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Abstract. Consider an Ornstein–Uhlenbeck process with reflection at the origin. Such a process arises as an
approximating process both for queueing systems with reneging or state-dependent balking and for multi-
server loss models. Consequently, it becomes important to understand its basic properties. In this paper,
we show that both the steady-state and transient behavior of the reflected Ornstein–Uhlenbeck process is
reasonably tractable. Specifically, we (1) provide an approximation for its transient moments, (2) compute
a perturbation expansion for its transition density, (3) give an approximation for the distribution of level
crossing times, and (4) establish the growth rate of the maximum process.

Keywords: diffusion approximation, Ornstein–Uhlenbeck process, reflecting diffusion, steady-state, tran-
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1. Introduction

The reflected Ornstein–Uhlenbeck (O–U) process plays much the same role in the con-
text of queueing models with reneging or balking as does reflected Brownian motion
(RBM) in the setting of conventional queues. Specifically, in a related paper [21], we
show that the reflected O–U process serves as a good approximation for a Markovian
queue with reneging when the arrival rate is either close to or exceeds the processing
rate and the reneging rate is small. In another related paper [20], and for the same part
of the parameter space, we show that the reflected O–U process also well approximates
queues having renewal arrival and service processes in which customers have deadlines
constraining total sojourn time. Customers either renege from the queue when their
deadline expires or balk if the conditional expected waiting time given the queue-length
exceeds their deadline.

Another setting in which the reflected O–U process is relevant is that of multiserver
loss models. Both Borovkov [5] and Srikant and Whitt [19] (under different conditions)
find that the reflected O–U process serves as a good approximation for the number-in-
system process in a G/M/s/0 queueing model when both the number of servers and the
arrival rate are large.
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Given the central role of the reflected O–U process as an approximation to a num-
ber of different queueing models, the study of the structure of the reflected O–U process
is clearly of some importance. Our goal, in this paper, is to initiate the study of the
properties and structure of the reflected O–U process. A mathematical complication in
this work is that many of the methods that have been successfully employed in dealing
with reflected Brownian motion do not apply to the analysis of reflected O–U. This is
because reflected O–U cannot be defined as the image of a “free” process under a con-
tinuous regulator mapping as RBM is in [9]. (The presence of the state-dependent drift
rate in (1.1) makes the concept of a “free” process meaningless.)

Suppose X is a reflected O–U process with infinitesimal drift α− γ x and infinites-
imal variance σ 2, where γ, σ > 0. The process X can be defined as the strong solution
(whose existence is guaranteed by a careful extension of the results of Lions and Sznit-
man [15], which treat bounded domains) to the stochastic differential equation (SDE):

dX(t) = (
a − γX(t)

)
dt + σ dB(t) + dL(t), (1.1)

subject to X(0) = x � 0. Here L = (L(t): t � 0) is the minimal nondecreasing process
which makes X(t) � 0 for t � 0. The process L increases only when X is zero, so that∫

[0,∞)

I
(
X(t) > 0

)
dL(t) = 0,

where I (·) is the indicator function.
This paper offers the first extensive study of the properties of the reflected O–U

process and our body of results expands what is known about the reflected O–U process,
both qualitatively and quantitatively. Specifically, our contributions are as follows:

1. To provide a rigorous proof of the formula for its steady-state distribution; see propo-
sition 1.

2. To establish a stochastic ordering result for RBM and reflected O–U; see proposi-
tion 2.

3. To offer an approximation for its transient moments via the more tractable RBM
process; see (3.4).

4. To obtain a perturbation expansion (also via the more tractable RBM process) for its
transition density; see (3.6).

5. To obtain approximations for level crossing times; see theorem 2 and corollary 3.

6. To study the growth rate of its maximum process; see theorem 4 and corollary 5.

Recall that the reflected O–U is the key approximating process for reneging mod-
els, certain balking models, and multiserver loss models. Therefore, knowing the steady-
state distribution of reflected O–U, and having approximations for its transient moments
and transition density, enhances our understanding of how these models behave over
various time scales. In particular, such formulae give insight into how these systems ap-
proach steady-state. Our motivation for studying level crossing times for reflected O–U
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comes from the analysis of finite buffer systems. There, a key performance characteristic
is the time to buffer overflow, and the distribution of this random variable coincides with
the corresponding level crossing time for the infinite buffer analog. Finally, there has
been significant interest historically within the queueing community on understanding
the behavior of maximum processes; see [3] for a recent survey and [18] for a study
in the context of birth–death processes. This is because the behavior of the maximum
process provides insight into the “worst-case” behavior of the number-in-system process
for a queueing model over a given time interval.

Since a RBM process is well known to be analytically tractable (for example,
see [9]), one might be tempted, at least in settings where γ is close to zero, to re-
place a reflected O–U approximation with a RBM approximation by letting γ = 0
in equation (1.1). In particular, one might wish to approximate a queue with small
amounts of reneging or balking with a RBM. Therefore, in stating our results for a re-
flected O–U process, for purposes of comparison, we also state the equivalent result for
a RBM process. Our results confirm what one would suspect by examining the SDE’s
defining the two processes: the behavior of the reflected O–U process is significantly
different than that of a RBM process. This conclusion reinforces the results of the nu-
merical study in [21]. There, it was shown that the RBM approximation to a queue with
reneging has surprisingly large error relative to that associated with reflected O–U, even
for very small reneging rates.

The rest of this paper is organized as follows. In section 2, we discuss the steady-
state of the reflected O–U process. In section 3, we provide an approximation for the
transient moments and the transition density of a reflected O–U process in terms of
those for a RBM process. In section 4, we provide an approximation for the distribution
of level crossing times valid for large levels. Finally, in section 5, we show how the
maximum process of a reflected O–U grows with time.

2. Steady-state behavior

Perhaps the single most important performance measure for a stochastic process is its
steady-state distribution. Therefore, we begin our study of the reflected O–U process
with a theorem that computes this distribution. Related computations of the steady-state
of reflected O–U can be found in [6,7].

Proposition 1. Let X be the reflected O–U process specified in (1.1). Then, X has a
unique stationary distribution π with density

p(x)=P

[
N

(
α

γ
,
σ 2

2γ

)
∈ dx

∣∣∣N(α
γ
,
σ 2

2γ

)
� 0

]

=
√

2γ

σ 2

φ(
√

2γ /σ 2(x − α/γ ))

1 −�(−√2α2/γ σ 2)
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for x � 0, where φ(·) and �(·) are the density and distribution of a N(0, 1) random
variable, respectively. Furthermore, X(t) ⇒ X(∞) as t → ∞, where X(∞) has distri-
bution π .

Proof. Suppose π is a probability measure with density p. Choose f twice continu-
ously differentiable on [0,∞) with compact support and so that f ′(0) = 0. It is straight-
forward to verify (using integration by parts) that∫

[0,∞)

(Af )(x)π(dx) = 0 (2.1)

for all such f . On the other hand, Itô calculus implies that

Exf
(
X(t)

)− f (x) =
∫ t

0
Ex(Af )

(
X(s)

)
ds. (2.2)

It follows from (2.1) and (2.2) that

Eπf
(
X(t)

) = Eπf
(
X(0)

)
for all such f . This establishes that Pπ(X(t) ∈ ·) = Pπ(X(0) ∈ ·) and hence π is a
stationary distribution.

We now prove that X(t) ⇒ X(∞) as t → ∞. Suppose first that X(0) = 0, and
let X∗ = (X∗(t): t � 0) be an independent version of X initiated under π . It follows
from proposition 4 in section 5, that T ∗(0) < ∞ a.s. where T ∗(y) = inf{t � 0:
X∗(t) = y}. Since X(0) � X∗(0), and both X and X∗ have continuous paths, evidently
T ∗ = inf{t � 0: X(t) = X∗(t)} � T ∗(0). Thus, T ∗ is an a.s. finite coupling time for X.
Consequently (see [13,14]), X(t) ⇒ X(∞) as t → ∞. The extension to X(0) > 0 is
straightforward.

To prove that π is the unique stationary distribution, suppose that η is another such
distribution. Then, Pη(X(t) ∈ ·) = Pη(X(0) ∈ ·) ⇒ π(·), showing that η = π . �

Let XR be a reflected Brownian motion with infinitesimal drift α and infinitesimal
variance σ 2 so that XR is the unique strong solution to the SDE given in (1.1) under
the assumption that γ = 0. Here and throughout the rest of this paper, we use XR to
compare the properties of RBM with those of reflected O–U. When α < 0, the steady-
state distribution of XR is exponential with mean σ 2/2|α|. (If α � 0, the process is not
positive recurrent and so does not have a steady-state.) Notice the strikingly different
tail behavior between the steady-state distributions of X and XR. As one would expect,
the probability of the reflected Brownian motion XR being at high levels in steady state
is much greater than that for the reflected O–U X.

3. Transient analysis

In this section, we study the computation of transient expectations of the form
Exf (X(t)), where Ex(·) � E(· | X(0) = x). This further allows us to write a per-
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turbation expansion for the transition density of X. We start our analysis with a an
intuitive result showing that reflected O–U is always stochastically smaller than RBM.

Recall that Y1

st
� Y2 if Ef (Y1) � Ef (Y2) for all non-negative, nondecreasing functions

f ; see, for example, [17].

Proposition 2. Suppose that X is a reflected O–U process with infinitesimal drift α−γ x

and infinitesimal variance σ 2, starting from initial position x0. Let XR be a reflected
Brownian motion process with infinitesimal drift α and infinitesimal variance σ 2, star-

ting from initial position x1 � x0. Then, for each t � 0, X(t)
st
� XR(t).

Proof. Let B = (B(t): t � 0) be a standard Brownian motion and let

dX(t)= (α − γX(t)) dt + σ dB(t) + dL1(t),

dXR(t)= α dt + σ dB(t) + dL2(t),

subject to X(0) = x0, XR(0) = x1, where L1 and L2 are the local time processes
that increase only when X and XR are at the origin, respectively. We will show that

X(t) � XR(t) for t � 0, from which X(t)
st
� XR(t) follows immediately.

Suppose that there exists t > 0 for which X(t) > XR(t). Since X(0) � XR(0) and
X − XR has continuous sample paths, there exists s ∈ [0, t) such that X(s) = XR(s)

with X(u) > XR(u) for s < u � t . Note that

X(t) −XR(t)=X(s) −XR(s) − γ

∫ t

s

X(u) du

+ (L1(t)− L1(s)
)− (

L2(t) − L2(s)
)

�L1(t)− L1(s)

since X is non-negative and L2 is nondecreasing. But X(u) > XR(u) � 0 for u ∈ (s, t],
so L1(t) = L1(s) (since L1 is a continuous process that increases only when X is at the
origin). We conclude that X(t) � XR(t), which is a contradiction. �

Note that proposition 2 provides an upper bound on Exf (X(t)) in terms of the
highly tractable process XR (that is valid for every non-negative nondecreasing func-
tion f ).

We turn next to computing Exf (X(t)) itself. The computation of u(t, x) =
Exf (X(t)) involves solving the Kolmogorov backwards partial differential equa-
tion (PDE)

∂

∂t
u(t, x) = (α − γ x)

∂

∂x
u(t, x) + σ 2

2

∂2

∂x2
u(t, x),

subject to u(0, x) = f (x) and (∂/∂x)u(t, 0) = 0. Unfortunately, this PDE appears to
be generally intractable.

However, we note that if γ = 0, then the above PDE is precisely the backwards
Kolmogorov PDE for RBM. As noted above, XR has a quite tractable associated tran-
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sient theory. In particular, its transition density can be explicitly computed in terms of
the normal cumulative distribution function, and excellent approximations for its tran-
sient moments exist; refer to [9] and the series of papers by Abate and Whitt [1,2].
This suggests that if γ is small, we ought to view the reflected O–U process as a small
perturbation of an RBM process and thereby attempt to compute the first term of a per-
turbation expansion of reflected O–U in terms of RBM. This approach can be made
mathematically rigorous by appealing to Girsanov’s formula; see [10] for a discussion
of this important result.

Theorem 1. Suppose that under the probability P,B = (B(t): t � 0) is a standard
Brownian motion and

dXR(t) = α dt + σ dB(t) + dL(t)

subject to XR(0) = x � 0, where L is the local time process that increases only when
XR is zero. Put

M(t, γ ) = exp

(
−
∫ t

0

γ

σ
XR(s) dB(s) − γ 2

2σ 2

∫ t

0
XR(s)2 ds

)
.

Then:

(i) For each γ � 0, (M(t, γ ): t � 0) is a martingale adapted to the filtration generated
by B, so that for each t � 0, Pγ,t is a probability, where dPγ,t = M(t, γ ) dP .

(ii) Under Pγ,t , (X
R(s): 0 � s � t) is a reflected O–U process having drift α − γ x,

infinitesimal variance σ 2, and starting from initial position x.

Proof. Conclusion (ii) is an immediate consequence of (i); see [10, theorem 5.1,
p. 191]. For an (unreflected) O–U process, conclusion (i) is covered by standard SDE
Novikov type conditions. For the reflected O–U process considered here, the key is to
prove that a local martingale is a martingale. To do this, we “localize” the martingale
and then justify the necessary limit interchange.

If we apply Itô’s formula to compute the stochastic differential of XR(t)2, we get
the identity∫ t

0
XR(s) dB(s) = 1

2σ

(
XR(t)2 −XR(0)2)−

∫ t

0

[
α

γ
XR(s) + σ

2

]
ds.

If we substitute this identity into the exponent of M(t, γ ), we obtain

M(t, γ ) = exp

(
γ

2σ 2

(
XR(0)2 −XR(t)2)+ γ α

σ 2

∫ t

0
XR(s) ds + γ t

2
− γ 2

2σ 2

∫ t

0
XR(s)2 ds

)
(3.1)
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Put Tn = inf{t � 0: XR(t) � n}. Since |XR(t ∧ Tn)| � n for all t � 0, it is easily
seen that M(t ∧ Tn, γ ) is integrable. A straightforward calculation then establishes that
(M(t ∧ Tn, γ ): t � 0) is a martingale adapted to the filtration of B. Consequently,

E
(
M
(
(t + s) ∧ Tn, γ

) | B(u): 0 � u � t
) = M(t ∧ Tn, γ ) (3.2)

for t, s � 0. We can send n → ∞ in (3.2) to conclude that (M(t, γ ): t > 0) is
a martingale, provided that we verify that the limit in n can be interchanged with the
(conditional) expectation.

Note that for γ � 0,

M
(
(t + s) ∧ Tn, γ

)
� exp

(
γ

2σ 2
x + γ (t + s)

2

)
exp

(
(s + t)γ α

σ 2
max

0�u�t+s
XR(u)

)
.

But

XR(u)= x + αu+ σB(u)+ sup
0�r�u

[
x0 + αr + σB(r)

]−
� 2 sup

0�r�u

∣∣x + αr + σB(r)
∣∣

� 2x + 2|α|u + 2σ sup
0�r�u

∣∣B(r)∣∣
so

M
(
(t + s) ∧ Tn, γ

)
� exp

(
x

(
γ

2σ 2
+ 2(s + t)

γ |α|
σ 2

)
+ γ (t + s)

2
+ 2(s + t)2α

2γ

σ 2

)

× exp

(
2(s + t)γ

|α|
σ

max
0�r�t+s

∣∣B(r)∣∣).
However, E exp(θ max0�r�t+s |B(r)|) < ∞ for all θ ∈ R, proving that M((t +

s) ∧ Tn, γ ) is uniformly (in n) dominated by an integrable random variable. The Dom-
inated Convergence Theorem for conditional expectations then establishes that the
limit/expectation interchange is valid. �

Suppose that Xγ is a reflected O–U process having drift α − γ x and infinitesimal
variance σ 2, starting from x. According to theorem 1, part (ii),

Ef
(
Xγ (t)

) = EPf
(
XR(t)

)
M(t, γ ),

provided f is non-negative, where EP (·) is the expectation operator associated with the
probability P of theorem 1. If f grows at most exponentially fast, it is easy to prove that
the kth derivative can be interchanged with EP (·), yielding

dk

dγ k
EP f

(
XR(t)

)
M(t, γ )

∣∣
γ=γ0

= EPf
(
xR(t)

) dk

dγ k
M(t, γ )

∣∣∣
γ=γ0

for γ0 � 0, where the kth derivative at γ0 = 0 is interpreted as a right-handed derivative.
It follows that
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Ef
(
Xγ (t)

) = Ef
(
XR(t)

)+ γEPf
(
XR(t)

)
M(1)(t, 0) + O

(
γ 2)

as γ ↓ 0. Consequently, for f having growth at most exponential,

Ef
(
Xγ (t)

)=EPf
(
XR(t)

)+ γ

2σ 2
EPf

(
XR(t)

)(
XR(0)2 −XR(t)2)

+ γ α

σ 2

∫ t

0
EPf

(
XR(t)

)(
XR(s)+ σ 2

2α

)
ds + O

(
γ 2) (3.3)

Observe that if α < 0 so that XR has a steady-state, −σ 2/(2α) is the steady-state mean
of XR. Thus, the integral on the right-hand side of (3.3) converges, as t → ∞, to

γ α

σ 2

∫ ∞

0
cov

(
f
(
XR(0)

)
, XR(s)

)
ds,

where cov(·) is the covariance operator associated with a stationary version of XR. (We
use here the fact that XR, in stationarity, is a reversible process.) Consequently, the
approximation on the right-hand side of (3.3) is bounded in t when XR has a steady-
state. This is reassuring, given that the left-hand side converges as t → ∞.

When f (x) = xk , (3.3) yields

EXγ (t)
k =EPX

R(t)k + γ

2σ 2
EPX

R(t)k
(
XR(0)2 −XR(t)2

)
+ γ α

σ 2

∫ t

0
EPX

R(t)k
(
XR(s) + σ 2

2α

)
ds + O

(
γ 2). (3.4)

Now that we have a perturbation expansion for Ef (Xγ (t)), we can use this to for-
mally derive a perturbation expansion for the transition density of Xγ . Let pγ (t, x, y) be
the transition density for Xγ and let p(t, x, y) be the transition density for the RBM XR.
Assume pγ (t, x, y) is differentiable in γ and suppose

pγ (t, x, y) = p(t, x, y) + γp′(t, x, y) + o(γ ). (3.5)

Then, by theorem 1, part (ii), we expect∫ ∞

0
f (y)p′(t, x, y) dy

= Exf
(
XR(t)

) d

dγ
M(t, γ )

∣∣∣
γ=0

= Exf
(
XR(t)

)( 1

2σ 2
x2 − 1

2σ 2
XR(t)2 + 1

2
t + α

σ 2

∫ t

0
XR(s) ds

)

=
∫ ∞

0
f (y)

[(
1

2σ 2
x2 − 1

2σ 2
y2 + 1

2
t

)
p(t, x, y)

+ α

σ 2

∫ t

0

∫ ∞

0
zp(s, x, z)p(t − s, z, y) dz ds

]
dy
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which suggests that

p′(t, x, y)=
(

1

2σ 2
x2 − 1

2σ 2
y2 + 1

2
t

)
p(t, x, y)

+ α

σ 2

∫ t

0

∫ ∞

0
zp(s, x, z)p(t − s, z, y) dz ds.

Substituting the above into (3.5) we find

pγ (t, x, y)=
(

1 + γ

2σ 2
x2 − γ

2σ 2
y2 + γ

2
t

)
p(t, x, y)

+ αγ

σ 2

∫ t

0

∫ ∞

0
zp(s, x, z)p(t − s, z, y) dz ds + o(γ ).

This provides an approximation to the transition density of Xγ (valid for small γ ), in
terms of the known transition density for RBM. As indicated earlier, the transition den-
sity for a RBM having drift α and infinitesimal variance σ 2 can be found in [9].

4. Level crossing times

Let T (b) = inf{t � 0: X(t) � b} be the first time the process X crosses the level b.
Computing the exact distribution of T (b) appears difficult. However, for large b, our
next result offers an approximation. As earlier, for x � 0, let Px(·) � P(· | X(0) = x)

and Ex(·) � E(· | X(0) = x).

Theorem 2. For b > x,

ExT (b) =
√

4π

γ σ 2

∫ b

x

exp

(
(γ v − α)2

γ σ 2

)
P

(
0 � N

(
α

γ
,
σ 2

2γ

)
� v

)
dv. (4.1)

Furthermore,

T (b)

ExT (b)
⇒ exp(1)

as b → ∞.

Proof. Fix b > 0 and let u(x) be defined via the right-hand side of (4.1). Then, u
satisfies the differential equation

(Au)(x) = −1, (4.2)

subject to u(b) = 0 and u′(0) = 0, where A is the second-order differential operator

A = (α − γ x)
d

dx
+ σ 2

2

d2

dx2
.
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Let ũ(·) be a twice continuously differentiable function with compact support that agrees
with u on [0, b]. Clearly, ũ and its derivatives are bounded. Applying Itô’s formula, we
find that

dũ
(
X(t)

)= (Aũ)
(
X(t)

) + σ ũ′(X(t)) dB(t)+ ũ′(X(t)) dL(t)

= (Aũ)
(
X(t)

) + σ ũ′(X(t)) dB(t),

because L increases only when X is at the origin and ũ′(0) = 0. The boundedness of ũ′
implies that

ũ
(
X(t)

) −
∫ t

0
(Aũ)

(
X(s)

)
ds

is a martingale adapted to B. The Optional Sampling Theorem yields

Exũ
(
X
(
T (b) ∧ t

))− ũ(x) = Ex

∫ T (b)∧t

0
(Aũ)

(
X(s)

)
ds

for t � 0. But ũ(X(t)) = u(X(t)) for t � T (b). Since Au = −1 on [0, b], we conclude
that

u(x) − Exu
(
X
(
T (b) ∧ t

)) = ExT (b) ∧ t. (4.3)

Sending t → ∞, the Monotone Convergence Theorem and the non-negativity of u
permit us to conclude that

u(x) � ExT (b).

Consequently, T (b) < ∞, Px a.s. Returning to (4.3) and applying the Bounded Conver-
gence Theorem yields the identity

u(x) − Exu
(
X
(
T (b)

)) = ExT (b).

But u(X(T (b))) = u(b) = 0, establishing the desired identity for ExT (b).
Theorem 4 establishes that X visits the origin infinitely often, so that X is a regen-

erative process. Applying the theorem in [12, p. 867] then proves the second assertion
of the theorem. �

Corollary 3.

b exp

(
−(γ b − α)2

γ σ 2

)
T (b) ⇒ c exp(1)

as b → ∞, where c = √
πσ 2/γ 3P(N(α/γ, σ 2/2γ ) � 0).

Proof. We need only establish that

ExT (b) ∼ c exp((γ b − α)2/γ σ 2)

b

as b → ∞. This can be proved easily via 1’Hopital’s rule. �
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According to corollary 3, the time to hit level b for a reflected O–U process grows
exponentially in the square of b. Continuing our comparison of the reflected O–U
process X with the RBM XR, we state the counterpart to theorem 2 for XR. As one
would expect, an RBM process crosses level b in a much shorter time span, namely, in a
time which grows exponentially in b.

Proposition 3. For b > 0, let T R(b) = inf{t � 0: XR(t) � b}, where XR is RBM with
drift −µ and variance σ 2. Then, for b > x,

ExT
R(b) = σ 2

2µ2

(
exp

(
2µb

σ 2

)
− exp

(
2µx

σ 2

))
− b − x

µ

Furthermore,

T R(b)

ExT
R(b)

⇒ exp(1)

as b → ∞.

The proof of this proposition follows the arguments in theorem 2 with −µ(d/dx)+
(σ 2/2)(d2/dx2) replacing A, and is therefore omitted. A related calculation can be found
in [8].

5. Behavior of the maximum

Let X∗(t) = max{X(s): 0 � s � t} be the maximum level the reflected O–U process X
attains in the time span [0, t]. To analyze X∗(t), we exploit the regenerative structure
of X. Specifically, we exploit the regenerative cycles formed by consecutive visits to the
origin that are “interlaced” with visits to level 1. Thus, a typical cycle involves a “first
passage” from 0 to 1, followed by another “first passage” from 1 to 0. The asymptotic
behavior of X∗(t) for large t will depend on Eτ , where τ is the duration of a typical
cycle. Note that Eτ = E0T (1)+ E1T (0). We computed E0T (1) in theorem 2; we now
compute E1T (0).

Proposition 4. For 0 � b < x,

ExT (b) =
√

4π

γ σ 2

∫ x

b

exp

(
(γ v − α)2

γ σ 2

)
g(v) dv

where

g(v) = P(0 � N � v)

(
P(0 � N � ∞)

P (0 � N � v)
− 1

)
.
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Furthermore,

Eτ =
√

4π

γ σ 2
P

(
N

(
α

γ
,
σ 2

2γ

)
� 0

)∫ 1

0
exp

(
(γ v − α)2

γ σ 2

)
dv.

The key to the proof of this proposition is to calculate Ex[T (b, z)], where
T (b, z) = inf{t : X(t) � b or X(t) � z} is the first time the process X exits the in-
terval (b, z). To compute u(x) � Ex[T (b, z)], one must solve the differential equation
given in (4.2), subject to u(b) = u(z) = 0. To find ExT (b) when b < x, one need then
only take the limit of Ex[T (b, z)] as z approaches ∞. Since many of the details of this
argument are similar to those found in theorem 2, we omit the proof.

Let .(n) be the time at which the nth regenerative cycle is completed, and let N(t)

be the number of cycles completed in [0, t]. The key to analyzing X∗(t) is to observe
that

X∗(t)
D≈ X∗(.(N(t)

)) = max
1�j�N(t)

X∗
j ,

where X∗
j = max{X(t): .(j − 1) � t < .(j)} is the maximum of X over the j th

cycle. But the regenerative structure implies that M∗
n = max{X∗

j : 1 � j � n} is the
maximum of n iid random variables, so that the classical extreme value theory for iid
random variables may be invoked. This then yields a limit law for X∗(t) as t → ∞; the
machinery for making this program rigorous can be found in [3].

Classical extreme value theory makes clear that the behavior of M∗
n will be gov-

erned by the tail behavior of the X∗
j ’s. Note that P(X∗

j > b) = P1(T (b) < T (0)).

Proposition 5. For 0 < x < b,

Px

(
T (b) < T (0)

) =
∫ x

0 exp(2((γ /2)v2 − αv)/σ 2) dv∫ b

0 exp(2((γ /2)v2 − αv)/σ 2) dv
. (5.3)

Proof. Fix b > 0 and let u(x) be given by the right-hand side of (5.3). Note that u
satisfies (Au)(x) = 0 for 0 < x < b, subject to u(0) = 0 and u(b) = 1. Noting that
X spends no time at the origin up to T (b) ∧ T (0) (so that L(T (b) ∧ T (0)) = 0), Itô’s
formula can be applied as in the proof of theorem 2 to obtain the desired conclusion. �

We are now ready to state the main result of this section, namely a limit theorem
for X∗(t).

Theorem 4.

√
log t

(
X∗(t)− α

γ
−
√(

σ 2

γ

)
log t +

(
σ 2

2γ

)
log log t

)
⇒
√
σ 2

4γ
1 + d



REFLECTED ORNSTEIN–UHLENBECK PROCESS 121

as t → ∞, where 1 is a Gumbel r.v. having distribution P(1 � x) = exp(−e−x) and

d = 1

2

γ 3/2

σ 3
− αγ 1/2

σ 3
+ 1

2

√
γ

σ 2
log

(
σ 3

2γ 3/2

1

Eτ
∫ 1

0 exp((γ /σ 2)(v − α/γ )2) dv

)

Proof. By lemma 1.1 of Asmussen [3] (which follows the formulation given in [16]),
the proof is complete once one shows that

√
log t

(
M∗

�t/Eτ� − α

γ
−
√(

σ 2

γ

)
log t +

(
σ 2

2γ

)
log log t

)
⇒
√
σ 2

4γ
1 + d (5.4)

as t → ∞. Set a(t) = (log t)−1/2 and b(t) = α + ((σ 2/γ ) log t + (σ 2/2γ ) log log t)1/2.
The weak convergence relation (5.4) is equivalent to

t

Eτ
log
(
1 − P

(
X∗

1 > xa(t) + b(t)
)) → − exp

(
−
√

4γ

σ 2
(x − d)

)
(5.5)

as t → ∞. For this choice of a(t) and b(t), P(X∗
1 > xa(t)+b(t)) = O(1/t) as t → ∞,

so the left-handed side of (5.5) is −tP (X∗
1 > xa(t)+b(t))/Eτ +o(1) as t → ∞. Given

the explicit formula (5.3) for P(X∗
1 > b), 1’Hôpital’s rule easily shows that

P(X∗
1 > b) ∼ bd̃ exp

(
− γ

σ 2
(b − α)2

)
(5.6)

as b → ∞, where

d̃ = (σ 2/2γ ) exp(γ /σ 2 − 2α/σ 2)∫ 1
0 exp((γ /σ 2)(v − α/γ )2) dv

.

In view of (5.5), the proof of the theorem is therefore complete once one shows that

log

(
t

Eτ

)
+log

(
xa(t)+b(t)

)+log d̃− γ

σ 2

(
xa(t)−b(t)−α

)2 → −
√

4γ

σ 2
(x−d) (5.7)

as t → ∞. However, proving (5.7) is reasonably straightforward, and so we omit the
details, thereby completing the proof. �

Corollary 5.

X∗(t)√
(σ 2/γ ) log t

⇒ 1

as t → ∞.

Remark 1. The behavior of the maximum process looks roughly like that associated
with Gaussian extrema. The reason for this is that the tail behavior described by (5.6)
is roughly that associated with a Gaussian distribution. (It would be precisely that of a
Gaussian distribution if the pre-multiplier b in (5.6) were instead b−1.)
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As in the previous section, it is of interest to compare the behavior of X∗(t) with
the maximum process associated with RBM. Let X∗

R(t) = max{XR(s): 0 � s � t}.
Berger and Whitt [4] prove the following result.

Proposition 6. If XR is RBM with drift α (α < 0) and variance σ 2, then

2
|α|
σ 2

X∗
R(t) − log 2

(
α

σ

)2

t ⇒ 1.

Contrasting proposition 6 to corollary 5, we see that X∗ grows approximately at
rate

√
log t , whereas X∗

R grows more like log t . Thus, we see the enormous impact the
linear term in the drift of the reflected O–U has on reducing the magnitude of the extreme
fluctuations associated with the number-in-system process. (Note these growth rates are
consistent with our results on level crossing times in section 4. Recall that there we saw
the expected time for a reflected O–U to cross a large level b was approximately eb

2
,

whereas this expected time was only eb for the corresponding RBM.)
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