g(·), which solves

Aθg(θ�x� y)− λ(θ�x)g(θ�x� y)− fX(θ�x� y)= 0�(5.1)

where fX is defined by Appendix equation (C.1) in terms of the log-likelihood
gradient. Computation of this likelihood gradient, however, is often difficult in
practice.12 On the other hand, there may be a Markov process W on the same
state space S whose dynamics are “similar” to those of X , but parameterized by
a different family {AW

θ :θ ∈ Θ} of generators, for which one can more easily (or
explicitly) compute the log-likelihood gradient fW . This is related to the idea of
“quasi-maximum-likelihood estimation” of Gallant and Tauchen (1996, 1997).

In our setting, for example, it would be useful to choose the process W so
that we can solve for gW , the analog of (5.1),

AW
θ gW (θ�x� y)− λ(θ�x)gW (θ�x� y)− fW (θ�x� y)= 0�

With this, one can evaluate

fXW (θ�x� y)= gW (θ�x� y)− Aθg
(θ�x)
W (y)

λ(θ� y)
�

A moment condition for estimation of X is obtained from the fact that

Eπ[gW (θ
∗�Zi�Zi+1)− fXW (θ

∗�Zi�Zi+1)] = 0�

This moment condition may (or, perhaps, may not) capture some of the bene-
fits of maximum likelihood estimation, to the extent that the transition behav-
iors of W and X are indeed similar. We provide an illustration of this concept
as Example 6, at the end of the next section. One can of course exploit instru-
mental variables with this approach, and append (possibly over-identifying)
restrictions based on other moment conditions.

Unfortunately, we have no theory providing conditions under which the test
functions associated with MLE for a “nearby” model provide “near efficiency”
when used as test functions for the actual target model.

6. EXAMPLES

A few examples are considered in this section. In all cases, twice-conti-
nuously differentiable functions with compact support can be considered as
test functions.

12See, for example, Chuang (1997), Durham and Gallant (2002), and Pedersen (1995a, 1995b).



CONTINUOUS-TIME MARKOV PROCESSES 1787

EXAMPLE 1 —Continuous-Time Markov Chains: For finite or countably in-
finite S, under quite general conditions, we have

Aθg(i)=
∑
j

R(θ)ij[g(j)− g(i)]�

where R(θ)ij is the intensity of transition from state i to state j for parameter θ.

EXAMPLE 2 —Diffusions Without Boundaries: For θ ∈ Θ, suppose that
X satisfies the SDE (2.5), and that Aθ is specified by (2.6) on the subset of
twice-continuously differentiable functions in its domain. One cannot identify
the “speed measure” of X without observation times. It would be sufficient for
identification to choose an instrumental variable of the form

∂

∂x
f (θ�x)

�=H(θ�x) such that Eπ(θ)

[
H(θ�X(t))2

]
<∞�

EXAMPLE 3 —Jump Diffusions: Consider a jump diffusion whose genera-
tor Aθ takes the form (for smooth g)

Aθg(x)=Aµ�σg(x)+
∫
S

[g(x+ y)− g(x)]ν(θ�x�dy)�

where Aµ�σ is the diffusion generator defined by the right-hand side of (2.6),
and ν(θ�x� ·) is the jump measure, which controls both the arrival intensities
and probability distribution of jumps of various types.13 (This is not the most
general form of jump diffusion.) If the Laplace transform of the jump distribu-
tion ν(θ�x� ·) is known, it may be useful to consider a test function g of the form
g(x)= eα·x, for some coefficient vector α ∈ R

k. Barndorff-Nielsen, Jensen, and
Sorensen (1998) characterize the stationary distributions of special cases of
Ornstein–Uhlenbeck processes driven by homogeneous Lévy processes. This
class generalizes the usual Ornstein–Uhlenbeck process and may be suitable
for applications in finance.

EXAMPLE 4 —Diffusion with Reflection: For certain applications, such as
the former European Exchange Rate Mechanism (see, for example, Krugman
(1991) and Froot and Obstfeld (1991)), the case of a diffusion process with re-
flection has been considered. To illustrate, suppose that X is a one-dimensional
Brownian motion “reflecting” at zero, with constant drift and variance coeffi-
cients µ and σ , respectively. That is,

dX(t)= µdt + σ dBt + dUt�

13See Gihman and Skorohod (1972) and Protter (1990).
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where B is a standard Brownian motion and U increases only “when”X(t) = 0,
so that X is nonnegative. Then, for twice-continuously differentiable G
in D(A) with G′(0)= 0, Ito’s formula implies that

AG(x)=G′(x)µ+ σ 2

2
G′′(x)�

supplying a family of useful test functions. A similar approach applies to more
general stochastic differential equations with reflection (or other boundary
conditions, for that matter). For approximate computation of the likelihood
function, see Aït-Sahalia (2002) and Chuang (1997).

EXAMPLE 5 —MLE Without Observation of Sampling Times: Suppose that
we observe a Brownian motion with variance parameter σ 2 > 0 at the event
times T1�T2� � � � of an independent Poisson process with rate λ. In other words,
we observe (Zn :n ≥ 0), where Zn = X(Tn) = σB(Tn), for a standard Brown-
ian motion B, with a goal of estimating σ 2. Then, the likelihood function for
{Z0� � � � �Zn} is

n−1∏
i=0

p(σ�Zi�Zi+1)�

where

p(σ�x� y)=
∫ ∞

0
λe−λt 1√

2πσ 2t
exp

(
−(y − x)2

2σ 2t

)
dt

=
√
λ

2
1
σ

exp
(

−|y − x|
√

2λ
σ

)
�

The MLE first-order condition from which σ 2 can be estimated is therefore

n−1∑
i=0

∂

∂σ
logp(σ�Zi�Zi+1)

∣∣∣∣
σ=σn

=
n−1∑
i=0

f (σn�X(Ti)�X(Ti+1))= 0�(6.1)

where

f (σ�x� y)= −1
σ

+ |x− y|
√

2λ
σ 2

�

In order to establish that MLE can be recovered as a special case of our
framework, we therefore want a function gx(·) for which

(Agx)(y)− λgx(y)= −1
σ

+ |x− y|
√

2λ
σ 2

�
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where A is the infinitesimal generator associated with Brownian motion hav-
ing variance parameter σ 2, namely A = (σ 2/2)d2/dx2. In order that the solu-
tion gx can be represented as the expectation

gx(y)= −1
λ

Ey

[
f (σ�x�X(T1))

]
�

gx and g′
x must be continuous at y = x, and gx(·) must grow slowly enough at

infinity in order that appropriate martingale arguments can be invoked. Subject
to these boundary conditions,

gx(y)= 1
σλ

− 1
σλ

exp
(

−
√

2λ
σ

|y − x|
)

−
√

2/λ
σ 2

|y − x|�

As expected, gx(x) = 0, so the moment condition (2.9) does indeed therefore
coincide with the maximum likelihood estimating equation.

EXAMPLE 6 —Using MLE Test Functions from an Auxiliary Model: Now,
suppose that X is an Ornstein–Uhlenbeck process, with dXt = −µXt dt +
σ dBt , for a standard Brownian motion B, and that X is observed at the event
times (Tn :n ≥ 0) of an independent Poisson process with rate λ > 0. If the
mean-reversion rate µ is small, X has a transition distribution close to that of
Brownian motion, at least perhaps over time scales of the order of the Poisson
inter-event times. In Example 5, we computed the function gx(·) that corre-
sponds to maximum likelihood estimation in the Brownian setting. If we use
this test function gx in the Ornstein–Uhlenbeck context, then we obtain the
estimating equation

0 =
n−1∑
i=0

[
λ− |X(Ti)−X(Ti+1)|

√
2
λ3/2

σ̂n

−µX(Ti+1)

√
2λ
σ̂n

(
exp

(
−

√
2λ
σ̂n

(
X(Ti+1)−X(Ti − 1)

) − 1
)

× sign[X(Ti+1)−X(Ti)]
)]

�

from which the estimator σ̂ 2
n for the parameter σ 2 can be compared.

7. DATA ARRIVAL

This section describes some issues related to observation times and incom-
pletely observed state information.
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7.1. Market-Time Subordination

It has been noted that transactions frequency and volume are related to
the distribution of asset returns. One may think in terms of a measure of
“market time,” differing from calendar time, under which returns are sta-
tionary. For example, one’s intuition may be that trading frequency (or vol-
ume) is higher during periods of faster information arrival. Mandelbrot and
Taylor (1967) and Clark (1973) have proposed influential subordination mod-
els, based on a “random time change” under which stationarity applies.
Recent work includes that of Conley, Hansen, Luttmer, and Scheinkman
(1997), Geman, Madan, and Yor (2001), Ghysels and Jasiak (1994), Ghysels,
Gourerioux, and Jasiak (1997, 2004), Gourieroux, Jasiak, and Fol (1999),
Jasiak (1998), Redekop (1995), and Russel and Engle (1998).

In that spirit, we could suppose that the arrival intensity of data is con-
trolled in part by a strictly increasing continuous adapted random market-
time process �, with �(0) = 0, so that �(t) represents the amount of market
time that has transpired after t units of real time. The underlying state process
X = {X(t) : t ≥ 0}, in real time t, can be viewed in market time as the process Y
defined by Y(s) = X(�−1(s)). Then, the number of data points by real time t
is N(�(t)), where {N(s) : s ≥ 0} is assumed to be a doubly-stochastic counting
process driven by Y , with market-time intensity {λ(Y(s)) : s ≥ 0}. (Our base
case is equivalent to �(t)= t.) In this case, we could also suppose that the state
process Y , measured in market time, is a time-homogeneous state process, in
the sense assumed in our basic results.

7.2. Observation at Fixed Deterministic Time Intervals

In the spirit of Conley, Hansen, Luttmer, and Scheinkman (1997), we might
even rely on the notion of random time subordination to allow for real-time
sampling at fixed intervals (say, hourly).

Specifically, suppose that we observe the underlying state process X at inte-
ger real times 1�2� � � � � We let Ui = �(i)−�(i−1) denote the amount of market
time that passes between real times i − 1 and i. It is conventional to measure
market time via some observable process, such as volume of trade. We have
some reservations about this interpretation, although one can certainly take it
as a definition of market time. We proceed in any case with the assumption
that Ui is observable, a common assumption in the market-time literature, and
defer a discussion of the treatment of unobserved state variables until later in
this section.

We let Y(s) = X(�−1(s)) define the state process, in market time, with gen-
erator A. Conditional on the state path Y = {Y(s) : s ≥ 0}, we suppose, for each
integer i, that the amount Ui = �(i) − �(i − 1) of market time that transpires
between real times i − 1 and i has a density pi(·|Y) : (0�∞) → (0�∞). The
assumption that this conditional density is strictly positive implies that there is
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no upper bound on the expected rate of passage of market time, per unit of
real time. Then we can define the conditional hazard rate hi for Ui given Y by

hi(u)= pi(u|Y)

P(Ui > u|Y)
� u ∈ (0�∞)�(7.1)

It is not unreasonable in a stationary setting to suppose that hi(u) depends
only on the amount u of market time that has passed since the last observa-
tion and on the current state Y(�(i − 1)+ u), so that we could define a fixed
λ :S × (0�∞)→ (0�∞) by λ(Y(�(i− 1)+u)�u)= hi(u). It follows from (7.1)
that, for a given u > 0, conditional on Y and Ui ≥ u, the density of Ui at any
s > u is

exp
(

−
∫ s

u

λ(Yr� r)dr

)
λ(Ys� s)�(7.2)

For a given bounded measurable f :S × (0�∞)→ R, if we let

g
(
Y(�(i− 1)+ u)�u

) =E
[
f
(
Y(�(i))�Ui

)|Y(�(i− 1)+ u)�Ui ≥ u
]
�

then it follows from iterated expectations and the form (7.2) of the conditional
density that

g
(
Y(�(i− 1)+ u)�u

)
=E

[∫ ∞

u

δu�sλ(Ys� s)f (Y(s)� s)ds
∣∣∣Y(�(i− 1)+ u)

]
�

where δu�s = exp(− ∫ s

u
λ(Yr� r)dr). Therefore, by the same arguments used in

Appendix A,

Ag(y�u)+ ∂g(y�u)

∂u
− λ(y�u)g(y�u)= f (y�u)λ(y�u)�(7.3)

for (y�u) in S × (0�∞)�
Now, if we let Zi = (Xi�Ui), then Z = {Z1�Z2� � � � } is a time-homogeneous

Markov chain. Following our established line of attack, for a given g such that
the left-hand side of (7.3) is well defined, we can use (7.3) to define f . Then,
under integrability,

g(Xi�0)=E
[
f (X(i+ 1)�Ui+1)|Xi

]
�

Under positive recurrence, this defines a moment condition that can be used
for estimation and inference, as we have shown. We omit the details.



1792 D. DUFFIE AND P. GLYNN

7.3. Latent States and Simulated Method of Moments

Clark (1973) estimates a latent-factor model, in which, effectively, one can-
not observe the market time process driving the observation point process N .
In some cases, latent state variables can be observed up to parameters, and
method-of-moments can be applied directly, with care, as in Dai and Singleton
(2000).

Simulated-method-of-moment estimators can in principle deal quite gener-
ally with latent state variables (as, for example, in Duffie and Singleton (1993)).
One would want, however, a tractable method by which to simulate data. In our
random-sampling-time setting, this can be done, in certain cases, as follows.

Let (X�N) be a data-generating process, with stochastic arrival intensity
{λ(Xt) : t ≥ 0}. We can simulate Ti+1 given X(Ti) by inverse-CDF simulation
from a uniform-[0�1] simulated random variable, using the fact that

ζ
(
t|X(Ti)

) �= P
(
Ti+1 − Ti > t|X(Ti)

)
= E

[
exp

(∫ Ti+t

Ti

−λ(Xs)ds

)∣∣∣X(Ti)

]
�

For example, in setting of affine jump diffusions, as explained by Duffie and
Kan (1996), ζ(t|x) is explicit in many cases, or easily obtained numerically by
solving an ordinary differential equation that does not depend on x.

Then, under technical regularity, the density q(·|X(Ti)�Ti+1 −Ti) of X(Ti+1)
given (X(Ti)�Ti+1) is given by

q(y|x� t)= ξ(y|x� t)λ(y� t)ζ(t|x)
ζt(t|x) �

where ξ(y|x� t) is the transition density of X and ζt is the conditional den-
sity of Ti+1 − Ti given X(Ti). This follows from Bayes’ rule and the likelihood
calculations in Appendix C.

If ξ and ζt are known explicitly, then simulated method of moments may
be computationally feasible. For example, if simulation directly from the den-
sity q(·|x� t) is intractable, one can nevertheless use importance sampling and
simulate from alternative distributions (with the same support) for which sim-
ulation is tractable. For example, in the affine jump-diffusion setting, both ζt
and the Fourier transform ξ̂(·|x� t) of ξ(·|x� t) are known analytically. We can
thus simulate X(Ti+1) from an alternative distribution with a conditional den-
sity η(·|X(Ti)�Ti+1 −Ti), and correct for use of the “wrong” density by scaling
the candidate test function by the Radon–Nikodym derivative

q(X(Ti+1)|X(Ti)�Ti+1 − Ti)

η(X(Ti+1)|X(Ti)�Ti+1 − Ti)
�
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Evaluation of ξ(X(Ti+1)|X(Ti)�Ti+1 −Ti) can be done, for example, by Fourier
transform from ξ̂(·|x� t).

7.4. Asynchronously Observed Coordinate Processes

Our approach cannot be applied directly to cases in which the state vector
is of the form X = (X(a)�X(b)), with component processes X(a) and X(b) (each
possibly multi-dimensional) that are asynchronously observed. One can treat
this with two-stage procedures if one of the component processes, say X(a), is
autonomous (that is, X(a) is a Markov process on its own). One can also treat
this problem by approximation. In Duffie and Glynn (1997), we provide some-
what more complicated results for the general case of asynchronous arrival,
relying to some degree on observation of sampling times.

Graduate School of Business, Stanford University, Stanford, CA 94305-5015,
U.S.A.; duffie@stanford.edu

and
Management Science and Engineering Dept., Stanford University, Stanford,

CA 94305, U.S.A.; glynn@leland.stanford.edu.
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APPENDIX A: PROOFS

Throughout, we treat the cases of observable and unobservable sampling times simultane-
ously by letting Q(Xt) = Xt if sampling times are not observable, and, for observable sampling
times, as defined in Section 3.2, by letting Q((Yt� t − T(t))) = Yt . Then, after conditioning on
{Q(Xt) : t ≥ 0}, the observation counting process N is Poisson with intensity {λ(Xt) : t ≥ 0}.

PROOF OF PROPOSITION 1: We must show that there is a nontrivial σ-finite reference mea-
sure η̃ on S such that if η̃(B) > 0, then, for any x in S, Px(min{n ≥ 0 :Zn ∈ B} < ∞) = 1. The
strong law of large numbers for Harris-recurrent Markov processes (see Sigman (1990)) guaran-
tees that, for any measurable B ⊂ S and any x in S,

lim
t→∞

1
t

∫ t

0
I(X(s) ∈ B)λ(X(s))ds = η̃(B)

�=
∫
B

λ(y)η(dy) Px-a.s.

Thus, whenever η̃(B) > 0, for any x in S,

Px

(∫ ∞

0
I(X(t) ∈ B)λ(X(t))dt = +∞

)
= 1�

For each x in S, however, using the assumption in Section 3.2 on the distribution of Ti ,

Px(min{n≥ 0 :Zn ∈ B} = ∞)

= Ex

[
Px

(
min{n≥ 0 :Zn ∈ B} = ∞|{Q(X(t)) : t ≥ 0})]

= Ex

[
exp

(
−

∫ ∞

0
λ(X(t))I(X(t) ∈ B)dt

)]

= 0�
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completing the proof. Q.E.D.

PROOF OF PROPOSITION 2: Suppose f :S → R is measurable, nonnegative, and bounded.
Then, for any x in S,

Ex

[
N(t)∑
i=1

f (Zi)

]
= Ex

(
Ex

[
N(t)∑
i=1

f (Zi)
∣∣∣{Q(X(t)) : t ≥ 0}

])

= Ex

[∫ t

0
f (X(s))λ(X(s))ds

]
�

Because f is nonnegative,

lim
t→∞

1
t

∫ t

0
Ex

[
f (X(s))λ(X(s))

]
ds =

∫
S

λ(y)f (y)η(dy)�

For this fact, see Sigman (1990) and Glynn and Sigman (1998). Furthermore, we can represent N
in the form N(t)= Ñ(Λ−1(t)), where Ñ is a unit-rate Poisson process independent of X and

Λ(t) =
∫ t

0
λ(X(s))ds�

We fix some x in S. By the strong law for Harris-recurrent Markov processes,

lim
t→∞

1
t
Λ(t) =

∫
S

λ(y)η(dy) Px-a.s.�

so that

lim
t→∞

1
t
Λ−1(t) = 1∫

S
λ(y)η(dy)

Px-a.s.�

and hence

lim
t→∞

1
t
N(t) =

∫
S

λ(y)η(dy) Px-a.s.

Because n= N(Tn), this ensures that

lim
n→∞

Tn

n
= κ

�= 1∫
S
λ(y)η(dy)

Px-a.s.

Now, because f is nonnegative and bounded, for any ε > 0, we have

lim
n→∞

1
n
Ex

[
n∑

i=1

f (Zi)

]

= lim
n→∞

1
n
Ex

[
N(Tn)∑
i=1

f (Zi)

]

≤ lim
n→∞

1
n
Ex

[
N(n(κ+ε))∑

i=1

f (Zi)

]
+ lim

n→∞
sup
y∈S

|f (y)|Px

(
Tn

n
≥ κ+ ε

)

= (κ+ ε)

∫
S

λ(y)f (y)η(dy)�
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using the fact that Px(Tn/n≥ κ+ ε)→ 0 as n→ ∞. Because ε was arbitrary,

lim
n→∞

1
n

n∑
i=1

Ex[f (Xi)] ≤
∫
S
λ(y)f (y)η(dy)∫
S
λ(y)η(dy)

�

Similarly, we can show that

lim
n→∞

1
n

n∑
i=1

Ex[f (Xi)] ≥
∫
S
λ(y)f (y)η(dy)∫
S
λ(y)η(dy)

�

Hence,

lim
n→∞

1
n

n∑
i=1

Ex[f (Xi)] =
∫
S
λ(y)f (y)η(dy)∫
S
λ(y)η(dy)

�

As x was chosen arbitrarily, the result follows from Glynn (1994). Q.E.D.

PROOF OF COROLLARY TO PROPOSITION 2: We note that (Z� τ) is a Markov chain, because,
for any measurable B ⊂ S × [0�∞),

P
(
(Zn+1� τn+1) ∈ B|(Z0� τ0)� � � � � (Znτn)

) = P((Zn+1� τn+1) ∈ B|Zn)�

Furthermore, for f :S × [0�∞) → R bounded, measurable, and nonnegative,

lim
n→∞

1
n
Ex

[
n∑

i=1

f (Zi� τi)

]
= lim

n→∞
1
n

n∑
i=1

Ex

(
Ex[f (Zi� τi)|Zi−1]

)

= lim
n→∞

1
n

n−1∑
i=1

Ex[f̃ (Zi)]

=
∫
S
f̃ (y)λ(y)η(dy)∫
S
λ(y)η(dy)

Px-a.s.�

where f̃ (x) = Ex[f (Z1� τ1)]. Appealing to Glynn (1994), this establishes that (Z� τ) is a Harris-
recurrent Markov chain with invariant probability measure π̂ as defined, recalling that π is the
invariant measure of Z. Q.E.D.

PROOF OF PROPOSITION 3: We will show that g(θ�x�x) = Eθ
x[f (θ�x�X(T1))]. The remain-

der of the result then follows by Proposition 2, and its Corollary. It is enough to take the
case of θ= θ∗, and for some g in D(A), to let f (x) = g(x) − Ag(x)/λ(x). Assuming that
Ex[|f (X(T1))|] <∞, we need to show that g(x) = Ex[f (X(T1))].

As with (2.4),

Ex

[
f (X(T1))

] =Ex

[∫ ∞

0
λ(Xt)exp

(∫ t

0
−λ(Xs)ds

)
f (Xt)dt

]
�(A.1)

Let V be the process defined by Vt = g(X(t)). Then V is a semimartingale with dVt =
Ag(X(t))dt + dMt , where M is a martingale. (For this, see Ethier and Kurtz (1986, Proposi-
tion 1.7, p. 156).) Let Ut = exp(

∫ t

0 −λ(X(s))ds)Vt . Then, by Ito’s formula for semimartingales,

UT = U0 +
∫ T

0
−λ(X(t))Ut dt +

∫ T

0
δ0�t dVt

= g(X(0)) +
∫ T

0
−λ(X(t))δ0�t

[
g(X(t)) − Ag(X(t))

λ(X(t))

]
dt +

∫ T

0
δ0�t dMt�
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where δ0�t = exp(
∫ t

0 −λ(X(u))du). Because λ is positive, the last term is a martingale. It follows
that, for all t,

g(x) = Ex

[
UT −

∫ T

0
dUt

]

= Ex

[
δ0�T g(X(T ))

] +Ex

[∫ T

0
λ(X(t))δ0�t

[
g(X(t)) − Ag(X(t))

λ(X(t))

]
dt

]
�

From the fact that g is in L and from the condition in Proposition 2 that
∫
S
λ(x)dη(x) > 0,

we have limt→+∞
∫ t

0 λ(X(s))ds = +∞ almost surely. We can therefore let T go to infin-
ity and use dominated convergence to get g(x) = Ex[f (X(T1))] from (A.1). This completes
the proof. Q.E.D.

PROOF OF PROPOSITIONS 4 AND 5: Suppose that ϕ �= θ∗. Because, by definition, each para-
meter defines a unique generator-intensity pair, we have (A� λ(θ∗� ·)) �= (Aϕ�λ(ϕ� ·)). Because
λ(θ∗� ·) and λ(ϕ� ·) are bounded away from zero,14 B and Bϕ are generators for strongly contin-
uous contraction semi-groups.

There are two cases to consider. The first case is that with B �= Bϕ. By the Hille–Yosida
Theorem (we use only the part of it in Proposition 2.1, Ethier and Kurtz (1986, p. 10))
both I − B :D(B) → L and I − Bϕ :D(Bϕ) → L are one-to-one and onto. It follows that
(I − B)−1 :L →D(B) and (I−Bϕ)−1 :L→D(Bϕ) are not the same maps.15 Thus, there is some F
in L such that

(I − B)−1F �= (I −Bϕ)−1F�

We let G(ϕ� ·)= (I − Bϕ)−1F and G(θ∗� ·)= (I − B)−1F . For both θ = θ∗ and θ =ϕ, we have

G(θ�x)− AθG(θ�x)

λ(θ�x)
= F(x)�

Because two functions in L are the same, by definition, if they are equal η-almost surely, and
therefore π-almost surely, there is some measurable set C ⊂ S with π(C) > 0, such that

G(θ∗� x) =Ex

[
F(X(T1))

] �=G(ϕ�x) = Eϕ
x

[
F(X(T1))

]
� x ∈C�

Letting

g(θ�x� y)=
{
G(θ� y) for G(θ∗� x) >G(ϕ�x),

−G(θ� y) otherwise,

Proposition 4 follows.
Suppose the other case is true, and B∗ = B. If sampling times are observable, we can define

h :S → [0�∞) by h(Xt) = t − T(t), the time since the previous observation. Let q :S → R be
defined by q(x) = e−h(x). We can calculate that q ∈D(A) ∩D(Aϕ) and that

Aq(x) = (1 − λ(θ∗� x))q(x); Aϕq(x) = (1 − λ(ϕ�x))q(x)� x ∈ S�(A.2)

From division of the first expression in (A.2) by λ(θ∗� x) and the second by λ(ϕ�x), and using the
fact that B = Bϕ, we see that λ(θ∗� ·) = λ(ϕ� ·) π-a.s. Thus A = Aϕ. Thus, if sampling times are
observable, it must be the case that B �= Bϕ unless λ(θ∗� ·)= λ(ϕ� ·) π-a.s., and we therefore have
identification, proving Proposition 5. Q.E.D.

14We are grateful to Tom Kurtz for suggesting a time change by λ.
15If they were the same maps, they would have the same image, and as they are both one-to-one

and onto, we would have D(B) = D(Bϕ), contradicting the fact that B �= Bϕ.
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APPENDIX B: CONSISTENCY AND ASYMPTOTIC NORMALITY

In this appendix, we summarize conditions, adapted to our setting, for consistency and asymp-
totic normality. As this material is relatively standard for GMM estimation, once we have reduced
the inference problem to that of a stationary Markov process in discrete time, we are brief, and
defer to basic sources, such as Hansen (1982), for details and extensions.

B.1. Consistency

For some integer � ≥ 1, we let Zi�� = (Zi�Zi−1� � � � �Zi−�−1), a vector of lagged states on which
we allow instrumental variables to depend.

Motivated by Proposition 3, we take as given some measurable γ :Θ× S� × S → R
m , for some

positive integers � and m, such that

Eπ

[‖γ(θ∗�Zi���Zi+1)‖2
]
< ∞�(B.1)

with

Eπ [γ(θ∗�Zi���Zi+1)|Zi��] = 0�(B.2)

For our application, we have in mind that, for some test function g and some f defined by (2.7),
we would take H(θ�Zi��) to be an instrumental variable and

γ(θ�Zi���Zi+1)= H(θ�Zi��)[f (θ�Zi�Zi+1)− g(θ�Zi�Zi)]�(B.3)

Condition (B.1) is a technical integrability condition. Condition (B.2) is a moment condition
for estimation, which is satisfied in our setting for γ as constructed in Proposition 3, and more
generally. Our identification condition is that

Eπ [γ(θ�Zi���Zi+1)] �= 0� θ �= θ∗�(B.4)

For each integer n≥ �, we let

Γn(θ) = 1
n

n−1∑
i=�−1

γ(θ�Zi���Zi+1)�

let Wn be an Fn-measurable R
m×m-valued positive-definite symmetric “weighting” matrix con-

verging almost surely to a positive-definite symmetric matrix measurable with respect to
σ(Z0�Z1� � � �), and let

θn ∈ arg min
θ∈Θ

Γn(θ)
	WnΓn(θ)�(B.5)

taking a measurable selection from the arg min(·), which is possible, for example, if γ is contin-
uous and Θ is compact.16 Newey and West (1987) have developed asymptotic covariance estima-
tors that allow “optimal” choice of the weighting matrices {Wn}, from the viewpoint of asymptotic
efficiency.

Strong consistency depends on technical conditions, such as those of Hansen (1982), appropri-
ate for the uniform strong law of large numbers. For example, with (B.1)–(B.4), we need only add
some variation of first-moment continuity, in the sense of Hansen (1982). For example, consider
the “Lipschitz” assumption:

DEFINITION 3 (First-Moment Continuity): There is some measurable K :S� ×S → R+ satisfy-
ing Eπ [K(Zi���Zi+1)]< ∞ such that, for each (z� z1) ∈ S� × S and (θ�ϕ) ∈Θ2,

‖γ(θ� z� z1)− γ(ϕ� z� z1)‖ ≤ K(z� z1)‖θ−ϕ‖�

16See Hildenbrand (1974).
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For example, it is enough for First-Moment Continuity, when Θ is compact and γ is continu-
ously differentiable with respect to θ, that

Eπ

(
max
θ∈Θ

∥∥∥∥∂γ∂θ (θ�Zi���Zi+1)

∥∥∥∥
)
<∞�(B.6)

THEOREM 1: Suppose (X�N) is a data-generating process satisfying the conditions of Proposi-
tion 2. Suppose γ satisfies (B.1)–(B.4) and First-Moment Continuity, for a compact parameter set Θ.
Let θn be defined by (B.5). Then θn → θ∗ Px-a.s. for each x ∈ S.

PROOF: It suffices to establish the result under Pπ , and then to use shift coupling, obtaining
the result under Px, as in Glynn and Meyn (1995). In order to invoke our version of the uniform
strong law in Theorem 2 below, we let S = S� ×S, let Yi = (Zi���Zi+1), and set ϕ(r) = r. We have,
by Cauchy–Schwarz,

Eπ

(‖γ(θ�Zi���Zi+1)‖
) ≤ E1/2

π

(‖γ(θ∗�Zi���Zi+1)‖2) + ‖θ∗ − θ‖Eπ [K(Zi���Zi+1)]< ∞�

for θ ∈ Θ. We can now use the identification hypothesis (B.4) to finish, noting that Γn(θ)/
(n − � − 1) → Eπ [γ(θ�Zi���Zi+1)] uniformly Pπ -a.s., by the following slightly more general
result. Q.E.D.

In order to state a general version of the uniform strong law suitable for this setting, let
Y = {Y1�Y2� � � � } be a positive Harris-recurrent Markov chain with stationary distribution π , liv-
ing on a state space S . Let F :Θ×S → R satisfy, for some relatively compact Θ, some measurable
K :S → R+ with Eπ [K(Y1)]< ∞, and some ϕ : [0�∞) → [0�∞), with ϕ(r) ↓ 0 as r ↓ 0:

(i) |F(θ1� y)− F(θ2� y)| ≤ K(y)ϕ(‖θ1 − θ2‖), for all y ∈ S and θ1� θ2 ∈Θ.
(ii) Eπ [F(θ�Y1)] <∞ for all θ ∈Θ. (It suffices that this condition holds for one θ ∈ Θ.)

THEOREM 2: Under the above conditions,

lim
n→∞ sup

θ∈Θ

∣∣∣∣∣ 1
n

n−1∑
j=0

F(θ�Yj)−Eπ [F(θ�Y0)]
∣∣∣∣∣ = 0 a.s.

Our proof is conventional. Fix ε < 0 and choose δ = δ(ε) > 0 so that ϕ(δ) < ε. Then, cover Θ
by a finite number m = m(ε) of δ-balls having centers θ1� θ2� � � � � θm lying in Θ. Then any θ ∈ Θ
lies in one of the m δ-balls, say the ith, so that∣∣∣∣∣ 1

n

n−1∑
j=0

F(θ�Yj)−EπF(θ�Y0)

∣∣∣∣∣
≤

∣∣∣∣∣ 1
n

n−1∑
j=0

F(θ�Yj)− F(θi�Yj)

∣∣∣∣∣ +
∣∣∣∣∣ 1
n

n−1∑
j=0

F(θi�Yj)−EπF(θi�Y0)

∣∣∣∣∣
+ |EπF(θi�Y0)−EπF(θ�Y0)|

≤ 1
n

n−1∑
j=0

|F(θ�Yj)− F(θi�Yj)| + max
1≤i≤m

∣∣∣∣∣ 1
n

n−1∑
j=0

F(θi�Yj)−EπF(θi�Y0)

∣∣∣∣∣
+Eπ |F(θi�Y0)− F(θ�Y0)|

≤ ε · 1
n

n−1∑
j=0

K(Yj)+ max
1≤i≤m

∣∣∣∣∣ 1
n

n−1∑
j=0

F(θi�Yj)−EπF(θi�Y0)

∣∣∣∣∣ + εEπK(Y0)�
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That is,

sup
θ∈Θ

∣∣∣∣∣ 1
n

n−1∑
j=0

F(θ�Yj)−EπF(θ�Y0)

∣∣∣∣∣
≤ ε

(
1
n

n−1∑
j=0

K(Yj)+EπK(Y0)

)
+ max

1≤i≤m

∣∣∣∣∣ 1
n

n−1∑
j=0

F(θi�Yj)−EπF(θi�Y0)

∣∣∣∣∣�
Sending n→ ∞, we find that

lim
n→∞ sup

θ∈Θ

∣∣∣∣∣ 1
n

n−1∑
j=0

F(θ�Yj)−EπF(θ�Y0)

∣∣∣∣∣ ≤ 2εEπK(Y0)�

Since ε was arbitrary, this finishes the proof.

REMARK: The condition that Eπ [K(Y0)] is finite can easily be checked via a Lyapunov func-
tion of the form: Find a nonnegative h :S → R and a compact A, with h bounded on A, such that

Ey [h(Y1)] ≤ h(y)−K(y)� y ∈Ac�

where Ey denotes expectation over the distribution on Y1 induced by the initial condition Y0 = y .
(See Meyn and Tweedie (1993a, p. 337) for details.)

B.2. Asymptotic Normality

As with consistency, one can treat asymptotic normality and calculation of the asymptotic co-
variance as in a standard GMM framework. The following result is merely for illustration in the
case of a one-dimensional parameterization. We refer to Hansen (1982) for typical conditions for
more abstract cases.

THEOREM 3: Suppose (X�N) is a data-generating process satisfying the conditions of Propo-
sition 2. Suppose γ satisfies (B.1)–(B.4) and First-Moment Continuity, for a compact interval of
parameters Θ ⊂ R. Let θn be defined by (B.5). Suppose also that γ, of the form (B.3), is continuously
differentiable with respect to θ, (B.6) holds, and that

Eπ

[
∂γ

∂θ
(θ∗�Zi���Zi+1)

]
�=a �= 0�

Then, for each x ∈ S,

n1/2(θn − θ∗) ⇒ N(0�σ2) Px-weakly�

as n→ ∞, where N(0�σ2) denotes the normal distribution with mean zero and variance

σ2 = 1
a2

Eπ [γ(θ∗�Zi���Zi+1)
2]�

PROOF: As with the proof of Theorem 1, it suffices to establish the result under Pπ . Let γθ de-
note the partial derivative of γ with respect to its first (θ) argument. Note that, for any ε > 0
sufficiently small and any (z� z1) ∈ S� × S,∣∣∣∣γ(θ∗ + ε� z� z1)− γ(θ∗� z� z1)

ε

∣∣∣∣ ≤ sup
θ∈Θ

|γθ(θ� z� z1)|�
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The Dominated Convergence Theorem and (B.6) then imply that

Eπ[γθ(θ
∗�Zi���Zi+1)] = d

dθ
Eπ [γ(θ�Zi���Zi+1)]

∣∣∣∣
θ=θ∗

�

Since a �= 0, it follows that there exists ε > 0 such that

Eπ[γ(θ∗ − ε�Zi���Zi+1)]< 0 = Eπ [γ(θ∗�Zi���Zi+1)]<Eπ [γ(θ∗ + ε�Zi���Zi+1)]�
Hence, for n sufficiently large,

Γn(θ
∗ − ε) < 0 <Γn(θ

∗ + ε)�

so it follows that {θ ∈Θ :Γn(θ)= 0} �= ∅. Thus, for sufficiently large n, we have Γn(θn) = 0, and

Γn(θn)− Γn(θ
∗)= −Γn(θ

∗)�

So, there exists ξn → θ∗ Pπ -a.s. such that Γ ′
n(ξn)(θn −θ∗) = −Γn(θ

∗). Now, for n sufficiently large
and ε > 0,

∣∣Γ ′
n(ξn)− Γ ′

n(θ
∗)

∣∣ =
∣∣∣∣∣ 1
n

n−1∑
i=0

(
γθ(ξn�Zi���Zi+1)− γθ(θ

∗�Zi���Zi+1)
)∣∣∣∣∣

≤ 1
n

n−1∑
i=0

Ri(ε)�

where

Ri(ε)= sup
|θ−θ∗|<ε

∣∣γθ(θ�Zi���Zi+1)− γθ(θ
∗�Zi���Zi+1)

∣∣�
It follows that

lim
n→∞

∣∣Γ ′
n(ξn)− Γ ′

n(θ
∗)

∣∣ ≤ Eπ [Ri(ε)]�
Since γθ is continuous by assumption, limε→0 Ri(ε)= 0, Pπ -a.s., and

Ri(ε)≤ 2 sup
θ∈Θ

|γθ(θ�Zi���Zi+1)|�

The Dominated Convergence Theorem therefore implies that limε→0 Eπ(Ri(ε)) = 0. Thus,

lim
n→∞Γ ′

n(ξn) =Eπ [γθ(θ
∗�Zi���Zi+1)] = a� Pπ -a.s.

Also,

n1/2Γn(θ
∗) ⇒N(0�β2) Pπ -weakly�

as n → ∞, under the Martingale Central Limit Theorem (see Billingsley (1968, p. 206)), where
β2 = Eπ [γ2(θ∗�Zi���Zi+1)]/a2 . The proof is then complete upon application of the converging-
together proposition. Q.E.D.

REMARK: This particular proof becomes harder when Θ is multi-dimensional. In particular,
one needs to show that there exists θn such that Γn(θn) = 0, in order that the current argument
goes through. For a more general approach, see Hansen (1982).

With γ defined by (2.11), we would compute the partial derivative ∂θγ = ∂γ/∂θ by calculat-
ing ∂θf , ∂θλ, and ∂θg. While g and λ are given functions, computation of ∂θf from the defini-
tion (2.7) of f calls for differentiation of Aθg

(θ�x)(y) with respect to θ. Under technical regularity,

∂θ
[
Aθg

(θ�x)(·)] = (∂θAθ)g
(θ�x)(·)+Aθ∂θg

(θ�x)(·)�
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where, for G in D(Aθ), provided the derivative exists, we have

[(∂θAθ)G](y) = ∂θ[AθG](y)�
a vector in R

d . For the case in which X satisfies the stochastic differential equation (2.5), under
smoothness conditions on µ and σ given in Nualart (1995, Ch. 2), the solution Xθ of (2.5) is
differentiable with respect17 to θ, and for a C2 function G in D(Aθ), we have

[(∂θAθ)G](x) = ∂xG(x)∂θµ(θ�x)+ 1
2

∑
i�j

[∂xi ∂xjG(x)∂θC(θ�x)]�

where C(θ�x) = σ(θ�x)σ(θ�x)	 . For other examples given in Section 6, one can also explicitly
compute ∂θAθ under technical regularity, provided the parameter-dependent functions defin-
ing Aθ are smooth with respect to θ. Thus computation of “optimal” weighting matrices can be
carried out relatively explicitly in many applications.

APPENDIX C: MAXIMUM-LIKELIHOOD ESTIMATION

We take the case in which sampling times are observable.18 A similar result holds when obser-
vation times are not observable.

Our data at time Ti is Zi = (Y(Ti)� Ti), with typical outcome denoted (yi� ti) ∈ S. We
first calculate the relevant likelihood function. We fix some θ in Θ and some initial state
(Y(T0)�0) = x. Suppose, for each t, that the transition measure Pθ(t� x� ·) has a density19 denoted
p(θ� t� x� ·). Under Pθ, the joint density of (Y(T1)�T1�Y(T2)�T2� � � � �Y(Tn)�Tn), evaluated at
some (y1� t1� y2� t2� � � � � yn� tn), is denoted Ln(y1� t1� y2� t2� � � � � yn� tn|θ). For notational ease, we let

Y(n) = (
Y(T1)� � � � �Y(Tn)

)
�

T (n) = (T1� � � � � Tn)�

y(n) = (y1� � � � � yn)�

t(n) = (t1� � � � � tn)�

dt(n) = dt1 dt2 · · · dtn�
dy(n) = dy1 dy2 · · · dyn�

δi = exp
(

−
∫ ti

ti−1

λ(θ�Y(u))du

)
�

Using the usual abuse of notation for measures with a density,

L(y1� t1� y2� t2� � � � � yn� tn|θ)dy(n) dt(n)
= Pθ

x

(
Y(n) ∈ dy(n)� T (n) ∈ dt(n)

)
= Eθ

x

(
Pθ
x

[
Y(n) ∈ dy(n)� T (n) ∈ dt(n)

∣∣{Y(t) : t ≥ 0}])

17For this purpose, we can treat θ as a (degenerate) part of the state vector.
18Maximum likelihood estimation, with integer sampling times, is treated by Aït-Sahalia

(2002), Chuang (1997), Clement (1995), Durham and Gallant (2002), Göing (1996), Lo (1988),
Pedersen (1995a, 1995b), Brandt and Santa-Clara (2002), and Sørensen (2001), using various
numerical procedures to estimate the likelihood function.

19For the stochastic differential equation (2.5), conditions for existence of the density func-
tion p are given in Nualart (1995).
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= Eθ
x

(
Eθ

x

[
I
(
Y(n) ∈ dy(n)

)
Pθ
x

[
T (n) ∈ dt(n)

∣∣{Y(t) : t ≥ 0}]])
= Eθ

x

[
I
(
Y(n) ∈ dy(n)

) n∏
i=1

λ(θ�Y(ti))δi dt
(n)

]

= Eθ
x

[
Eθ

x

(
I
(
Y(n) ∈ dy(n)

) n∏
i=1

λ(θ�Y(ti))δi

∣∣∣Y(n)

)]
dt(n)

=
n∏

i=1

λ(θ� yi)E
θ
x

(
I
(
Y(n) ∈ dy(n)

)
Eθ

x

[
n∏

i=1

δi

∣∣∣Y(n)

])
dt(n)

=
n∏

i=1

λ(θ� yi)p(θ� ti − ti−1� yi−1� yi)β(θ� ti − ti−1� yi−1� yi) dy
(n) dt(n)�

where y0 = x and

β(θ� t� x� y)= Eθ
x

[
exp

(
−

∫ t

0
λ(θ�Y(u))du

)∣∣∣Y(t) = y

]
�

(The event “Y(t) = y” may have zero probability, but we use this conditioning notation infor-
mally, in the usual sense.)

At points of strict positivity of the likelihood, the logarithm of the likelihood is then

logLn(y1� t1� y2� t2� � � � � yn� tn|θ) =
n∑

i=1

ξ(θ� τi� yi−1� yi)�

where τi = ti − ti−1 and

ξ(θ� τi� yi−1� yi) = logλ(θ� yi)+ logp(θ� τi� yi� yi−1)+ logβ(θ� τi� yi−1� yi)�

Assuming differentiability20 of λ, β, and p with respect to θ, the first-order necessary condition
for the maximum likelihood estimator θn is

0 =
n∑

i=1

F
(
θn� τi�Y(Ti−1)�Y(Ti)

)
�

where

Fi(θ� τi� yi−1� yi) =
∂
∂θi

λ(θ� yi)

λ(θ� yi)
+

∂
∂θi

β(θ� τi� yi−1� yi)

β(θ� τi� yi−1� yi)
+

∂
∂θi

p(θ� τi� yi−1� yi)

p(θ� τi� yi−1� yi)
�

Recalling that the ith state observation is X(Ti) = (Y(Ti)� Ti − Ti−1), with generic outcome
denoted xi = (yi� τi) ∈ S, we define f :Θ× S × S → R

d from F(·) by

f (θ�xi−1� xi) = F(θ� τi� yi−1� yi)�(C.1)

Maximum likelihood estimation is then obtained within our general set of moment conditions
with the test function g :Θ× S × S → R

d defined by

Ag(θ�xi−1� xi)− λ(θ�xi−1)g(θ�xi−1� xi)− f (θ�xi−1� xi) = 0�(C.2)

20For the case of the stochastic differential equation (2.5), smoothness conditions on µ and σ
given in Nualart (1995, Ch. 2) ensure the existence and smoothness of the transition density with
respect to both x and θ, using the theory of stochastic flows. One can apply Nualart’s Lemma 2.1.5
and integration by parts, treating θ as a (degenerate) part of the state vector.
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Indeed, under technical integrability conditions, the fact that

Eθ
[
ξ
(
θ�T1�Y(T0)�Y(T1)

)∣∣Y(T0)
] = 1

for all θ allows one to differentiate through the expectation with respect to θ and find, as usual
for maximum likelihood estimation, that g(θ�x�x) = 0, so for maximum likelihood estimation we
can ignore the role of g in our generic moment condition (2.9).

APPENDIX D: INTEGRABILITY ASSUMPTIONS

The integrability assumptions (B.1) and (B.6) can be based on primitive assumptions on H, g,
and f . For example, with m = 1 and differentiability of f� g� and H with respect to θ, consider
the following condition.

CONDITION D:
(i) Eπ

[
H(θ�Zi��)

4 + f (θ�Zi)
4 + g(θ�Zi)

4
]
<∞� θ ∈Θ�

(ii) Eπ

[
sup
θ∈Θ

(Hθ(θ�Zi��)
2)+ sup

θ∈Θ
(fθ(θ�Zi)

2)+ sup
θ∈Θ

(gθ(θ�Zi)
2)

]
is finite.

Assumption (B.1) is implied by Condition D(i) and Cauchy–Schwarz. For (B.6), we have

γθ(θ� z� z1) =Hθ(θ� z)[f (θ� z1)− g(θ� z)] +H(θ� z)[fθ(θ� z1)− gθ(θ� z)]�
Also, for some “intermediate” parameter ζ, taking Θ= [θ�θ], we have

sup
θ∈Θ

|Hθ(θ� z)f (θ� z1)|

= sup
θ∈Θ

∣∣Hθ(θ� z)[f (θ∗� z1)+ (θ− θ∗) fθ(ζ� z1)]
∣∣

≤ sup
θ∈Θ

|Hθ(θ� z)| · |f (θ∗� z1)| + |θ− θ| sup
θ∈Θ

|Hθ(θ� z)| sup
θ∈Θ

|fθ(θ� z1)|�

and likewise for supθ∈Θ |Hθ(θ� z)g(θ� z0)|.
We now apply Cauchy–Schwarz and Minkowski, as well as Condition D(i) and (ii), to obtain

the finiteness of Eπ [supθ∈Θ |Hθ(θ�Zi��)f (θ�Z1)|], and similarly for the other terms in (B.6).
The integrability assumptions of Condition D are stated purely in terms of the stationary dis-

tribution of Z. It turns out that we need not compute the transition kernel of Z in order to verify
Condition D. Lyapunov methods exist for this (see Meyn and Tweedie (1993a)). For example,
consider Condition D(ii) for the case in which � = 1.

Set

r(x) = sup
θ∈Θ

Hθ(θ�x)
2 + sup

θ∈Θ
fθ(θ�x)

2 + sup
θ∈Θ

gθ(θ�x)
2�

Proposition 2 ensures the finiteness of Eπ [r(Z0)] provided that we establish

r =Eη

[
r(X(0))λ(X(0))

]
< ∞�

The Lyapunov criterion for proving finiteness of r basically comes down to finding a nonnega-
tive k in D(A) and a compact A ⊂ S such that

Ak(x) ≤ −r(x)λ(x)� x ∈Ac�

(See Theorem 4.2 of Meyn and Tweedie (1993b) for details.)
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For the case of the Cox, Ingersoll, and Ross (1985) model of the short interest rate, a process
introduced by Feller (1951), we have

dXt = κ(x−X(t))dt + σ
√
X(t) dBt�

where B is a standard Brownian motion and κ, x, and σ are positive scalar parameters. In this
case,

A = κ(x− y)
d

dy
+ σ2y

2
d2

dy2
�

If we set k(y) = exp(εy), then there exists δ> 0 such that, for y off a compact set,

(Ak)(y) = κ(x− y)εeεy + σ2y

2
ε2eεy ≤ −δyeεy �

provided we choose ε small enough that κ > σ2ε/2. Hence, according to Lyapunov theory, we
can expect that Eπ [X(0)exp(εX(0))] <∞, for such an ε. Thus, so long as

sup
θ∈Θ

Hθ(θ�x)
2 + sup

θ∈Θ
fθ(θ�x)

2 = O(exp(εx))�

we can expect Condition D(ii) to be in force. Similarly, we can verify Condition D(i).

APPENDIX E: HANSEN–SCHEINKMAN ESTIMATORS

Hansen and Scheinkman (1995) base an estimator on observation of X at integer times 1�2� � � �
and on an assumption that X is ergodic, with stationary distribution η. (Their work is extended by
Hansen, Scheinkman, and Touzi (1998), allowing random sampling time intervals, and by Conley,
Hansen, Luttmer, and Scheinkman (1997).) Hansen and Scheinkman use the fact that, for any f
such that Af (X(t)) is well defined and integrable,

Eη

[
Af (X(t))

] = 0�(E.1)

where Eη denotes expectation under the stationary distribution η of X . This relies on the simple
fact that, under η, the rate of change of the expectation of any well-behaved function of the
sample paths of X must be zero. This leads, under technical conditions, to a family of moment
conditions that assist in estimating θ∗.

The Hansen–Scheinkman (HS) class of estimators, with Poisson inter-arrival times, can be re-
covered from ours, asymptotically, as follows. Suppose that g(θ�x� y) = g(y) and that we assume
Poisson sampling, for some constant intensity λ > 0. In this case, from telescopic cancellation
in (2.10),

Γn(θ) = 1
n

[f (θ�Zn)− g(Z0)] − 1
nλ

n−1∑
i=1

Aθg(Zi)�(E.2)

which corresponds asymptotically to the moment condition (E.1).
Hansen and Scheinkman (1995) also use “reverse-time” moment conditions.21 Reverse-time

versions of our moment conditions can be developed analogously.

21That is, the reverse-time process Y , defined by Y(t) = X(−t), has its own generator A∗, and
under technical regularity we have a condition analogous to (E.1): Eη[A∗f (X(t))] = 0. Combin-
ing this condition with (E.1), and applying the definition of the adjoint, Hansen and Scheinkman
propose a general moment condition of the form

Eη

[
g(X(t))Af (X(t + 1))+ f (X(t + 1))A∗g(X(t))

] = 0�

In a general setting, computation of A∗ is difficult. Under reversibility conditions on X (see,
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Because Af (X(1))�Af (X(2))� � � � are generally correlated, computation of the asymptotic
standard errors associated with the HS moment conditions (E.1) and (E.2) may be relatively in-
tractable. On the other hand, because of (2.8), the terms γ(θ∗�Zi�Zi+1) of the criterion proposed
here are first differences of a martingale, and therefore uncorrelated. This makes computation of
asymptotic standard errors relatively tractable. (See Theorem 3.) As remarked above, however,
with Poisson sampling times, the HS estimators can be viewed asymptotically as special cases
of, and have the same asymptotic behavior as, the estimators presented here, including easily
computed asymptotic standard errors.

As opposed to the class of estimators proposed here, HS estimators do not generally offer
identification, as explained by Hansen and Scheinkman (1995). HS estimators do, however, have
the advantage that they can be based on both deterministic and random sampling time schemes,
under conditions. Section 7 discusses cases in which a modification of the moment conditions
proposed in this paper could be considered with deterministic sampling schemes, after a time
change.

The class of estimators associated with (2.10) can, in principle, be applied to arbitrary Markov
processes, whether or not recurrent. In particular, the methodology can be used to estimate pa-
rameters for transient and null-recurrent Markov processes. The main difficulty is establishing
the law of large numbers, in the absence of ergodicity, for purposes of a proof of consistency. In
contrast, the HS moment conditions are meaningful only for positive-recurrent processes.
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