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Performance evaluation of computer systems, networks, 
and applications often involves analysis of long-run system 
characteristics. Many characteristics of interest can be ex- 
pressed as time-average limits of the form 

r(f) = lira 1 / t  ,-~oo ? f(x(~)) du, 

where f is a real-valued function and { X( t )  : t _> 0 } is the 
underlying stochastic process that  records the state of the 
system as it evolves over continuous time. In this paper we 
assume that  { X(t) : t > 0 } can be represented as a general- 
ized semi-Markov process (GSMP) and consider simulation- 
based methods for obtaining point estimates and confidence 
intervals for time-average limits. We also consider time- 
average limits of the form 

n--1 

j=O 

where { (S~, Cn) : n _> 0 } is the general state space Markov 
chain used to define the GSMP (see below). 

When the output  process { f(X(t)): t > 0 } or { ](Sn, 
Cn): n > 0} obeys a central limit theorem (CLT), there 
are two main approaches to obtaining an asymptotic confi- 
dence interval for the time-average limit. The first approach 
is to derive the confidence interval using a limit theorem in 
which the variance constant that  appears in the CLT is "Can- 
celled out" [6] and hence need not be estimated. "Cancel- 
lation" procedures of this type include [5, 6, 7] the original 
"standardized time series" ( s i s )  area and maximum meth- 
ods, the original methods of batch means and spaced batch 
means (where the number of batches is independent of the 
simulation run length), and the sws-weighted-area method. 
The second approach is to consistently est imate the variance 
constant. Procedures of this type include the regenerative 
method [13], the method of "variable" batch means (where 
the number of batches increases as the run length increases), 
and spectral methods [1]. 

I t  is usually nontrivial to determine for a specified GSMP 
model whether time-average limits are well defined. I t  is 
even harder to determine whether the output  process obeys 
a CLT and, if so, whether a specified estimation method is ap- 
plicable. Most conditions in the l i terature involve unrealistic 
assumptions--such as stat ionari ty of the output  process--or  

*Almaden Research Center, IBM Research Division, pe- 
terh@almaden.ibm.com 
tDept,  of Management Science and Engineering, Stanford 
University, glynn~leland.stanford.edu 

are difficult to verify. In this paper  we provide new condi- 
tions on the building blocks of a QSMP under which long-run 
estimation problems are well defined and a variety of cancel- 
lation and consistent estimation methods are provably valid. 

Our first set of results provides building-block conditions 
under which time-average limits exist and the output  pro- 
cess { f ( X ( t ) )  : t > 0 } or { ](Sn, On): n > 0 } obeys a func- 
tional central limit theorem (FCLT). Roughly speaking, a 
continuous-time stochastic process with time-average limit 
r obeys an FCLT if the associated cumulative (i.e., time- 
integrated) process, centered about the deterministic func- 
tion g(t) = rt and suitably compressed in space and time, 
converges in distr ibution to a Brownian motion as the de- 
gree of compression increases; the definition of an FCLT for 
a discrete-time process is similar. When an FCLT holds, the 
output  process obeys an ordinary CLT. Moreover, the valid- 
ity of a broad class of cancellation methods-- including all of 
those mentioned above--follows directly from results in [6]. 
Our moment conditions are significantly weaker than those 
in [9, 11] and, in fact, appear to be the weakest conditions 
possible. 

• Our remaining results provide building-block conditions 
under which various estimators of the variance constant in 
the CLT for the output  process are (weakly) consistent, so 
that  confidence intervals based on these variance estima- 
tors are asymptotically valid. We use a coupling approach 
to extend consistency results for variance estimators from 
a stat ionary to a non-stat ionary setting. By combining this 
approach with known results for s tat ionary processes, we ob- 
tain sufficient conditions under which a class of "quadratic 
form" variance estimators are consistent. This class includes 
batch means and spectral estimators. Our results comple- 
ment those of [4], which establish strong consistency for vari- 
ance estimators under the harder-to-verify assumption tha t  
the output  process obeys a strong invariance principle. For 
example, it appears difficult to establish strong consistency 
for the popular version of variable batch means in which 
the number of batches grows as the 2/3 power of the run 
length- -our  results can be used to establish weak consis- 
tency for this method. 

Generalized Semi-Markov Processes 
The GSMP [13] is the tradit ional  model for a discrete-event 
stochastic system. A CSMP { X(t) t > 0 } is a continuous- 
t ime stochastic process that  makes a state transit ion when 
one or more "events" associated with the occupied state 
occur. Events associated with a state compete to trigger the 
next state transit ion and each set of trigger events has its 
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own probabil i ty distribution for determining the new state. 
At  each state transition, new events may be scheduled. For 
each of these new events, a clock indicating the t ime until the 
event is scheduled to occur is set according to a probabil i ty 
distribution that  depends on the old state, the new state, 
and the set of events that  triggers the s ta te  transition. If 
a scheduled event is not in the set of events that  triggers a 
s ta te  transition but  is associated with the new state, then its 
clock continues to run down (at a s tate-dependent  speed); 
if such an event is not associated with the new state, it  is 
canceled and the corresponding clock reading is discarded. 
A GSM~ is formally defined in terms of an underlying Markov 
chain { (S~, C~) : n > 0 }, where S~ is the s ta te  and Cn is the 
vector of clock readings just  after the n th  s ta te  transition. 

Limit Theorems 
Denote by S the state space of the ~SMP and by E the 
(finite) set of events; see [13] for details. Also, for s 6 S, 
denote by E(s) (C E) the set of events tha t  can possibly 
occur in state s. Whenever the current s tate is s and event 
e 6 E(s)  occurs, the ~SMP makes a transition to state s' 6 
S with probabili ty p(s';s,e).  For s,s '  6 S write s ~ s '  
if p(s ';s ,e)  > 0 for some e 6 E(s),  and write s ~,~ s '  if 
s = s (°) --~ s (1) --~ • .- --~ s (~) = s' for some k >_ 1 and states 
s (~), s(U), . . . ,  s (a-~) ~ S. The GSMP is irreducible if s ~ s' 
for each s, s ~ ~ S. Denote by r(s, e) the speed at which the 
clock for event e ~ E(s) runs down to 0 in state s. Finally, 
denote by ~ the initial distribution of the underlying chain: 
#(A) = P {  (So, Co) e A}.  We assume tha t  each event e is 
"simple" with clock-setting distribution F ( .  ; e). 

DEFINITION 1. Assumption PD(q) is said to hold for a 
specified OSMP and real number q > 0 if (i) the s ta te  space 
S is finite, (ii) the GSMP is irreducible, (iii) each clock speed 
r(s, e) is positive, and (iv) there exists 0 < ~ <_ c¢ such 
tha t  each clock-setting distribution function has finite qth 
moment  and a density component that  is positive and con- 
tinuous on (0, ~). If the requirement of finite qth moments is 
replaced by the requirement tha t  there exist a real number 
v > 1 such that  f ~  v ~ dF(x; e) < c~ for each e ~ E,  then 
Assumption PDE is said to hold. 

We first give conditions under which time-average limits 
are well defined. Let ~ be the state space of the underlying 
chain { (Sn ,Cn):  n _> 0}. For (s,c) e ~,  denote by t*(s,c)  
the time, start ing in state s with clock-reading vector c, 
until the next s tate transit ion of the GSMP. Also, for u >_ 0, 
denote by 7./~ the set real-valued functions h defined on Z 
that  satisfy ]h(s,c)] < a + b (t*(s,c)) ~ for some a,b > O. 
Write x V y = max(x,  y). 

THEOREM 1. If  Assumption PD(1) holds, then, for any 
function f :  S ~ ~,  there exists a finite constant r ( f )  such 
that l i m i t e d ( I / t ) f 0  ~ f ( x ( u ) ) d u  = r( f )  a.s. for any initial 
distribution #. I f  Assumption PD(u V 1) holds (u >_ 0}, 
then, for any f E 7t~, there exists a finite constant ~(f) 

• n - - 1  such that h m ~ c ~ ( 1 / n )  ~j=o ](Sj ,  Cj) = ~(]) a.s. for any 
initial distribution i~. 

We nOW g ive  FCLT'S in continuous and discrete time. De- 
note by C[0, 1] the set of continuous real-valued functions 
defined on [0, 1], by :=~ weak convergence on C[0,1], and 
by W = { W( t )  : 0 < t < 1 } a s tandard  Brownian motion; 

see [2, 10]. When quantities r(.f) and ~(])  exist, define se- 
quences of C[0, lJ-valued random functions { Uv(f) : ~ >_ 0 } 
and V l ( f ) ,  U2(f ) , .  • • by setting 

and 

1 f0 ~t U~( / ) ( t )  = ~ (](SL~j, Ct~j) - ~(])) du 

for 0 < t  < 1, v > 0 ,  a n d n  E { 1 , 2 , . . . } .  (I-Iere [xJ is the 
greatest integer less than or equal to x.) 

THEOREM 2. I f  Assumption PD(2) holds, ~lhen, for any 
Function f :  S ~ ~, there exists a ( f )  e [0,¢w) such that 
U~(f) ~ a ( f ) W  as v ~ c~ for any initial distribution ~ : .  I f  
Assumption PD(2(uV 1)) holds (u > 0), t hen;,~for any f f  E 
7-l~, there exists 5 ( f )  E [0, c~) such that U~(.f) ~ 5 ( f ) W  
as n --~ c~ for any initial distribution #. 

Theorems 1 and 2 are established by arguing, as in [9], 
that  sample paths  of the output  process can be decomposed 
into identically distr ibuted,  one-dependent cycles under the 
conditions of the theorems. Then, using a drift condition in 
[9], a martingale-based bound for functionals of a Markov 
chain [12, Th. 14.2.3], an argument similar to the proof of 
Wald 's  moment identity, and a well known bound on mo- 
ments of random iid sums [8, Theorem 1.5.2], we show tha t  
the sum of the output  process over a cycle has finite first 
and second moments under the conditions of Theorems 1 
and 2, respectively. The desired results now follow, as in [9, 
10], from well known theorems for wide-sense regenerative 
processes. 

Consistent Estimation Methods 
For ease of exposition, we assume henceforth that  Assump- 
tion PDE holds. Let .f be a function tha t  is polynomially 
dominated in the sense tha t  ] E 7-/u for some u >_ 0, and set 
~(n; ] )  = ( l / n ) ~ _ - ~  ](Sj ,  Cj). It  follows from the results 
of the previous section toge the r  with the continuous map- 
ping theorem that  l i m ~ o o  ~(n; f )  = ~(])  a.s. for some finite 
constant 9 ( f ) - - s o  that  the point est imator ~(n; ] )  is strongly 
consistent for 9 ( ] ) - - a n d  n 112 (~(n£ ] ) - ~ ( ] )  ) :- 5(])N(O, 1) 
as n ~ c~ for some constant 5 ( f )  6 [0, oo). Suppose tha t  
52(] )  > 0 (the usual case) and we can find an est imator  
V~ tha t  is consistent for the variance constant 5 "2 ( ] )  in that  
V~ :=~ 5~ (] )  as n --+ c¢. Then s tandard  arguments show tha t  
[eCn; 1 )  - ]) + is  a n  asymp- 
totic 100p% confidence interval for ~(.f), where zp is the 
(1 + p)/2 quantile of the s tandard  normal distribution. We 
now discuss methods for consistently est imating 5s( ] ) - - -our  
emphasis is on methods that  do not require regenerative 
structure as in [13]. After presenting the main results in 
the discrete-time setting, we briefly describe the extension 
to continuous time. 

Consider a variance est imator of the form 

i=0  j = 0  

where each q~) is a finite constant and ¢l,-(n),j -- q~) for all 
i, j .  Such a quadratic-form est imator V~ is said to be local- 
ized if there exist a constant a l  E (0, oo) and sequences 
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{a2(n):  n k 0} and {re(n) :  n k 0} of nonnegative con- 
stunts with a2(n) --~ 0 and m ( n ) / n  ~ 0 such that (i) 

(n) 
Iqi.jl <- a l / n  if l i -  Jl < re(n) and (ii) ]q}3)l -< a2(n)/n 
if li - Jl > re(n). A loc-alized estimator has the property 
that, as more and more observations of the output process 
are obtained, the influence of any one observation on the 
value of the estimator becomes negligible. 

For a process { Zn : n _> 0 } with variance constant 52, the 
discrete time batch means estimator of 52 based on b batches 
of length m is given by 

b 
Vn(B) = b m i  E ( . ,~n ( j )  - . ,~) 2 (1) 

j=l 

for n = bm (the case that we always consider), where 
x..,jm-1 l~,( j )  = (l/m)z-.,/=(j-1)~n Zi is the j th  batch mean (1 _< 

b .,~ • j _< b) and Xn = ( l / b ) ~ j = l  -(3). The class of spectral 
estimators comprises variance estimators of the form 

m-1 
= (2) 

h=-(m-1) 

where lib (n -1 n-lhI-1 _ _  = -Ihl) Ei=0 (Zi 2=)(Zi+lhl -- 2=) 
and Zn ( l /n)  ~-1 = ~ i=0  Zi. The function ~ is the "lag win- 
dow," and we restrict attention to the class A of lag win- 
dows such that (i) A is continuous on [-1,  1], (ii) X(x) = 
~ ( -x ) ,  (iii) A(0) = 1, (iv) ~(x) = 0 for x ¢ [-1,1],  (v) 
sup_l<x< 1 IX(x)l < c~, and (vi) l i m ~0(1  - )~(x))/Ix[ q = a 
for so-me q , a  E (0, co). This class includes modified- 
Bartlett, Harming, and Parzen windows; see [1, p. 527]. As 
shown in [14], the foregoing batch means and spectral es- 
timators can be represented as quadratic-form estimators, 
and it is easy to verify that these estimators are localized. 

We also restrict attention to "aperiodic" GSMP'S, which 
are defined as follows. A d-cycle (d >_ 1) exists for a GSMP 
with state space S if and only if S can be partitioned into 
mutually disjoint subsets $1, $2 , . . . ,  Sd such that s ~ E S/+1 
whenever s ~ d and s E S~; here ~ is defined as bee- 
fore, and we take Sd+l = $1. The period of a GSMP is 
the largest integer d for which a d-cycle exists. A GSMP with 
period 1 is called aperiodic. It can be shown that  if Assump- 
tion PDE holds for an aperiodic OSMP, then the underlying 
chain { (Sin C~) : n _> 0 } is Harris ergodic, and a coupling 
argument then establishes the following result. 

THEOREM 3. Let { (Sn, Cn) : n~)  0 } be the underlying 
chain of an aperiodic GSMP and ff be a polynomially dom- 
inated real-valued function defined on Z. Suppose that As- 
sumption PDE holds, so that there exists an invariant distri- 
bution Ir for the chain and { f ( Sn , Cn ) : n _> O} obeys a CLT 
with variance constant ~2 ( f ) .  I f  a localized quadratic-form 
estimator Vn(]) satisfies Vn(f)  =~ 52(]) when the initial 
distribution is ~r, then Vn(]) =~ ~ ( ] )  for any initial distri- 
bution. 

To obtain sufficient conditions for consistency of, e.g., 
batch-means and spectral variance estimators under the hy- 
potheses of Theorem 3, we use the Harris ergodicity of 
the underlying chain in combination with standard moment 
bounds for Markov chains [12] and general results on consis- 
tent estimation in the stationary regime [1, 3] to establish 
consistency when the initial distribution of the underlying 
chain is the invariant distribution. Finally, we apply Theo- 
rem 3 to obtain the following result. 

THEOREM 4. Let { (S,~, Cn) : n >  0 } be the underlying 
chain of an aperiodic GSMP and f be a poIynomially dom- 
inated real-valued function defined on ~.  Suppose that As- 
sumption PDE holds, so that ( f ( S n , C n ) :  n > 0} obeys a 
CLT with variance constant 5~( f ) .  

(i) I f  the number of batches b = b(n) and batch length m = 
re(n) satisfy b(n) ~ oo and re(n) ~ c~ as n --~ c~, 
then  as n where  is as  in  
(1) with Z,~ = f ( S . ,  C~). 

(i 0 I f  the spectral window length m = re(n) satisfies 
re(n) ~ ~ and m2(n)/n ~ O, then Y~ s) ~ a2(])  
as n ~ oo, where V~ (s) is as in (2) with X E A and 
z .  = ] ( s . ,  on). 

Standard Cram6r-Wold arguments extend the foregoing 
development to RCvalued functions ] ,  and we can apply 
the delta method to extend the preceding methodology to 
handle functions of time-average limits of the form ~(ff). In 
particular, a time-average limit r ( f )  in continuous time can 
be expressed as r ( f )  = e(f t*)/~(t*),  where ( f t*)(s ,c)  = 
f(s) t*(s ,  c), and our results extend to the continuous-time 
setting. 
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