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ABSTRACT

We discuss rare-event simulation methodology for compu
ing tail probabilities for infinite-server queues. Our theo
retical discussion also offers some new simulation insigh
into the change-of-measure associated with the Gärtner-E
theorem of large deviations.

1 INTRODUCTION

This paper is concerned with rare-event simulation in th
setting of infinite-server queues. Infinite-server queues p
an important role in queueing theory, as they form a mat
ematical idealization of systems in which many servers a
present. In particular, if a queue possesses a large nu
ber of servers, the structure of the infinite-server queue
largely inherited by the many-server system, provided th
the fraction of time that the many-server system has
servers busy is small.

Many-server queues have played a fundamental r
in the telecommunications modeling environment over th
years. In this setting, circuits can be identified with serve
In view of the large number of circuits that are typically
available to carry traffic, a many-server queueing model
often appropriate. Furthermore, quality-of-service consi
erations guarantee that the system will be engineered
such a way that the probability of finding all the server
busy is small.

In the telecommunications setting, such many-serv
queues typically exhibit “loss” whenever all the servers a
busy. In other words, connections are refused whenever
the circuits are busy. The corresponding “loss probabilit
is a fundamental performance measure for such syste
The tail probability for the number-in-system process for th
associated infinite-server queue often is a good approxim
tion to the loss probability for the many-server system. As
consequence, efficient computation of such tail probabiliti
for the infinite-server queue is of clear applied relevance
s
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In addition, infinite-server queues form an importan
class of models in their own right. In addition to their
mathematical importance within the queueing context, the
arise naturally in the study of electric power consumption
The number of electric power users consuming electricity ca
be viewed as the number-in-system process for an infinit
server queue. Thus, a tail probability for the infinite-serve
queue provides important information on peak load deman
characteristics for an electric power grid.

This paper is specifically concerned with the use o
rare-event simulation as a means of computing tail pro
abilities for the infinite-server queue. In particular, we
develop efficient algorithms for computing tail probabili-
ties for infinite-server queues with a high average arriva
rate. In view of the telecommunications and electric powe
examples described above, this asymptotic setting see
especially natural.

This paper is organized as follows. Section 2 offer
a problem formulation and describes the basic estimatio
approach we shall utilize. In Section 3, we survey relate
large deviations theory, while Section 4 provides additiona
discussion of our proposed algorithm. Computational resu
are given in Section 5.

2 PROBLEM FORMULATION AND BASIC
RESULTS

We start by giving a precise description of theGI/GI/∞
queue. Suppose that(Ak : k ≥ 1) is a non-decreasing
sequence in whichAk corresponds to the arrival time of the
k’th customer. If the system starts empty att = 0, and if
Vj denotes the “time-in-system” (or “processing time”) of
the j ’th customer, then the number of customersQ(t) in
the system at timet is given by

Q(t) =
∞∑
k=1

I (Ak ≤ t ≤ Ak + Vk).
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Let N(t) = max{n ≥ 0 : An ≤ t} be the counting process
corresponding to the number of arrivals in[0, t]. (By
convention, we setA0 = 0.) Then,Q(t) can be re-expressed
in terms ofN(·) as

Q(t) =
N(t)∑
k=1

I (Ak + Vk > t),

whereI (B) is the indicator random-variable (rv) associate
with the eventB.

Our goal here is to efficiently computeP(Q(t) > x),
where x is so large that{Q(t) > x} is a “rare-event”.
Throughout this paper, we will assume that:

Assumption A1. V = (Vn : n ≥ 1) is a sequence of inde
pendent and identically distributed (iid) random variable
independent ofN = (N(t) : t ≥ 0).

With this assumption in force, we find that

EQ(t) =
∫ t

0
P(V > t − s)EN(ds).

Thus, if N = (N(t) : t ≥ 0) is a point process with
stationary increments and arrival intensityλ = EN(1), it
follows that

EQ(t) = λ
∫ t

0
F̄ (s)ds,

where F̄ (t) = P(V > t) and F(t) = P(V ≤ t). The
event {Q(t) > x} will therefore tend to be “rare” when
x � λ

∫ t
0 F̄ (s)ds.

Our approach to computingα = P(Q(t) > x) will
be to apply importance sampling, with the selection of t
importance sampling distribution guided by the principles
large deviations theory (Bucklew 1990). The study of lar
deviations suggests first computing the moment genera
function of the rvQ(t). Under A1, we note that

E exp(θQ(t))

= EE[exp(θQ(t))|N ]

= EE[exp(θ
N(t)∑
i=1

I (Ak + Vk > t))|N ]

= E
N(t)∏
k=1

E[exp(θI (Vk > Ak − t))|N ]

= E
N(t)∏
k=1

(
eθ F̄ (t − Ak)+ F(t − Ak)

)
.

,

f

g

Continuing our calculation of the the moment generating
function of the random variableQ(t), we see that

E exp(θQ(t))

= E exp

N(t)∑
k=1

log
(
eθ F̄ (t − Ak)+ F(t − Ak)

)
= E exp

(∫
[0,t]

log(eθ F̄ (t − s)+ F(t − s))N(ds)
)
.

SetψQ(θ) = logE exp(θQ(t)). Suppose that there exists
a positive rootθ∗ of the equation

ψ ′Q(θ∗) = x.

The idea is to then generate variates from the “exponential
twisted” distribution given by

P ∗(dω) = exp(θ∗Q(t, ω)− ψQ(θ∗))P (dω.)

If E∗(·) is the expectation operator corresponding toP ∗,
thenα = P(Q(t) > x) can be expressed in terms ofE∗(·)
via the relation

α = E∗ exp(−θ∗Q(t)+ ψQ(θ∗))I (Q(t) > x).

The importance sampling algorithm for computingα now
involves first simulating iid replicates of the rv

W = exp(−θ∗Q(t)+ ψQ(θ∗))I (Q(t) > x)

under the probabilityP ∗. The estimator forα is then
obtained as the sample mean of the replicates generated

Example 1. Suppose thatN = (N(t) : t ≥ 0) is a Poisson
process with rateα > 0. It is known that the distribution
of Q(t) in thisM/G/∞ setting is Poisson distributed with
parameterλ

∫ t
0 F̄ (s)ds (see, for example, page 39 in Ross

(1983)). Consequently,

ψQ(θ) = λ
∫ t

0
F̄ (s)ds(eθ − 1).

Note thatθ∗ = log(x/(λ
∫ t

0 F̄ (s)ds)), and it follows
that we have

P ∗(dω) = exp(θ∗Q(t, ω)− λ(eθ∗ − 1)
∫ t

0
F̄ (s)ds)P (dω)

= exp(θ∗Q(t, ω)− (x − λ
∫ t

0
F̄ (s)ds))P (dω).
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In particular, we obtain the following probability mass func
tion for the random variableQ(t) under the probabiltyP ∗,

P ∗(Q(t) = k)
= exp(θ∗k − (x − λ

∫ t

0
F̄ (s)ds))P (Q(t) = k)

= exp(θ∗k − (x − λ
∫ t

0
F̄ (s)ds))

·
(
(λ
∫ t

0 F̄ (s)ds)
k

k! exp(−λ
∫ t

0
F̄ (s)ds)

)

= exp(−x)x
k

k! .

Thus, for a Poisson arrival stream, our algorithm replicat

exp(−θ∗Q(t)− (x − λ
∫ t

0
F̄ (s)ds))I (Q(t) > x),

whereQ(t) is generated underP ∗ so that it has a Poisson
distribution with meanx. So, our algorithm can be easily
implemented in the Poisson setting.

In the next section, we offer some motivation for ou
choice ofP ∗ as an importance distribution.

3 IMPORTANCE SAMPLING AND THE
GÄRTNER-ELLIS THEOREM

As was mentioned in the Introduction, the typical rea
world modeling environment that leads to infinite-serve
queues is one in which the arrival rate is large. Thus, w
will consider here the so-called “heavy-traffic” asymptoti
regime for infinite-server queues, in which we examine th
behavior of a sequence of infinite server queues having
arrival rate tending to infinity.

Let N = (N(t) : t ≥ 0), V = (Vj : j ≥ 1) and
(An : n ≥ 0) be defined as in Section 2. To send th
infinite-server queue into heavy-traffic, we speed up t
arrival process by a factor ofn, leaving the processing
times unchanged. More specifically, let

Nn(t) = N(nt)

be the arrival process feeding then’th system; the arrival
time of customerj in the n’th system is thenAj/n. The
number-in-system process for then’th system is then given
by

Qn(t) =
Nn(t)∑
j=1

I

(
Aj

n
+ Vj > t

)
.

g

n

The mean ofQn(t) is easily seen to be given by the followin
expression,

EQn(t) = nλ
∫ t

0
F̄ (s)ds.

Thus, a “rare-event” for then’th system is a deviation
in which Qn(t) > xn, wherex > λ

∫ t
0 F̄ (s)ds. We are

interested in efficient computation of

αn = P(Qn(t) > xn)

whenn is large.
The Gärtner-Ellis large deviations theorem describ

the asymptotic behavior ofαn for n large. It is generally
stated in an abstract form, and concerns a sequence of
valued rv’s(βn : n ≥ 1). The main hypothesis underlyin
the Gärtner-Ellis theorem is the following:

Assumption A2. There exists a real-valued functionψβ(·)
such that

1

n
logE exp(θβn)→ ψβ(θ) asn→∞.

Assuming that we wish to approximate the probabil
P(βn > nx), we also require:

Assumption A3. There exist positive constantsθ∗β and ε
such thatψβ(·) is continuously differentiable and strictly
increasing on[−ε, θ∗β+ε], with ψ ′β(0) < ψ ′β(θ∗β) = x. The
following result is due to Gärtner and Ellis (see page 15
Bucklew 1990).

Theorem 1. Under hypotheses A2 and A3,

1

n
logP(βn > nx)→−θ∗βx + ψβ(θ∗β)

asn→∞.
To apply this result to the analysis ofαn = P(Qn(t) >

xn), we setβn = Qn(t). The validation of hypothesis A2
requires the following condition on the counting processN :

Assumption A4. There exists a finite-valued functio
ψN such that for 0= t0 < t1 < . . . < tm = t and
(θ1, θ2, . . . , θm) ∈ Rm, we have

1

n
logE exp(

m∑
i=1

θi[N(nti)−N(nti−1)])

→
m∑
i=1

ψN(θi)(ti − ti−1)

asn→∞.
This assumption is satisfied by many different arriv

processes; see Dembo and Zajic (1995). The functionψN
will now be described in a couple of different modelin
contexts.
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Example 2. Suppose that the arrival process is renewal,
thatAk can be represented asAk = U1+ · · · + Uk, where
(Uk : k ≥ 1) is iid. Under suitable regularity conditions o
theUk ’s, Glynn and Whitt (1994) show that

ψN(θ) = −κ−1(−θ),

whereκ(θ) = log(E exp(θU1)), andκ−1(·) is the inverse
function toκ (ie. κ(κ−1(θ)) = κ−1(κ(θ)) = θ ).

Example 3. Here, we consider a Markov-modulated Poiss
process. In other words, there exists anS-valued continuous-
time Markov chainX = (X(t) : t ≥ 0) with generatorB
and functionf : S → (0,∞) such that the intensity of
the Poisson (arrival) process at timet is f (X(t)). Suppose
B is finite and irreducible. Then,ψN(θ) is the eigenvalue
of B + D(θ) having maximal real part, whereD(θ) =
diag((eθ − 1)f (x) : x ∈ S).

Under Assumption A4, Glynn (1995) proves the fo
lowing theorem.

Theorem 2. If Assumption A1 and A4 hold, then

1

n
logE exp(θQn(t))→

∫ t

0
ψN(log(eθ F̄ (x)+ F(x)))dx,

asn→∞.
Set

ν(θ) =
∫ t

0
ψN(log(eθ F̄ (s)+ F(s)))ds.

Suppose that the functionν(·)has the property that there exis
positive constantsθ∗∞ andε such thatν(·) is continuously
differentiable and strictly increasing on[−ε, θ∗∞ + ε], with
ν′(0) < ν′(θ∗∞) = x. Then, Theorem 1 ensures that

1

n
logP(Qn(t) > xn)→−θ∗∞x + ν(θ∗∞) (1)

asn→∞. The above limit suggests the approximation

P(Qn(t) > xn) ≈ exp(n(−θ∗∞x + ν(θ∗∞))),

whenn is large.
Simulation offers a means of computingP(Qn(t) > xn)

to a much higher level of precision than that associated w
the approximation. The rare-event simulation algorith
proposed in Section 2, when applied to the computation
αn = P(Qn(t) > xn), suggests the use of the importanc
distribution

P ∗n (dω) = exp(θ∗nQn(t, ω)− logE exp(θ∗nQn(t)))P (dω),

where θ∗n is the root of d/dθ logE exp(θ∗nQn(t)) = xn

and P(·) is the original probability associated with th
f

probability space supportingQn(t). An estimator forαn is
then obtained via the sample mean of replications of the

Wn = exp(−θ∗nQn(t)+logE exp(θ∗nQn(t)))I (Qn(t) > xn)

simulated under the distributionP ∗n . Let E∗n(·) be the
expectation operator corresponding toP ∗n . The Cauchy-
Schwarz inequality implies that for any unbiased estimato
Wn of αn,

EW2
n ≥ (EWn)

2 = α2
n.

Thus, under the conditions leading to (1), we have

lim
n→∞

1

n
logEW2

n ≥ −2θ∗∞x + 2ψN(θ
∗∞). (2)

We will show momentarily that the lower bound on the right
hand side of (2) is achieved asymptotically by simulatin
Wn underP ∗n . In other words, the rvWn, when simulated
underP ∗n , achieves (in logarithmic scale) the highest possib
asymptotic efficiency (in the sense of minimizing the secon
moment of the estimator). We view this as an asymptot
justification for our use of the algorithm suggested in Sectio
2.

In fact, this result holds in great generality. To make
this point clear, we shall show that the result holds in th
general Gärtner-Ellis setting.

Theorem 3. Assume hypotheses A2 and A3 hold. i.) Le
(Wn : n ≥ 1) be a sequence of estimators ofP(βn > nx)

that is unbiased, in the sense thatEWn = P(βn > nx).
Then,

lim
n→∞

1

n
logEW2

n ≥ −2θ∗βx + 2ψβ(θ
∗
β).

ii.) Suppose that the variatẽWn given by exp(−θ̃nβn +
logE exp(θ̃nβn))I (βn > nx) is simulated under̃Pn(dω) =
exp(θ̃nβn(ω)) − logE exp(θ̃nβn))P (dω), where θ̃n is the
root of d/dθ logE exp(θ̃nβn) = nx andP(·) is the original
probability associated withβn. Then

ẼnW̃n = P(βn > nx)

and

lim
n→∞

1

n
log ẼnW̃

2
n = −2θ∗βx + 2ψβ(θ

∗
β),

where Ẽn(·) is the expectation operator associated wit
P̃n(·).
Proof. Part i.) follows in the same way that we derived
relation (2) above. For part ii.), it is easily verified that
the function logE exp(θβn) is convex inθ ; see Dembo and
Zeitouni (1998). It follows from the convexity property
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of logE exp(θβn) that we obtain the following asymptotic
result,

1

n

d

dθ
logE exp(θβn)→ d

dθ
ψβ(θ)

asn→∞; see Dembo and Zeitouni (1998). Furthermor
ψ ′β(·) is continuous and strictly increasing on(−ε, θ∗β + ε).
It therefore follows easily that̃θn → θ∗β as n → ∞ and

n−1 logE exp(θ̃nβn) → ψβ(θ
∗
β) as n → ∞. Since θ̃n is

positive forn sufficiently large,

W̃n = exp(−θ̃nβn + logE exp(θ̃nβn))I (βn > nx)

≤ exp(−θ̃nnx + logE exp(θ̃nβn))I (βn > nx)

≤ exp(−θ̃nnx + logE exp(θ̃nβn)).

Hence,

1

n
log ẼnW

2
n ≤ −2θ̃nx + 2

n
logE exp(θ̃nβn).

Sendingn→∞, we conclude that

lim
n→∞

1

n
log ẼnW̃

2
n ≤ −2θ∗βx + 2ψβ(θ

∗
β).

BecauseW̃n is clearly unbiased for estimation ofP(βn >
nx), part i.) immediately yields

lim
n→∞

1

n
log ẼnW

2
n = −2θ∗βx + 2ψβ(θ

∗
β),

as desired.
Thus, the importance distributioñPn is always guaran-

teed to yield a asymptotically optima “change-of-measur
(in logarithmic scale). So, the Gärtner-Ellis theory esta
lishes that the importance sampling algorithm introduce
in Section 2 is asymptotically optimal in “heavy traffic”.

Unfortunately, the importance distributionP ∗ suggested
in Section 2 is, in general, impossible to implement from
practical standpoint. While implementation is clearly poss
ble when the distribution ofQ(t) is known, such knowledge
will never be available in situations of practical interest (for i
such cases, simulation would be unnecessary). Any realis
implementation of importance sampling must involve de
scribing the change-of-measure at the level of the “buildin
blocks” of the process. In the setting of the infinite-serv
queue, the change-of-measure must be described at
level of the inter-arrival times and processing times. Sin
P ∗ does not lend itself to such a description (because
“twists” Q(t) and not the inter-arrival times and processin
times), we must instead search for an alternative change
measure that (hopefully) coincides asymptotically withP ∗.
The same general remarks unfortunately also apply to
Gärtner-Ellis change-of-measure described in Theorem
ic
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In Section 4, we explore an alternative change-of-measu
to P ∗ that has the appropriate asymptotic structure.

4 AN IMPLEMENTABLE RARE-EVENT
SIMULATION ALGORITHM

We wish to find a “change-of-measure” that coincides asym
totically (for large n) with the probabilityP ∗n discussed
earlier. Recall thatP ∗n is defined through the “twisting-
parameter”θ∗n , whereθ∗n → θ∗∞ and θ∗∞ is defined as the
root of

ν′(θ∗∞) =
∫ t

0
ψ ′N(eθ

∗∞ F̄ (t − s)+ F(t − s))

· eθ
∗∞ F̄ (t − s)

eθ
∗∞ F̄ (t − s)+ F(t − s)ds = x.

Recall that eθ
∗∞ F̄ (t − s)/(eθ∗∞ F̄ (t − s) + F(t − s)) is

the parameter of a Bernoulli random variable havin
meaneθ

∗∞ F̄ (t − s)/(eθ∗∞ F̄ (t − s) + F(t − s)). Note that,
ψ ′N(eθ

∗∞ F̄ (t − s) + F(t − s)) is the (asymptotic) mean
of the arrival process associated with exponential twi
eθ
∗∞ F̄ (t − s)+F(t − s). This suggests an importance sam

pling algorithm in which the arrival process (or, equivalently
the inter-arrival times) is twisted at times to have instan-
taneous arrival rateψ ′N(eθ

∗∞ F̄ (t − s)+ F(t − s)), and the
Bernoulli rv indicating that a customer arriving at times stays
until time t (i.e. has a processing time greater thant− s) is
twisted to have meaneθ

∗∞ F̄ (t−s)/(eθ∗∞ F̄ (t−s)+F(t−s)).
To precisely state our rare-event simulation algorithm

we need to specify the arrival process more exactly. S
Uk = Ak − Ak−1 for k ≥ 1.

Assumption A5. (Uk : k ≥ 1) is iid, with κ(θ) :=
logE exp(θU1) for θ ∈ R.

Our goal is to computeα = P(Q(t) > x) where
x � EQ(t).

Algorithm.

1. Compute the rootθ∗ to the equation

d

dθ

∫ t

0
κ−1(− log(eθ F̄ (t−s)+F(t−s)))ds

∣∣∣∣
θ=θ∗

= −x

and selectm, the total number of replications.
2. SetA← 0, L← 1, Q← 0, W ← 0.
3. GenerateU from the distribution

exp(κ−1(− log(eθ
∗
F̄ (t − A)+ F(t − A)))x

− κ(κ−1(− log(eθ
∗
F̄ (t − A)+ F(t − A)))))

× P(U ∈ dx),
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(eθ
∗
F̄ (t − A)+ F(t − A))

× exp(κ−1(− log(eθ
∗
F̄ (t − A)+ F(t − A)))x)

× P(U ∈ dx).

4. L← L · (eθ∗ F̄ (t − A)+ F(t − A))−1

·exp(−κ−1(− log(eθ
∗
F̄ (t − A)+ F(t − A)))U).

5. A← A+ U .
6. If A > t , go to 11.
7. Else, generate a Bernoulli rvI with parameter

eθ
∗
F̄ (t − A)

eθ
∗
F̄ (t − A)+ F(t − A).

8. Q← Q+ I .
9. L← L · e−θ∗I (eθ∗ F̄ (t − A)+ F(t − A)).
10. Go to 3.
11. W ← I (Q > x)L.
12. Replicate steps 2 through 11n independent times,

thereby computingW1,W2, . . . ,Wn.
13. The estimator forα is n−1∑n

i=1Wi .

A natural question that arises here is the efficiency o
the algorithm just described. As in Sections 2 and 3, w
offer an asymptotic “heavy-traffic” analysis of the estimato
above.

Suppose that we wish to computeαn = P(Qn(t) > nx),
whereQn(t) is as described earlier. The arrival process fo
systemn is accelerated by a factor ofn, so that thej ’th inter-
arrival time in systemn is justUj/n. Thus, the logarithmic
moment generating functionκn(·) for the inter-arrival times
in systemn is given by κn(θ) = logE exp(θU1/n) =
κ(θ/n). It is then easily verified thatκ−1

n (θ) = nκ−1(θ).
Hence, the rootθ∗ of the equation

d

dθ

∫ t

0
κ−1
n (− log(eθ

∗
F̄ (t − s)+ F(t − s)))ds|θ=θ∗

= n d
dθ

∫ t

0
κ−1(− log(eθ

∗
F̄ (t − s)+ F(t − s)))ds|θ=θ∗

= −nx

appearing in step (1) of the algorithm is independent ofn.
Also, the likelihood ratio of step (11) is equal to

Ln = (eθ∗ F̄ (t)+ F(t))−1

· exp(−n
Nn(t)∑
j=0

κ−1(− log(eθ
∗
F̄ (t − Aj

n
)

+ F(t − Aj
n
)))
Uj

n
− θ∗Qn(t))

(3)
f

Continuing our derivation of the likelihood ratio of step
(11), we see that

Ln = (eθ∗ F̄ (t)+ F(t))−1 · exp(−n
∫ n−1ANn(t)+1

0

κ−1(− log(eθ
∗
F̄ (t − n−1ANn(s))+ F(t − ANn(s))))ds

− θ∗Qn(t)).

(4)

Let E∗(·) denote the expectation operator associated w
the “change-of-measure” for systemn.
Theorem 4. Suppose thatU is a bounded rv, and that A1,
A4, and A5 hold. Assume that there exists a rootθ∗ to the
equation

d

dθ

∫ t

0
κ−1(− log(eθ

∗
F̄ (t − s)+ F(t − s)))|θ=θ∗ = −x

and thatr(·) is continuously differentiable on[0, t + 1],
wherer(s) = κ−1(− log(eθ

∗
F̄ (t − s)+ F(t − s))). Then,

1

n
logE∗I (Qn(t) > xn)L2

n

→−2θ∗x−2
∫ t

0
κ−1(− log(eθ

∗
F̄ (t−s)+F(t−s)))ds

asn→∞.
Proof. The key is formula (3) for the likelihood ratio. The
exponent appearing in (3) is just

−n
∫ n−1ANn(t)+1

0
r(n−1ANn(s))ds − θ∗Qn(t)

= −n
∫ t

0
r(s)ds − θ∗Qn(t)

−n
Nn(t)∑
j=0

∫ Aj+1/n

Aj /n

[r(n−1ANn(s))− r(s)]ds

≤ −n
∫ t

0
r(s)ds − θ∗Qn(t)

+n sup
0≤u≤t+1

|r ′(u)|
Nn(t)∑
j=0

∫ Aj+1/n

Aj /n

(s − Aj/n)ds

≤ −n
∫ t

0
r(s)ds − θ∗Qn(t)

+n sup
0≤u≤t+1

|r ′(u)|
Nn(t)+1∑
j=0

U2
j /n

2

= −n
∫ t

0
r(s)ds − θ∗Qn(t)+O(1/n)
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where theO(1/n) term above is deterministic. It follows
that

I (Qn(t) > xn)L2
n

≤ I (Qn(t) > xn)(eθ
∗
F̄ (t)+ F(t))−1

exp(−2n
∫ t

0
r(s)ds − 2θ∗Qn(t)+O(1/n))

≤ exp(−2n
∫ t

0
r(s)ds − 2θ∗xn+O(1/n)).

Hence, we obtain the following “limit-supremum” result
that is critical to the justification of the desired limit,

lim
n→∞

1

n
logE∗I (Qn(t) > xn)L2

n

≤ −2
∫ t

0
κ−1(− log(eθ

∗
F̄ (t− s)+F(t− s)))ds−2θ∗x.

The corresponding “limit-infimum” result necessary to reac
our desired limit follows from the same argument as in
Section 3 (namely,I (Qn(t) > xn)Ln is unbiased for
P(Qn(t) > xn), and the latter probability converges in
logarithmic scale via the Gärtner-Ellis theorem).

Theorem 4 establishes that our algorithm produces es
mates that are asymptotically optimal (in logarithmic scale

5 A NUMERICAL EXAMPLE

In this section, we provide a numerical example to comple
ment the theoretical developments of the previous section
More precisely, we findα = P(Q(t) > x) via simulation
for two different systems and for several different values o
x. We first consider anM/M/∞ system, and secondly a
G/M/∞ system with iid inter-arrival times distributed as
an hyper-exponential (H2) rv with density

f (x) = pλ1e
−λ1x + (1− p)λ2e

−λ2x, x ≥ 0.

TheH2 distribution is the mixture of two exponential dis-
tributions, and for this reason it is useful when modeling
the arrivals of two different classes of customers.

In these simulations, we chooset = 500, λ = 1 in
the M/M/∞ system;λ1 = 1, λ2 = 2, andp = 0.8 in
the H2/M/∞ system; andµ = 0.01 for both systems.
The values ofx considered arex = 120,130,140 for both
systems, so that{Q(t) > x} becomes a “rare-event” asx
increases.

We obtain two estimators. The first one isα̃(n), the
estimator obtained by conventional Monte Carlo simulatio
resulting from computing the sample mean formed from
n = 1000 iid replications of the random variableI (Q > x).
Our second estimator isα(n), formed by computing the
average ofn iid replicates of the rvI (Q > x)L, whereQ
i-
.

-
s.

is obtained using the Algorithm described in the previous
section.

In order to compare the efficiency of these estimators
we repeatm = 1000 times the simulation just described.
The sample mean (sample standard deviation) overm of
these estimators producesα̃(n,m) andα(n,m) (s̃(m) and
s(m)).

In Tables 1 and 2 we summarize our results. In eac
case we displaỹα(n,m), α(n,m), s̃(m), and s(m). In
addition, to validate our results we also include the true
value of α; a known value in theM/M/∞ setting, and
obtained with a very long simulation in theH2/M/∞ case.
To make more explicit the impact of our estimator, the las
row in the tables shows the ratio of the estimator standar
deviationss(m)/s̃(m).

Table 1:M/M/∞ Tail Probability Simulation
Tail parameterx

Parameter 120 130 140
α 0.0192 0.0014 4.77e-5
α̃(n,m) 0.0184 0.0012 6.5e-5
α(n,m) 0.0194 0.0015 4.75 e-5
s̃(m) 4.25e-3 1.16e-3 2.37e-4
s(m) 3.41e-3 3.26e-4 1.65e-5
s̃(m)/s(m) 1.25 3.56 14.4

Table 2:H2/M/∞ Tail Probability Simulation
Tail parameterx

Parameter 120 130 140
α 0.173 0.0334 0.0034
α̃(n,m) 0.175 0.0345 0.0030
α(n,m) 0.174 0.0337 0.0033
s̃(m) 0.0503 0.0269 6.7e-3
s(m) 0.0457 9.83e-3 1.23e-3
s̃(m)/s(m) 1.10 2.74 5.45

The conclusion we draw from these simulations is
that our estimator becomes much more efficient than th
conventional Monte Carlo estimator as the tail parameterx

increases, for both theM/M/∞ and theH2/M/∞ systems.

REFERENCES

Bucklew, J. A. 1990.Large Deviations Techniques in De-
cision, Simulation, and Estimation. New York: Wiley.

Dembo, A., and T. Zajic. 1995. Large Deviations: From
Empirical Mean and Measure to Partial Sum Process
Stoc. Proc. and Appl.57: 191-224.

Dembo, A., and O. Zeitouni. 1998.Large Deviations
Techniques and Applications. New York: Springer-
Verlag.

Glynn, P. W., and W. Whitt. 1994. Large Deviations
Behavior of Counting Processes and their Inverses
Queueing Systems17: 107-128.



Szechtman and Glynn

r

an-
e
n

e
ord
nd
p-
r
s.
Glynn, P. W. 1995. Large Deviations for the Infinite Serve
Queue in HeavyTraffic .IMAVolume 71 in Mathematics
and its Applications. New York: Springer-Verlag 387-
395.

Ross, S. H. 1983.Stochastic Processes.New York: Wiley.

AUTHOR BIOGRAPHIES

ROBERTO SZECHTMAN completed a Ph.D. in the De-
partment of Management Science and Engineering at St
ford University in 2001. His research interests includ
applied probability, simulation theory, and supply chai
management.

PETER W. GLYNN is professor of Management Scienc
and Engineering, and was named to the Thomas W. F
chair in 1996. He develops computational algorithms a
simulation techniques for complex stochastic systems. A
plications of his work include performance analysis fo
computer, telecommunications, and manufacturing system


	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

	01: 416
	02: 417
	03: 418
	04: 419
	05: 420
	06: 421
	07: 422
	08: 423


