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A b s t r a c t  

The increasing complexity of computer networks and our in- 
creasing dependence on them means enforcing reliability re- 
quirements is both more challenging and more critical. The 
expansion of network services to include both traditional in- 
terconnect services and user-oriented services such as the web 
and email has guaranteed both the increased complexity of net- 
works and the increased importance of their  performance. The 
first  step toward increasing reliability is early detection of  net- 
work performance failures. Here we consider the applicabil- 
ity of  statistical model f rameworks  under the most  general as- 
sumptions possible. Using measurements f rom corporate proxy 
servers, we test the f ramework  against real world failures. The 
results of  these experiments show we can detect failures, but 
with some tradeoff questions. The pull is in the warning time: 
either we miss early warning signs or we report some false 
warnings. Finally, we offer insight into the problem of failure 
diagnosis. 

1 I n t r o d u c t i o n  

The goal of failure detection is to preserve 
network and service reliability by identifying pos- 
sible problems before they impact end user services. 
Early discovery opens the possibility of corrective 
action. This is a two-fold problem as we must both 
alert the network manager to the fact that  a failure 
is imminent and convey its probable cause. Here we 
quantify the failure detection problem and identify 
an approach for the isolation problem. 

Proxy and Web servers are affected by internal 
network failures, Internet failures, proxy server and 
proxy application failures, domain name service 
problems, and local ISP failures. Each of these 
types of failures results in lowered network perform- 
ance. Performance failures range in severity from 
increased service time to total service denial. Total 
service denial is easy to detect; degradations in ser- 
vice time are difficult. However, increased service 
times cause equally significant problems for service 
applications. From a business's perspective, slower 
web service results in decreased revenues and fewer 
repeat customers. From the user's perspective, slow 
request processing means idle computer time and, 
if dramatic enough, reason to forego connection re- 

quests entirely. 
Part  of the difficulty inherent in failure detec- 

tion is the definition of a performance failure. In 
order that  Quality of Service requirements can be 
placed on network applications, we must have a reli- 
able mechanism for fault management  [HJ94]. Here 
we define a failure as a user-problematic departure 
from expected operating conditions [MO90]. In our 
environment, we use the number of requests pro- 
cessed at our proxy servers as a mechanism for 
tracking performance. Noticeable deviations in the 
number of requests processed for a specific time in- 
terval often indicate undesirable operating condi- 
tions. Summarizing, our general approach to the 
failure detection problem is to first establish a meas- 
ure that  reflects operating conditions whose general 
expected behavior we can discern and then determ- 
ine when measurements deviate from that  behavior. 

Changing network conditions and continu- 
ally evolving traffic patterns mean different expec- 
ted behavior for performance measures over time. 
However, for a mature  network, it is reasonable to 
assume that  for a limited t ime span we can model 
regular behavior patterns and use this model to spot 
deviant behaviors as an indication of performance 
failures [Max90]. Here we present methodology for 
identifying and tracking a process that  reflects net- 
work performance and give results for the process 
we tracked on our network. Though different pro- 
cesses on different networks may exhibit different 
behavior, the ideas generalize to any network upon 
which performance measurements can be taken and 
which exhibit regular patterns over some time inter- 
val. 

2 M e a s u r e m e n t  S e t u p  

Measurements were taken for a 12 week time 
interval, between June 21, 1997 and October 12, 
1997, at the two proxy servers through which 
requests for Internet connections from machines 
within Digital Equipment Corporation are routed. 
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These two proxy servers service upwards of 10,000 
client machines and, during the busiest hours of the 
day, typically process 30,000 - 40,000 requests dur- 
ing a 15 minute time span. Total daily traffic is 
upwards of two million requests per day. 

We concentrate on one measurement variable ~ 
for the failure detection process: the total number 
of requests processed every 15 minutes. However, ~ ~ 
the methodology presented in the data analysis sec- 
tion can be generalized to apply to measurements 
from any network process meeting the stated as- 
sumptions. We further consider the following three 
measurement variables for the failure identification 
process: 

1. Number of TCP_IP connections in the 
Established state 

2. Number of TCP_IP connections in the 
Syn_Sent state 

R l 
3. Number of TCP_IP connections in the 

Syn_Rcvd state 

3 G e n e r a l  O b s e r v a t i o n s  

Throughout  a given day, we see a certain pat- 
tern of connection requests. This pattern corres- 
ponds to a lower number of requests early in the 
day, a higher number of requests during the middle 
of the day, and a return to the lower number in the 
evening. The pattern is most pronounced on work 
days and is similar, though much less pronounced, 
on holidays. 

Observe the pattern in figure 1 (a) and figure 1 
(b). One shows the entire data series and the other 
shows a two week interval in order to clearly il- 
lustrate the time-of-day and day-of-week patterns. 
These patterns are general network traffic patterns 
and the heuristics are supported by measurements 
made by the vBNS engineering department at MCI 
within Internet MCI's backbone [TMW97]. Abnor- 
malities in this pattern usually correspond to some 
type of failure. For example, a sudden drop in the 
number of connection requests is cause for alarm. 
Figure 3 shows a day in which a problem did occur. 
The sharp downward drop in connection requests 
in the middle of the day details the time at which 
the failure occurred and the following upward swing 
indicates the return to normal network operation. 
We also see a failure at the end of the day, again 
corresponding to the sharp downward drop. The 
question is how large this drop must be to merit 
immediate investigation. 

2 4 e 8 10 1~ 

"rime In weeks 

(a) 

2 4 e e lO 12 14 

T I ~  In d ~ 8  

(b) 

Figure 1: Connection requests for both proxy serv- 
ers 
(a) 07/21-10/12 
(b) for a 2 week interval 

Another important  feature of the data  is its 
correlations. Even after de-trending the data  so as 
to compensate for the daily and weekly patterns 
mentioned above, we still find correlations extend- 
ing beyond consecutive time slots equal to between 
0.2 and 0.3. We hypothesize the cause to be request 
service time. Overall network performance has a 
large effect on request service t ime and remains re- 
latively stable across short t ime periods. Request 
service times then affect request rates [Gla94], ac- 
counting for the data  correlations. Usually, the 
faster requests are serviced, the faster users make 
them. For example, consider browsing web pages. 
The more quickly these pages are requested depends 
directly upon how quickly the pages are received 
after a request is made. Because slow or fast ser- 
vice times during one t ime period will also occur 
during the next time period, we see correlations in 
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Figure 2: Example  of connection requests in a day 
when a failure occurs 

the measurements.  
The most  impor tan t  consequence of having cor- 

related data  is many  statistical models depend upon 
a series of independent observations. The longer 
range data  dependencies we find invalidates most  
traditional statistical modeling frameworks. Thus 
we first consider what results we can obtain with 
minimal assumptions about  the underlying process 
producing the measurements.  

4 D a t a  A n a l y s i s  

The general methodology presented here de- 
pends upon the following assumptions.  

1. The process is s tat ionary over some t ime in- 
terval. In order to accurately analyze the pro- 
cess's behavior at some future point in time, 
we must  assume that  its past  ~ representative 
of its future. Specifically, let Xi be the vector 
of observations on workday i. Then we assume 
the sequence Xn '  n _> 0 has the same distri- 
bution as the shifted sequence -~n+,~ for each 
k > 1. We make the equivalent assumption for 
holidays. 

2. We have a strong law of large numbers: i.e., 
the mean of the observations we see at a given 
t ime of the day converges to the expected num- 
ber of connection requests at that  time. Let 
X] be the j th  observation on the ith workday 
in the data  series. Then we assume E[Xi j] ,~ 
1_~=1 X/j for large n. Again, we make the 
equivalent assumption for holidays. 

. Deviant behavior of the process can reflect 
network failures. The process may behave 
"strangely" at t imes when no failure occurs. 
However, this requirement states that ,  when a 
failure occurs, it must  behave strangely. The 
tough question is to identify the times at which 
the measurements  reflect failures and the times 
at which they are fluctuations of the process it- 
self. 

Notice that  our assumptions about  the underlying 
process are minimal.  Here we explore the bound- 
aries of how much information is necessary for in- 
formative conclusions. 

4.1 M e t h o d o l o g y  

We propose the following steps as a first pass 
procedure for detecting network faults based on ob- 
served measurements.  

1. Discard all observations from the da ta  series 
during which a known fault occurred. 

. Use the remaining observations to est imate the 
distributions for the measurements  from the 
process at each t ime period. 

3. Determine mean and variance for the process 
at each t ime period. 

4. Adjust the sensitivity level for identifying de- 
viant observations. 

Step 1 is critical. All subsequent analysis assumes 
that  the observations we consider accurately reflect 
the process under desired operat ing conditions. 

In step 2, we determine that  our data  is nor- 
mally distributed in each t ime period. In general, 
it may  or may not be true that  the distribution 
for the observations is normal.  However, in the 
case that  the measurements  record N(t), the total  
number  of counts up to t ime t, and the arrival 
distribution for these counts are independent and 
identically distributed, Donsker's Theorem for re- 
newal processes [Bil68] states that  for large enough 
t ime scales, N(t) is approximately  normal.  In our 
case, N(t) counts the number  of processed connec- 
tion requests during a 15 minute  t ime interval. We 
do not automatical ly  assume either that  our t ime 
scale is large enough or that  the connection re- 
quest arrivals occur independently. Rather  we ob- 
serve that  it is likely our observations could be nor- 
mally distributed and perform statistical tests to 
confirm this supposition. The statistical test we 
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performed was the test developed by Anderson and 
Darling [Pet77], and the test confirms the normali ty 
assumption. The mean and variance of the process 
at each t ime period can now be used to identify de- 
viant observations; i.e., observations from the tail of 
the distribution. The criterion for the observation 
to be deviant should be adjusted such that  rarely 
is a failure identified when no failure occurred and 
that  all behavior possibly indicative of a failure is 
reported. 

Figure 4.1 shows the results for our data  series 
for step 3. Specifically, figure 4.1 tracks the es- 
t imated mean plus or minus 1 s tandard deviation 
for the process for a normal  workday. Notice the 
rise in connection requests in the morning, as work- 
ers arrive, the heightened fluctuation of the process 
during mid-morning to mid-afternoon, and the de- 
cline in connection requests as workers leave. The 
early rise and fall in connection requests is due to 
the fact that  the bulk of DEC's  business operations 
is centered on the East coast but their connection 
requests are processed at proxy servers on the West 
coast. 

Figure 3: Est imated mean plus or minus 1 standard 
deviation for a 24 hour workday 

Step 4 uses the expected behavior of the num- 
ber of processed connection requests found in step 
3 to find possible failures through anomalous be- 
havior. To identify deviant observations, we first 
t ransform each observation as follows: 

Xt - Xt  
Z t -  

O" t 

where X~ is the est imated mean of the observations 
at t ime t and ~t  is the est imated standard deviation 

of the observations at t ime t. For large t ime t, Zt 
looks approximately like a s tandard normal  random 
variable. We then consider both "too high" obser- 
vations and "too low" observations because often a 
large increase in the number  of connection requests 
overloads the servers on the network and results in 
a performance failure. Further, deviant high loads 
can signal a t t empted  break-ins and, therefore, may 
identify security threats. "Too low" observations 
reflect performance failures since they indicate the 
network is operating under decreased loads. There 
is an a symmet ry  between how high an observation 
must be and how low one must  be to be indicat- 
ive of a failure. The reason for this phenomenon is 
that  an observation above the bounds of "normal" 
behavior for the process must  be far enough above 
to reflect an overloaded network. The performance 
failure then results from slow response times to ser- 
vice requests. The exact bounds we use follow in 
the next section. 

4.2 R e s u l t s  

The experiment we performed to test our meth- 
odology uses the first two-thirds of the data  series to 
train the algorithm and the last third to measure its 
performance. We adjust the a lgor i thm's  parameters  
so as maximize the number  of failures we correctly 
detect and minimize the number  of false failures we 
identify. (A false failure is defined as a failure found 
by our algorithm but one that  does not correspond 
to a known performance failure.) The bounds we 
use to classify the observation Zi as deviant are: 
Z/ < - 2 . 3  or Zi > 3.00. We then use these same 
bounds on the last third of the series to identify 
deviant observations and calculate algorithm per- 
formance metrics. 

Our results demonstrate  a working algorithm 
for failure detection. In the first two-thirds of the 
data  series, we identify 80% of the failures and 2 
false failures. Using the same parameters ,  we then 
identify 90% of the failures in the last 3rd of the 
series with only 2 false failures. 

4.3 D e t e c t i o n  T r a d e o f f s  

Ideally, we would like to detect early warning 
signs of significant performance failures in order to 
pro actively react to avoid them. This can be ab- 
stracted to the problem of predicting an 'extremely 
deviant '  observation in a general stochastic pro- 
cess once the words 'extremely deviant '  are defined. 
Currently, our algori thm gives little or no warning 
that  a failure will occur. One remedy we investigate 
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is to use a window of observations to identify early 
failure warning signs. We can then take advantage 
of known patterns we observe before significant per- 
formance failures. The general pattern of warning 
signs for a failure is either several extremely high 
observations indicative of an overloaded network or 
several moderately low and declining observations 
indicative of a physical problem worsening perform- 
ance. We incorporate this information into another 
algorithm given below. 

Specifically, let Zn denote the current obser- 
vation and Zn, Zn-1, ..., Z,~-N all the observations 
under consideration. If Zn is extremely deviant, 
then we immediately conclude a failure occurred. 
If Z .  is moderately low or extremely high, then we 
conclude a failure occurred only if the number of 
moderately deviant observations in the past N time 
periods exceeds some threshold value. 

Similar to how we tested the methodology first 
presented, we use the first two-thirds of the data 
series to determine the appropriate window size and 
criterion for extremely deviant and moderately de- 
viant observations. We then use the identical para- 
meters on the last third of the data  series to calcu- 
late algorithm performance results. 

This algorithm again found 90% of the failures 
in the last third of the data series but also found 
3 false failures. Most importantly, this algorithm 
identified failures earlier. When setting the para- 
meters for this algorithm, we found 87% of the fail- 
ures in the first two-thirds of the data  series with 
4 false alarms. We used a window size of 5 and a 
threshold value of 2. Our criteria for a moderately 
deviant observation was Z~ < -1 .96  or Zn > 3.00. 
We used the same criterion for deviant observations 
as in the methodology first presented. 

The advantage to this algorithm is earlier iden- 
tification of failures; the disadvantage is more fre- 
quent false failures. We illustrate the tradeoff 
between the two algorithms in figure 4.3. The fig- 
ure shows a 3 day interval in the data series with no 
failures on the 1st day, one moderate failure on the 
2nd, and one severe failure on the 3rd. The circles 
depict the failures found using additional observa- 
tions and the squares show the failures found using 
only one observation. The squares identify the most 
extreme failure, but  miss the early warning signs of 
it and miss the moderate failure entirely. The circles 
identify both failures, and warn of the extreme fail- 
ure but also detect a false alarm in the morning both 
on 8/25 and 8/26. This is representative of the lar- 
ger problem of knowing which moderately deviant 

Figure 4: Failures detected using 1 observation 
(squares) vs multiple observations (circles) 

observations are early warning signs of a failure and 
which are merely fluctuations in the process. 

5 F a i l u r e  D iag n o s i s  

Once it is known that  a failure has occurred, 
the problem remains to determine its cause. We use 
4 measurement variables, as detailed in the Meas- 
urement Setup section, to isolate the problem: 

1. Proxy throughput  (what we have been study- 
ing) 

2. Number of TCP..IP connections in the 
Established state 

3. Number of TCP_IP connections in the 
Syn_Sent state 

4. Number of TCP_IP connections in the 
Syn.Rcvd state 

The TCP_IP E s t a b l i s h e d  state indicates an active 
connection. The TCP_IP S y n ~ e n t  state indicates 
that  the proxy server has requested an outside con- 
nection and is waiting for a reply. The TCP_IP 
Syn_Rcvd state indicates that the proxy has replied 
to a connection request from an internal machine 
and is waiting for that  machine's reply before estab- 
lishing the connection. Typically, all 4 processes are 
highly correlated. Failure diagnosis depends upon 
identifying out-of-sync behavior. For example, an 
external problem is evidenced by a jump in the ratio 
of the number of connections in the Syn_Sent state 
to the number in the Syn_Rcvd state and a decrease 
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in throughput. This is because the amount of time 
spent in the Syn._Seat state reflects the health of 
the external internet and the amount of time spent 
in the Syn_Rcvd state reflects the health of the in- 
ternal network. The throughput drops as well since 
the proxy is now slow to process outside connection 
requests. 

Consider failure diagnosis for the two failures 
in figure 4.3. On neither day do we see measure- 
ments indicative of external problems (as explained 
above). However, on August 26, the number of es- 
tablished connection drops in conjunction with the 
failure in addition to a decrease in the number of 
TCP_IP Syn_Rcvd connections. This is indicative 
of an internal network problem. On August 27, the 
Sya_Sent/Syn_Rcvd ratio remains fairly constant. 
The proxy server application logs show that a re- 
boot occurred on both days. A reboot requires a 
cache rebuild during which most requests must be 
serviced externally. This delays service and causes 
fewer connection requests. Therefore, the reboot 
alone could explain the drop in connection requests 
on both days. On the 26th, internal network prob- 
lems may have contributed to this reboot whereas 
on the 27th we suspect the fault lied solely at the 
proxy server. 

6 S u m m a r y  and  Fu tu r e  Work 

We have introduced a general framework for 
network performance failure detection and presen- 
ted results for proxy request rate measurements 
which fit the required assumptions. Because we 
use proxy server measurements that reflect network 
operating conditions, we can identify performance 
failures as they are occurring and before service ap- 
plications such as the web are drastically affected. 
We have further addressed how to use additional 
measurement series to make a preliminary diagnosis 
of probable failure cause. 

Our results demonstrate that we have a work- 
ing algorithm for catching extreme performance 
degradations with a low false identification rate. 
There is, however, a pull between how early we de- 
tect them and the number of false warnings we give. 
By identifying measurement patterns immediately 
prior to failure we are able to improve the detec- 
tion results without increasing the false identifica- 
tion rate drastically. Finally, our results outline an 
appropriate approach to isolating the reason for the 
failure. 

Future work focuses on time scale granularity, 
training sample choice, and failure diagnosis auto- 

mation. First, a 15 minute sampling period may 
miss important process fluctuations. How fine the 
time scale must be to accurately capture network 
performance information is still unclear. Second, 
the length of a training sample and the duration 
of its validity requires further investigation. We do 
not know either the optimum time span of past data 
that should be used to define deviant behavior or 
how long the definition is valid. Finally, we would 
like to better understand the movement of different 
network measurement variables in parallel. This 
understanding will spur the establishment of meth- 
odology that automates the failure diagnosis pro- 
cess. 
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