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ABSTRACT

A constrained Monte Carlo problem arises when one com-
putes an expectation in the presence of a priori computable
constraints on the expectations of quantities that are cor-
related with the estimand. This paper discusses different
applications settings in which such constrained Monte Carlo
computations arise, and establishes a close connection with
the method of control variates when the constraints are of
equality form.

1 INTRODUCTION

This paper is concerned with “constrained Monte Carlo”
computation. In particular, suppose that we wish to compute
an expectation of the form α = E X via a sampling-based
method. In many applications settings, there exists a random
vector Y , correlated with X , for which one has a priori
knowledge that EY lies in some known set B . For example,
if B is a singleton µ, we are dealing with an equality
constraint of the form EY = µ. This, of course, is precisely
the setting of the traditional method of control variates.
However, as we shall see in Section 2, the set B can also
describe inequality constraints, in which case a general
methodology capable of dealing with both equality and
inequality constraints on EY is needed.

In this paper, we will show how inequality constraints
can arise quite naturally in many applications. This is the
subject of Section 2. In the remainder of the paper, we
discuss one approach to the problem of constrained Monte
Carlo, and show how the proposed methodology coincides
asymptotically with the traditional method of control variates
when B exclusively describes equality constraints. In par-
ticular, in Section 3, we describe a nonparametric maximum
likelihood approach and relate its large-sample behavior to
control variates. In Section 4, we illustrate our theory with
an Asian option pricing example.

We are unaware of any previous literature on the prob-
lem of constrained Monte Carlo, at the level of generality

described here. However, recent work by Avellaneda and
his collaborators on a closely related “calibration” problem
that arises in the finance context contains come ideas that
parallel our proposals; see Avellaneda et al. (2000); and
Avellaneda and Gamba (2000). Nevertheless, the theorem
that we present in Section 3 appears to be new.

As mentioned above, this paper is largely concerned
with motivating the need for constrained Monte Carlo meth-
ods (Section 2), providing an analysis of the proposed
methodology in the context of equality constraints (Section
3), and giving numerical evidence of our results (Section
4). A complete discussion of constrained Monte Carlo in
the inequality setting can be found in Szechtman and Glynn
(2001).

2 CONSTRAINED MONTE CARLO
COMPUTATION

Suppose that we wish to compute α = E X , where X is
a real-valued random variable. We assume that we can
simulate independent and identically distributed (iid) repli-
cates X1, X2, · · · of the R

d -valued random vector X, where

X = (X1, · · · , Xd) and X1
D= X (where

D= denotes “equal-
ity in distribution”). In other words, the estimand X is just
the first component of the simulatable random vector X.

Constrained Monte Carlo deals with the situation in
which there exists a given set B ⊆ R

d for which it is
known that EX ∈ B . As mentioned in the Introduction, one
important such context is the setting of equality constraints.
Pure equality constraints arise when it is known that Y �
(X2, · · · , Xd ) satisfies the constraint EY = µ ∈ R

d−1 with
µ given. This is the problem environment within which the
traditional method of control variates is relevant.

However, there are many applications contexts within
which more complex constraints arise.

Example 1 Suppose that we wish to compute the
probability α = P(A) of the event A via importance
sampling. In this context, the estimator X for α takes
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the form X = I (A)L, where I (A) is the indicator of the
event A (i.e. I (A) is 1 or 0, depending in whether or
not the A occurs), and L is a suitable likelihood ratio;
see, for example, Glynn and Iglehart (1989). If we set
X = (I (A)L, L) (= (X1, X2)), note that EX ∈ B , where

B = {(x1, x2) : 0 ≤ x1 ≤ 1, x2 = 1}.

Example 2 There are many classical areas of applied prob-
ability in which various bounds on expectations and proba-
bilities have been deduced over the years. A good example
of such a bound is the Cramér-Lundberg inequality.

Specifically, let S = (Sn : n ≥ 0) be a random walk
that can be represented as Sn = Z1 + · · · + Zn , where
the Zi ’s are iid real-valued random variables. Suppose
that there exists θ∗ > 0 for which E exp(θ∗Z1) = 1 and
suppose that E Z1 < 0. The negative drift of the random
walk implies that Sn → −∞ a.s. as n → ∞, so that
M = max{Sk : k ≥ 0} < ∞ a.s. The random variable M is
of central interest in several different contexts. In particular,
P(M > x) describes the probability of ruin for an insurance
company that has initial reserve x . Also, M has precisely the
same distribution as the steady-state waiting time (exclusive
of service) in a single-server queue; see Asmussen (1987) for
additional details. The Cramér-Lundberg inequality states
that

P(M > x) ≤ exp(−θ∗x) (1)

for x ≥ 0.
Note that if we let Mm = max{Sk : 0 ≤ k ≤ m} be

our (simulatable) approximation to M , P(M > x) can be
approximately estimated by the estimator X = I (Mm > x).
If pm = P(Mm > x), it follows that a sample mean
formed from iid copies of X will have a standard deviation√

pm(1 − pm)/n, where n is the sample size. Given that
P(M > x) ∼ c exp(−θ∗x) as x → ∞ for some c ∈ (0, 1)

(here, a(x) ∼ b(x)) means that a(x)/b(x) → 1 as x → ∞)
is valid under modest additional regularity conditions
(Asmussen 1987, p. 269), it follows that the bound
(1) will be violated with substantial positive probability
for values of n that are of equal or smaller order than
exp(θ∗x). Thus, this is a setting in which constrained
Monte Carlo is potentially valuable, because the inequal-
ity constraint is likely to be active even for large sample sizes.

Example 3 There has been recent activity in exploiting the
method of Lyapunov functions to obtain a priori bounds on
steady-state expectations for Markov chains and processes;
see, for example Bertsimas, Gamarnik, and Tsitsiklis
(1998); Bertsimas, Gamarnik, and Tsitsiklis (2000); and
Kumar and Kumar (1994).

We offer here a different bound, with an elementary
proof. To set the stage, let Z = (Zn : n ≥ 0) be an S-
valued (time-homogeneous) Markov chain, and let P be the

(one-step) transition kernel given by

P(x, dy) = P(Z1 ∈ dy|Z0 = x)

for x, y ∈ S. Given a non-negative (measurable) function
h : S → R, let Ph be the function defined by

(Ph)(x) =
∫

S
h(y)P(x, dy)

for x ∈ S. Furthermore, for a probability η defined on S,
let ηP be the probability

(ηP)(·) =
∫

S
η(dx)P(x, ·)

and let ηh = ∫
S h(y)η(dy).

Our goal is to provide a bound on π f , where π is a
probability that is stationary for P in the sense that π = π P .
The quantity π f can typically be viewed as the steady-state
reward accrued per unit time, when f (x) is interpreted as
the reward received when Z spends one unit of time in x ∈ S.

Proposition 1. Suppose f and g are non-negative
functions and π is a stationary distribution for which
πg < ∞. If there exists a (measurable) set K ⊆ S such
that

(Pg)(x) ≤ g(x) − f (x) (2)

for x ∈ K c, then

0 ≤ π f ≤ sup{ f (x) + (Pg)(x) − g(x) : x ∈ K }

Proof. Since π is stationary and g is non-negative, πg =
π Pg. Furthermore, since πg < ∞, evidently π(P − I )g =
0. So,

0 =
∫

K
((Pg)(x) − g(x))π(dx)

+
∫

K c
((Pg)(x) − g(x))π(dx). (3)

On the other hand, (2) guarantees that

∫
K c

f (x)π(dx) ≤ −
∫

K c
((Pg)(x) − g(x))π(dx). (4)
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Consequently,

π f =
∫

K
f (x)π(dx) +

∫
K c

f (x)π(dx)

≤
∫

K
f (x)π(dx) −

∫
K c

((Pg)(x) − g(x))π(dx),

using (4)

=
∫

K
f (x)π(dx) +

∫
K
((Pg)(x) − g(x))π(dx),

using (3)

≤ sup{ f (x) + (Pg)(x) − g(x) : x ∈ K }.

The function g appearing in Proposition 1 is called a
Lyapunov function. By choosing g intelligently so as to
exploit the structure of P and f , one can use Proposition
1 to obtain good bounds on π f . For example, quadratic
candidates for g often give good bounds on π f , in the
setting of functions f that correspond to “queue-lengths”
in the queueing network context. Note that Proposition
1 holds for any Markov chain, and makes no recurrence
assumptions regarding Z (such as Harris recurrence). Meyn
and Tweedie (1993) is a good source for models that are
amenable to this type of Lyapunov analysis.

Proposition 1 also extends to continuous-time Markov
processes. As an illustration, we offer the following result.

Proposition 2. Let Z = (Z(t) : t ≥ 0) be a continuous-
time Markov chain on discrete state space S, having
generator (i.e. rate matrix) A. Suppose A is uniformizable
(i.e. ‖A‖ � sup{∑y∈S |A(x, y)| : x ∈ S} < ∞). Let f
and g be two non-negative functions for which πg < ∞,
where π is a probability satisfying π A = 0. If there exists
a set K ⊆ S such that (Ag)(x) ≤ − f (x) for x ∈ K c, then

0 ≤ π f ≤ sup{ f (x) + (Ag)(x) : x ∈ K } < ∞.

Proof. Let λ(x) = −A(x, x) be the jump rate for state
x ∈ S, and note that the uniformizability of A ensures that
sup{λ(x) : x ∈ S} = ‖A‖/2 < ∞. Also, the inequality
(Ag)(x) ≤ − f (x) is equivalent to

∑
y

R(x, y)g(y) ≤ g(x) − f (x)/λ(x),

where R = (R(x, y) : x, y,∈ S) is the stochastic matrix in
which R(x, x) = 0 and R(x, y) = A(x, y)/λ(x) for x �= y.
Set π̃ (x) = π(x)λ(x)/

∑
y π(y)λ(y). The uniformizability

of A ensures that π̃ is a stationary distribution for R satis-
fying π̃g < ∞. Consequently, we can follow the proof of

Proposition 1, yielding the inequality

∑
x

π̃(x) f (x)/λ(x)

≤
∑
x∈K

π̃(x)

(
f (x)

λ(x)
+ (Rg)(x) − g(x)

)
.

So ∑
x

π(x) f (x) ≤
∑
x∈K

π(x)( f (x) + (Ag)(x))

≤ sup{ f (y) + (Ag)(y) : y ∈ K }.

This bound on π f can be applied similarly as in discrete
time. It follows, from Propositions 1 and 2, that bounds on
steady-state expectations for Markov chains and processes
can easily be generated in practice. For additional discussion
of such bounds, see Zeevi and Glynn (2001).

3 NONPARAMETRIC MAXIMUM LIKELIHOOD
APPROACH TO CONSTRAINED MONTE
CARLO

Suppose that we can simulate n iid copies X1, X2, · · · , Xn

of the random vector X, with the goal of computing the
expectation α = E X1 of the first component of X. Given
the knowledge that EX ∈ B , a natural means of dealing
with such a constraint is to analyze the simulated data via
the principle of (nonparametric) maximum likelihood.

In particular, we look for a probability distribution
supported on the n sample points X1, · · · , Xn that maxi-
mizes the likelihood of the simulated data set, subject to
the constraint that the resulting probability distribution be
consistent with the knowledge that EX ∈ B . To be precise,
write Xi = (Xi1, · · · , Xid ). The nonparametric maximum
likelihood problem involves solving

max
p1,··· ,pn

n∏
i=1

pi

subject to pi ≥ 0, 1 ≤ i ≤ n and

n∑
i=1

pi = 1 (5)

(
n∑

i=1

pi Xi j : 1 ≤ j ≤ d

)
∈ B. (6)
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If the convex hull of X1, · · · , Xn intersects B , then the
above optimization problem has a feasible point. Further-
more, if B is convex, the above problem involves maximiz-
ing a strictly concave function (namely

∑n
i=1 log pi ) over

a convex set, so that any maximizer must be unique. Let
p∗ be the associated maximizer. The vector p∗ induces the
probability

µn(·) =
n∑

i=1

p∗
i δXi (·)

(here δXi (·) = I (Xi ∈ ·)), leading to the point estimator

α(n) =
∫

Rd
x1µn(dx).

Proposition 3. Suppose that B has an open interior B◦
and that EX ∈ B◦. Then, α(n) → α a.s. as n → ∞.

Proof. Without the constraint (6) on (p1, · · · , pn),
the solution of the nonparametric maximum likelihood
estimation problem is p̃i = 1/n, 1 ≤ i ≤ n. Consequently,
if n−1 ∑n

i=1 Xi ∈ B , the constraint (6) is not active at p̃,
so the “relaxed maximizer” p̃ actually maximizes the fully
constrained problem.

By the strong law of large numbers, n−1 ∑n
i=1 Xi →

EX a.s. as n → ∞. Given EX ∈ B◦, it follows that
n−1 ∑n

i=1 Xi ∈ B◦ ⊆ B for n sufficiently large, so that we
may conclude that

µn(·) = 1

n

n∑
i=1

δXi (·)

for n large enough. Thus α(n) = n−1 ∑n
i=1 Xi1 for n

sufficiently large, so that α(n) → E X1 a.s. as n → ∞ by
the strong law for iid sequences.

Thus, Proposition 3 provides a setting in which α(n)

is a (strongly) consistent estimator for α. Note, however,
that Proposition 3 does not cover the case in which Y =
(X2, · · · , Xd ) satisfies the equality constraint EY = µ. In
the remainder of this section, we study this important special
case. In particular, we will establish that the estimator α(n)

is asymptotically identical to the estimator associated with
the method of control variates. This suggests that at least
in this special setting, the estimator α(n) behaves sensibly
(and, in some sense, optimally).

Before discussing this result, we recall that the method
of control variates involves taking advantage of the fact that
the random variable X −λT (Y −µ) is an unbiased estimator
for α, regardless of the value of the “control coefficient”
vector λ. (Here we encode λ and Y as column vectors).
Assuming that the covariance matrix � � E(Y −µ)(Y −µ)T

is non-singular, the variance of the estimator is minimized

over λ via the choice

λ∗ = �−1 · E XỸ ,

where Ỹ = Y −µ; see Lavenberg and Welch (1981). Since
the covariance matrix � and the covariance vector E XỸ are
typically unknown, one estimates λ∗ from the n simulated
replicates (X1, Y1), · · · , (Xn, Yn) of (X, Y ) as follows:

λn =
(

1

n

n∑
i=1

Ỹi Ỹ
T
i

)−1

· 1

n

n∑
i=1

Xi Ỹi

where Ỹi = Yi − µ. This leads to the control variates
estimator

αc(n) = 1

n

n∑
i=1

Xi − λT
n

1

n

n∑
i=1

Ỹi .

On the other hand, the optimization problem defining
the probability vector p∗ = p∗

n is, in the setting of equality
constraints,

max
p1,··· ,pn

n∑
i=1

log pi

subject to pi > 0 for 1 ≤ i ≤ n and

n∑
i=1

pi = 1 (7)

n∑
i=1

pi Ỹi = 0. (8)

The standard means of solving such an optimization
problem is to temporarily ignore the non-negativity con-
straints and to introduce Kuhn-Tucker multipliers γn ∈ R

for (7) and νn ∈ R
d−1 for (8). At the maximizer

p∗
n = (p∗

n1, · · · , p∗
nn)T , the multipliers should satisfy

(1/p∗
ni ) − νT

n Ỹi − γn = 0 (9)

for 1 ≤ i ≤ n. Multiplying through (9) by p∗
ni and summing

over i , we get

n − νT
n

n∑
i=1

p∗
ni Ỹi − γn

n∑
i=1

p∗
ni = 0.

Hence γn = n and (9) implies that

p∗
ni = (n + νT

n Ỹi )
−1 (10)
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for 1 ≤ i ≤ n. Multiplying through (10) by Ỹi and summing
over i , we arrive at the equation

n∑
i=1

Ỹi (n + νT
n Ỹi )

−1 = 0.

In other words, the multiplier νn that characterizes p∗
n via

relation (10) is a root of the equation fn(ν) = 0, where
fn : R

d−1 → R
d−1 is given by

fn(ν) =
n∑

i=1

Ỹi (n + νT Ỹi )
−1.

Given the root νn ∈ R
d−1, α(n) is then defined by

α(n) =
n∑

i=1

Xi (n + νT
n Ỹi )

−1.

If the root ν yields p∗
ni ’s that are all positive, then

the relaxation obtained by ignoring the non-negativity con-
straints yields a solution to the fully constrained problem.
The proof of the next theorem will confirm that the above
approach is asymptotically valid (so that the p∗

ni ’s defin-
ing α(n) can be obtained from the root νn of fn(ν) = 0).
More importantly, the next theorem establishes that α(n)

and αc(n) become asymptotically identical as n → ∞.
In order to simplify our exposition, we focus on the

case where Y is scalar-valued. We say that a sequence of
random vectors (χn : n ≥ 1) is op(n−1/2) if n1/2χn ⇒ 0
as n → ∞. Moreover, a sequence (χn : n ≥ 1) of random
vectors is O(an) a.s. (o(an) a.s.) if χn/an is a.s. a
bounded sequence (χn/an → 0 a.s. as n → ∞).

Theorem. Suppose that Y is scalar-valued. If E X2 < ∞
and EY 4 < ∞, then

α(n) = αc(n) + O

(
log log n

n

)
a.s.

as n → ∞, so that

n1/2(α(n) − α, αc(n) − α) ⇒ (σ N, σ N)

as n → ∞, where N is a mean-zero normal r.v. with unit
variance, and σ 2 = var X · (1 − ρ2) with ρ the coefficient
of correlation between X and Y .

Proof. We will start by establishing that for n suf-
ficiently large, the equation fn(ν) = 0 has a root νn for
which all the quantities p∗

ni , 1 ≤ i ≤ n, defined by (10)
are positive. It will then follow by convexity and Theorem

4.38 of Avriel (1976) that p∗
n = (p∗

n1, · · · , p∗
nn)

T is the
global solution of the fully constrained problem.

Let ν̃n = ∑n
i=1 Ỹi/(

∑n
i=1 Ỹ 2

i /n). By the strong law
of large numbers (as applied to

∑n
i=1 Ỹ 2

i /n) and the law
of the iterated logarithm (as applied to

∑n
i=1 Ỹi ), it follows

that ν̃n = O((n log log n)1/2) a.s. as n → ∞. Put In =
[ν̃n − nδ, ν̃n + nδ] for δ ∈ (0, 1/2).

We claim that fn(·) is continuous on In for n large.
Given the form of fn , this will follow if we can show that
n + νỸi > 0 for 1 ≤ i ≤ n and ν ∈ In , for n large. To
verify this, observe that the Borel-Cantelli lemma and the
hypothesis EỸ 4 < ∞ imply that Ỹn = o(n1/4) a.s. as
n → ∞. Consequently, for ν ∈ In , νỸi = o(n) a.s. as
n → ∞, proving the uniform positivity of the terms n+νỸi ,
for n large.

We will now show that fn(ν̃n − nδ) and fn(ν̃n + nδ)

are of opposite sign, for n large. The continuity of fn(·)
then guarantees the existence of a root νn ∈ In at which
the quantities (n + νnỸi )

−1 are uniformly positive in i ∈
{1, · · · , n}. As argued earlier, this implies that νn is the
desired global maximizer.

Observe that for |x | ≤ 1/2, |(1+x)−1−(1−x)| ≤ 2x2.
Then, for n sufficiently large,

sup
ν∈In

∣∣∣∣(1 + ν

n
Ỹi

)−1 −
(

1 − ν

n
Ỹi

)∣∣∣∣ ≤ 2

(
ν̃n

n

)2

Ỹ 2
i (11)

So,

fn(ν) = 1

n

n∑
i=1

Ỹi

(
1 + ν

n
Ỹi

)−1

= 1

n

n∑
i=1

Ỹi

(
1 − ν

n
Ỹi

)
+ O

((
ν̃n

n

)2 n∑
i=1

|Ỹi |3
n

)

= 1

n

n∑
i=1

Ỹi

(
1 − ν̃n

n
Ỹi

)
+ (ν̃n − ν) · 1

n2

n∑
i=1

Ỹ 2
i

+ O

(
log log n

n

)
a.s.

= (ν̃n − ν) · 1

n
EỸ 2 + O

(
log log n

n

)
a.s.

(12)

uniformly in ν ∈ In . (The definition of ν̃n was used
to eliminate the first term in the third equality above.)
Hence, fn(ν̃n − nδ) = nδ−1 EỸ 2 + O((log log n)/n) a.s.
and fn(ν̃n + nδ) = −nδ−1 EỸ 2 + O((log log n)/n) a.s.,
proving that the endpoints of In are of opposite sign.

Our last task is to establish the relationship with control
variates. Since (12) holds uniformly in ν ∈ In and νn ∈ In ,
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it follows that

νn = ν̃n + O(log log n) a.s.

as n → ∞. So, (11) shows that

α(n) = 1

n

n∑
i=1

Xi

(
1 + νn

n
Ỹi

)−1

= 1

n

n∑
i=1

Xi

(
1 − νn

n
Ỹi

)

+ O

((
ν̃n

n

)2

· 1

n

n∑
i=1

|Xi Ỹ
2
i |
)

= 1

n

n∑
i=1

Xi

(
1 − ν̃n

n
Ỹi

)
+ (ν̃n − νn) · 1

n2

n∑
i=1

Xi Ỹ
2
i

+ O

(
log log n

n

)

= αc(n) + (ν̃n − νn) · 1

n2

n∑
i=1

Xi Ỹ
2
i

+ O

(
log log n

n

)

= αc(n) + O

(
log log n

n

)
a.s.

as n → ∞. (Note that Cauchy-Schwarz inequality implies
that E |XỸ 2| < ∞.) The central limit theorem follows from
a converging together argument and the existing central limit
theory for αc(n).

The above theorem makes concrete the assertion that
nonparametric maximum likelihood, in the presence of
equality constraints, basically coincides with the method
of control variates.

4 A NUMERICAL EXAMPLE

In this section, we offer a numerical example to comple-
ment the theory developed in Section 3. Specifically, we
consider the problem of numerically computing the price
of an Asian option via simulation. Such a price can be
expressed as the expectation of a random variable X (where
the expectation is computed under the so-called “equivalent
martingale measure”; see Duffie (1996) for details).

In particular,

X = max

(∫ t

0
ξ(s)ds − k, 0

)

where ξ = (ξ(s) : s ≥ 0) is a stochastic process describing
the price of the underlying security and k is the “strike

price”. A common specification for ξ is to assume that
it is a geometric Brownian motion. We will follow this
convention, and will assume that

ξ(t) = exp(B(t))

where B = (B(t) : t ≥ 0) is standard Brownian motion.
For our example, we choose t = 1 and k = 1.25.

A commonly used control variate in the setting of Asian
options is

Y =
∫ t

0
ξ(s)ds.

For our geometric Brownian motion example

EY =
∫ 1

0
E exp(B(t))dt

=
∫ 1

0
exp(t/2)dt

= 2(exp(1/2) − 1).

For the purposes of this numerical study, we consider
three estimators. The first estimator we consider, denoted
α̃(n), is the conventional Monte Carlo estimator based on
computing a sample mean formed from n iid replications of
the random variable X . Our second estimator for α = E X
is the control variates estimator αc(n) described in Section
3. Finally, the third estimator is α(n), the nonparametric
maximum likelihood estimator.

Since we are interested in comparing the variability
of the three estimators just defined, we repeat m = 1000
times the simulation described in the previous paragraph.
The estimators obtained by averaging over m the α’s are
α̃(n, m), αc(n, m), and α(n, m), in correspondence with
previous notation. The (sample) standard deviations of
these three estimators are s̃(m), sc(m), and s(m).

The results are summarized in Tables 1 and 2; the true
value of α here is 0.3247. Observe that the nonparametric
maximum likelihood estimator α(n, m) and the control vari-
ates estimator αc(n, m) give similar results, in accordance
with our theorem.

Table 1: Asian Option Pricing Simulation

Sample size n
Parameter 100 1000 10000
α̃(n, m) 0.3231 0.3263 0.3280
αc(n, m) 0.3230 0.3225 0.3243
α(n, m) 0.3236 0.3225 0.3250
s̃(m) 0.0740 0.0755 0.0759
sc(m) 0.0233 0.0241 0.0228
s(m) 0.0237 0.0234 0.0226

399



Szechtman and Glynn

Table 2: Asian Option Pricing Confidence Intervals

Sample size n
95 % Confidence Interval 100 1000 10000
α̃(n, m) − z0.95s̃(m)/

√
m 0.3084 0.3216 0.3265

α̃(n, m) + z0.95s̃(m)/
√

m 0.3378 0.3310 0.3295
αc(n, m) − z0.95sc(m)/

√
m 0.3184 0.3210 0.3238

αc(n, m) + z0.95sc(m)/
√

m 0.3276 0.3240 0.3248
α(n, m) − z0.95s(m)/

√
m 0.3190 0.3210 0.3246

α(n, m) + z0.95s(m)/
√

m 0.3282 0.3240 0.3254
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