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This paper discusses some of the merits of strong approximation ideas in developing 
diffusion approximations for queueing systems. Letting p be the utilization of the server, 
it is well known that as the queue is sent into heavy-traffic (i.e. p 7 1), the system Can be 
approximated by a diffusion process on spatial scales of order (1 - p)-I and time scales of 
order (1 - p)-2. In this paper, we show how strong approximation methods permit one to 
validate the applicability of the diffusion approximation to the queue over other temporal 
and spatial scales. In addition, some pedagogical advantanges of the strong approximation 
approach are discussed, and two open problems for the strong approximation community 
are described. 

1. In t roduc t ion  

The use of strong approximation in the study of queues in heavy traffic originated with 
Rosenkrantz (1980). This mathematical tool is particularly convenient in this applica- 
tions setting, because the dynamics of a queue can typically be expressed as a continuous 
functional of some family of additive processes that behave, roughly speaking, like random 
walk. Strong approximation principles effectively allow one to directly replace these addi- 
tive processes by their corresponding Brownian approximations. Rigorous verification of 
a heavy-traffic diffusion limit then amounts to using elementary real variables arguments 
on a path-by-path basis. 

In this paper, we discuss some of the advantages of using strong approximation ma- 
chinery to study queueing systems. This paper's major contributions are: 

1. a discussion in Section 3 of the relative pedagogical advantages of the strong ap- 
proximation approach to the analysis of queueing systems in heavy traffic; 

2. analysis in Section 4 of the temporal scales over which diffusion approximations to 
queues are typically valid; 

3. a similar analysis in Section 5 of the spatial scales over which diffusions approxima- 
tions to queues are generally valid; 
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4. a description in Section 6 of a couple of open problems for the strong approximation 
community that are relevant to certain theoretical issues that arise in the analysis 
of queues. 

Some related discussion of the application of strong approximation methods in the 
analysis of queues appears in Glynn (1990) and Alex and Steinebach (1989), as well as in 
related references discussed elsewhere in this paper. 

2. T h e  CLT F r o m  a S t rong  A p p r o x i m a t i o n  Pe r spec t i ve  

Let S - ( S ( t )  �9 t >_ 0) be a real-valued stochastic process. In the applications that  we 
have in mind, S is typically a process that behaves like a random walk. 

We say that  S satisfies a central limit theorem (CLT) if there exist constants # and a 
such that  

t - 1 / 2 ( S ( t )  - # t )  ~ aN(0, 1) (2.1) 

as t ~ oc, where ~ denotes weak convergence (on IR) and N(0, 1)is a mean-zero normal 
r.v. with unit variance. A stronger version of the CLT is the functional central limit 
theorem (FCLT). Let B - ( B ( t )  �9 t >_ 0) be a standard Brownian motion (so that 
] E B ( t )  - 0 and VarB(t) - t), and set 

- - 

for e > O. The process S is said to satisfy a FCLT if there exist constants # and a such 
that  

X~ =~ a B  (2.2) 

in D[0, oe) as r $ 0, where now the weak convergence is relative to the Skorohod topology 
on the space consisting of functions with domain [0, c~) that are right-continuous with 
left limits; see Ethier and Kurtz (1986) for details. 

Finally, the process S is said to obey a strong approximation principle if there exists a 
probability space supporting a standard Brownian motion B and a process S* - ( S * ( t )  �9 

t >_ 0) such that for some constants # and a 

i.) S * ( t )  - # t  + a B ( t )  + o(t  1/2) a.s. as t ~ oc; 

ii.) S* v__ S (v denotes "equality in distribution"). (2.3) 

Since S* v_ S, it is customary to take the view that the original probability space support- 
ing S is itself rich enough to also support B, and to write the strong approximation (2.3) 
a s  

S ( t )  - # t  + a B ( t )  + o(t  1/2) a.s.  (2.4) 

as t --, co. It is well known that a strong approximation implies the FCLT, which in turn 
implies the CLT. Hence, in principle, a strong approximation requires stronger hypotheses 
than does either a FCLT or CLT. What then are the advantages to a strong approximation 
from an applications viewpoint? 
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Perhaps most fundamentally, it replaces the notion of weak convergence with a path- 
wise convergence statement. From a pedagogical standpoint, this means that if one is 
permitted to assume the strong approximation (2.4) as being given, any subsequent anal- 
ysis building upon it can typically rely solely on elementary "real variables" path-by-path 
arguments. On the other hand, the FCLT (and even the CLT to some extent) requires 
introducing students to the notion of weak convergence and related topological issues. 
In particular, (2.2) cannot be rigorously discussed without reference to the Skorohod 
topology on D[0, c~). 

A second important advantage to (2.4) is that the approximation for the r.v. S(t) can 
be "read off" the strong approximation. Specifically, (2.4) clearly suggests using the r.v. 
pt + aB(t)  as an approximation to S(t). On the other hand, approximating S(t) based 
on the CLT (2.1) is not as transparent to most students, since the statement of the result 
involves not S(t) itself but the scaled/translated r.v. t-1/2(S(t) - #t). 

Finally, from a mathematical viewpoint, (2.1) and (2.2) provide only information on 
the fluctuations of S over time scales of order 1/e 2 that are of order 1/e. On the other 
hand, (2.4) is a global statement that places some control on the behavior of S not only 
over finite time intervals, but over the entire infinite interval [0, oc). 

3. Heavy  Traffic A p p r o x i m a t i o n s  F rom a S t rong  A p p r o x i m a t i o n  P e r s p e c t i v e  

The single-server queue offers an excellent arena within which to illustrate the full power 
of strong approximation machinery. We will focus on the workload process W = (W(t) �9 
t _> 0), where W(t)  is the amount of unfinished work in the system at time t. To define 
W(t), let S(t) be the cumulative amount of work to have arrived to the system by time t. 
For a typical single-server queue, S(t) takes the form 

A(t) 
s ( t )  = 

i=1  

where Vi is the total processing time of customer i and A(t) is the cumulative number 
of arrivals to the system by time t. If c > 0 is the processing rate of the server and if 
W(0) = 0, then 

W ( t )  = S ( t )  - c t  - m i n  [ S ( u )  - cu] .  
O < u < t  

(3.1) 

To get a sense of why the representation (3.1) is valid, note that whenever W is positive, 
then dW(t) = dS(t) - c ,  so that the change in workload is just the difference between 
the incoming work process and the processing rate (as expected). The running minimum 
in (3.1) serves as a "reflecting barrier" for W, keeping it non-negative. 

In order that an approximation of W(t)  by a functional of Brownian motion be reason- 
able, it seems clear that  the queue must be in "heavy traffic", so that the rate at which 
work arrives must nearly balance the rate c at which work is completed. (Otherwise, if the 
system is to be "stable", W will spend most of its time near the origin, and the behavior 
of W is primarily explained by its boundary behavior, so that the larger scale random 
fluctuations of S that look approximately Brownian play a relatively minor role.) The 
standard way to send a queue into "heavy traffic" is to consider a sequence of queueing 
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systems. Let Sn = ( S , ~ ( t ) ' t  > O) be the incoming work process in system n, and let c~ 
be the processing rate in system n. Put 

x~(t) = n-1/2(S~(nt)  - c~nt) (3.2) 

for t _> 0, and let e(t) = t. One then requires that there exist constants a and a such that 

Xn(') =~ aB( . )  - he(.) (3.3) 

in D[0, oc) as n ~ c~. If S~( t ) / t  =~ #n as t ~ c~, (3.2) and (3.3) together suggest that 

nl/2(#n -- Cn) --* --a (3.4) 

as n -~ oc, and consequently the arrival rate (of work) must balance the processing rate 
(of work) in the n ' th system to a factor of order n -1/2. 

Given (3.3), the heavy-traffic analysis of the corresponding workload process W~ - 
(W~(t)"  t ___ 0) for system n is then straightforward. For x E D[0, oc), set 

f t (x)  - x(t)  - min x(u).  
O<u<t  

Since f t( ' )  is continuous in the Skorohod topology at any continuous function x, it follows 
from the continuous mapping principle (see Billingsley (1968)) that 

n-1/2Wn(nt)  = f t (xn)  =~ f t (aB( . )  - he(.)) (3.5) 

as n ~ oc. The process a B ( t ) -  a t -  m ino<~<t[aB(u ) -  au] is a reflecting Brownian 
motion process, and consequently (3.5) provides a diffusion approximation to W~ that is 
valid for large n. 

The argument developed above is the approach that has been followed in much of 
the heavy-traffic literature for queues and queueing networks; see, for example, Iglehart 
and Whitt  (1970) and Reiman (1989). As in the CLT setting discussed in Section 2, 
this approach suffers from the pedagogical defect that it cannot be rigorously discussed 
without reference to the Skorohod topology on D[0, c~), and related notions of weak 
convergence of probability measures. But a new and more serious problem arises in this 
heavy traffic setting. Specifically, the limit theorem is stated in terms of a sequence of 
systems that involves a parameter n with no obvious physical meaning. Consequently, it 
is often not obvious to practitioners as to how to develop an approximation for a "real- 
world" queue, based on the heavy-traffic limit (3.5). On the other hand, application of 
strong approximation ideas immediately suggests the correct approximation, as we shall 
see in a moment. 

Suppose that  S satisfies the strong approximation (2.4). Then, substituting (2.4) and 
(3.1), we get 

W ( t )  - aB( t )  - ( c -  #) t  - min [aB(u) - ( c -  #)u] + o(t -1/2) a.s. (3.6) 
O<u<t 

Relation (3.6) immediately suggests the following approximation for W(t)" 

D 
W ( t )  aB( t )  (c #)t  min [aB(u) ( c -  #)u], (3.7) 

O<u<t 
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79 " h a s  where ~ denotes approximately the same distribution as" (and has no rigorous 
mathematical meaning). Set 

Z(t; a, a) = a B ( t )  - at - min [aB(u) - au]" 
O<u<t 

Z(.; a, a) is a reflected Brownian motion (RBM) process. Hence , (3.7) yields the desired 
approximation of W(.) by a diffusion process. In contrast to the weak convergence ar- 
gument followed earlier in this section, the approximation (3.7) contains no artificially 
introduced parameters (like the system index n). Furthermore, as in the CLT setting of 
Section 2, strong approximation leads to a statement about W ( t )  itself (as opposed to 
some "normalized" version of W). In addition, (3.6) is a global statement about W(t ) ,  
rather than one that purely provides information about W on finite time intervals (as 
is the case for (3.5). For these reasons, as well as the pedagogical reasons mentioned 
earlier, strong approximation methodology has become increasingly popular as a tool for 
approximating queueing systems. 

It is worth noting that the "heavy traffic" assumption has no bearing on the validity 
of (3.6). Of course, from a rigorous mathematical viewpoint, the approximation (3.7) 
makes sense only so long as the approximating r.v. Z(t;  a, c -  #) is large relative to the 
error t e r m  o(tl/2). It is here that the "heavy traffic" assumption is needed. As in the weak 
convergence argument given earlier, we consider a family of queueing systems in which 
the incoming work process S is fixed throughout (and satisfies (2.4)), and the processing 
rate c is permitted to decrease to # (thereby sending the system into heavy-traffic). Set 
p = p / c  and note that c "~ # is equivalent to p / z  1. Let W(t;  p) be the workload process 
associated with the p'th system. Hence, (3.6) can be re-written as 

W(t;  p) = a B ( t )  - c(1 - p)t - min [aB(u)  - c(1 - p)u] + o(t 1/2) a.8. (3.8) 
0 < u < t  

where o(t 1/2) is uniform in p and c. But 

Z(.(1 - p)-2; a, c(1 - p)) __v (1 - p)- lz( . ;  o, c) (3.9) 

follows easily from standard scaling properties of Brownian motion. Consequently, we 
conclude that if we let c ~ #, then 

(1 - p)W(.(1  - p)-2; p) =v Z(.; a, #) (3.10) 

in D[0, cx)). The limit theorem (3.10) is essentially equivalent to (3.5) (but contains no 
artificial system parameters). It asserts, as does (3.5), that when p is close to 1, then W 
can be approximated by an RBM on time scales of order (1 - p)-2, in which case the 
random fluctuations in W are of order (1 - p)-l. 

Note that (3.10) suggests the approximation 

7) 
W(t )  (1 - p ) - iz ( (1  - p)2t; or,/z) (3.11) 

v= Z(t;  a, #(1 - p)); 

this latter r.v. is not quite identical to the original approximation Z(t; a, c -  #) suggested 
earlier in (3.7). (Of course, as p / 2  1, the approximations are asymptotically identical.) 
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In practice, (3.7) yields approximations that are somewhat better than those associated 
with (3.11), particularly for moderate values of the "traffic intensity" p. This tends to 
confirm the conclusion that strong approximations lead naturally to the "right" diffusion 
approximation. 

The above argument guarantees that when p is close to 1, then RBM provides a good 
approximation to W over time scales of order (1 - p)-2 and spatial scales of order (1 -/))-1. 
In the next sections, we use strong approximation to study the question of whether RBM 
can be a good approximation over other temporal and spatial scales. 

4. H e a v y  Traffic T i m e  Scales 

Given that the single-server queue is "balanced", in the sense that the station's service 
capacity c is close to its arrival rate #, and "stable" (so that c > #), RBM provides a 
good approximation to W over time scales both shorter and longer than (1 - p)-2 (where 
p = 

P r o p o s i t i o n  1 Suppose that S satisfies (2.4) and that t ~ c~ in such a way that 
t(1 - p)2 ~ 0 as p/2' 1. Then, 

~/~W(t; p) =~ Z(1; O) 0", (4.1) 

a s p Z 1 .  

Proof:  Recall from (3.8) that 

W(t; p) = Z(t; a, c(1 - p)) + o(t 1/2) a.s. 

Consequently, 

_~ 1 Z(t" a, c(1 - p)) -~ 0 a.s. w ( t ;  p) , 

But, scaling properties of Brownian motion imply that 

~ Z(t;a,c(1 - p)) v= Z(1;a,c(1 - p)v~). 

Since (1 - p)v~ -~ 0, the proposition is proved. [] 
The above proposition shows that W(t; p) behaves like a driftless RBM over an initial 

time interval small relative to (1 - p)-2. I t  is also worth noting that Z(1; a, 0) _v laB(l)[. 
(See, for example, Karlin and Taylor (1975)). 

To study time scales that are long relative to ( l - p )  -2, we make the following assumption 
concerning S: 

S(t) = A.~i=IK-'A(t)V~, where A = ( A ( t ) ' t  _> 0) is a Poisson process with rate s > 0 
(4.2) 

and (Vn : n _> 1) is an independent sequence of bounded i.i.d.r.v.'s. 

This assumption serves to "streamline" the proofs below; qualitatively similar results 
undoubtedly hold under much weaker assumptions. 
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Since S has independent increments, we may view S(n) as the sum of n i.i.d, compound 
Poisson r.v.'s, each having a moment generating function which converges in a neighbor- 
hood of the origin. Consequently, it is easily shown, by applying results of Koml6s, Major, 
and Tusns (1975, 1976), that  S obeys the strong approximation principle 

S(t) = #t + aB(t )  + O(logt) a.s. (4.3) 

as t ~ oe, when # = MEV1 and a 2 = MEV12. 
With the better behaved error term appearing in (4.3), we note that  

W(t; p) = Z(t; a, c(1 - p)) + O(logt) a.s. 

as t -~ oo, where O(logt) is uniform in c and p. Hence, provided that  (1 - p) logt  --, 0, 
we may conclude that  

(1 - p)W(t; p) - (1 - p)Z(t; a, c(1 - p)) ~ 0 a.s. 

as p 7 1. But, as discussed in Section 3, 

(1 - p)Z(.(1 - p)-2;a,c(1 - p)) ~- Z(.;a,c) .  

It follows that  if t --. oo in such a way that t(1 - p)2 _~ oo but (1 - p) log t --. 0, then 

(1 - p)W(t(1 - p)-2; p) =~ Z(oo; a, #), (4.4) 

where Z(oo; a, #) is a r.v. having the stationary distribution of (Z(t; a, #) : t > 0) (which 
necessarily exists if # > 0). In fact, it is well known that  Z(oo; a ,#)  is exponentially 
distributed with mean a2/(2#); see, for example, Asmussen (1987). 

Hence, it is evident that  if p ~ 1 and (1 - p)-2 <~ t << exp((1 - p)- l) ,  then 

T~ O-2 
W(t; p) ~ 2(1 - p)# exp(1), (4.5) 

where exp(1) is an exponential r.v. with unit mean. Thus, the use of strong approximation 
leads, with little effort, to the conclusion that  if t is large relative to (1 - p)-2 but small 
relative to exp((1 - p)-~), then W(t)  may be approximated by the "steady-state" of 
RBM. Of course, given that  steady-state approximations typically improve with larger 
t, one expects that  approximating W(t)  by the steady-state distribution of RBM should 
require only that  t >> (1 - p)-2, without any additional restrictions whatsoever on the 
magnitude of t. Unfortunately, to establish this result requires tools that  go beyond the 
theory of strong approximation. One way to do this is to use "change-of-measure" ideas 
that are widely applied in studying the r.v. W(t; p). 

P r o p o s i t i o n  2 Suppose that S satisfies (~.2) and that t(1 - p)2 __, c~ as p Z 1. Then, 

O-2 
(1 - p)W (t; p) =~ ~ exp(1) (4.6) 

a s p T 1 .  
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Proof :  We first note that  for each fixed p, the independent increments structure of S 
implies that  

W ( t ' p )  = m a x i S ( u ) -  u#/p]. 
0 < u < t  

Hence, for x > 0, 

IP(W(t; p) > (1 - p)- lx)  = ]P(T(p) <__ t), 

where T(p) = inf{t _ O" S(t)  - # t i p  > (1 - p)- lx}.  Let IP0(.) be the probability on the 
path-space of W under which S evolves according to a stationary independent increments 
process with 

IPo(S(1) e dx) = e x p ( O x -  r e dx) 

for x _ 0, where r = log IF, exp(0S(1)). Then, 

IP(T(p) <_ t) = IEo[exp(-OS(T(p) A t) + (T(p) A t)r T(p) <_ t]. (4.7) 

Let 0* = 0* (p) > 0 solve the equation 

r = O*#/p. (4.8) 

Note that  as p / 2  1, (4.8) clearly has a unique solution 0*. Furthermore, since r = 
#0 + a 2 ~  + 0(0 2) as 0 ~ 0, it is clear that  

0" = 2#(1 - p ) /a  2 + o(1 - p) (4.9) 

as p ,7 1. Put t ing 0 = 0* in (4.7), (4.8) yields 

ID(T(p) <_ t) = lEo.[exp(-O*(S(T(p) A t) - # /p (T(p)  A t))); T(p) <_ t]. 

But by definition of T(p), 0 <_ S(T(p))  - (# /p)T(p)  - x(1 - p)- i  _< b, where b is the 
assumed upper bound on the V~'s (see (4.2)). So, 

exp(-0*(x(1 - p ) - i  .~_ b))IDo.(T(p) ~_ t) 
<_ n (T(p) <_ t) 
___ exp(-O*x(1 - p)-~)IP0. (T(p) <_ t). 

In view of the fact that  O*(1-p)  -1 --, 2# /a  2 as p / 2  1, the proposition's proof is therefore 
complete if we can argue that  ]Po* (T(p) _< t) --, 1 if t(1 - p)2 __, c~. But 

�9 o.(T(p) <_ t) 
>_ lPo.(S(t) - # t  > x(1 - p ) - l )  

P 

= 1 - I P o . ( S ( t ) -  # t  <_ x(1 - p)- l )  
P 

>_ 1 - lPo. (IS(t) - ~ t -  mt  I > m t -  x(1 - p)-~) 
P 
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whe re to  = re(p) = I E o . S ( 1 ) - ~  = r  = # ( 1 - p ) + o ( 1 - p ) .  Note that  if 

t(1 - p)2 _~ +c~, then r u t -  x(1 - p)-~ ~ mt as p 7 1. Finally, Chebyshev's inequality 

yields 

 o.(Is(t) - mtl) p 
<_ tVaro.(S(1) - # / p ) / ( m t -  x(1 - p)-1)2 

,,~ ~2"(O,)/rn2t = (a 2 + o(1))/m2t --, 0 

as p / 2  1, proving the result. [] 
Proposition 2 is a clear counterpart to Proposition 1, establishing that  the r.v. W(t)  

can be well approximated by RBM over time scales that  are long relation to (1 - p)-2. 
Proposition 1 and 2 focus on the marginal distribution of W. Of course, strong approx- 

imation is ideally suited to studying more complex functionals of W. Note that  the same 
argument as applied earlier in this section shows that  if (1 - p) log t --~ 0 as p / z  1, then 

sup I(1 - p)W(u; p) - (1 - p)Z(u; a, c(1 - p))l ~ 0 a.s. (4.10) 
0 < u < t  

as t -~ oc, permitting one to approximate suitably continuous functionals of W involving 
the path of W over time scales that  are small relative to exp((1 - p ) - l )  by the cor- 
responding functional of RBM. For an example of such a computation, see Glynn and 
Whitt  (1995). 

The time scale exp((1 - p)- i )  is a critical time scale for such approximations. Specif- 
ically, one expects that  (4.10) cannot be valid for longer time scales. This phenomenon 
is closely related to the solution of the "stochastic geyser problem"; see Bgrtfai (1966). 
Note that 

sup ( 1  - p ) l S ( t )  - # t -  a B ( t ) l  ~ 0 a . s .  
O<u<t  

(4.11) 

provided that  (1 - p) log t ~ 0 as p / z  1; this is the main theoretical ingredient that  goes 
into proving (4.10). The problem is that  if (1 - p) logt  ~ oc, then 

sup ( 1  - p ) l S ( t )  - # t  - ~ B ( t ) l  --~ + c ~  a.s.  
O<u<t 
for non-Brownian independent increments processes S, regardless of how the probability 
space used to support S and B is constructed. To see why, consider the functional (for 
d>O) 

(1 - p) max S(k  + [ d l o g t ] ) -  S ( k ) -  #[dlogt]. (4.12) 
O<k<[t-dlogt] 

If (4.11) were to hold when (1 - p) logt  --~ cx~, the behavior of the above r.v. over such 
time scales must be determined solely by # and a 2. But the ErdSs-Rdnyi law (see CsSrg6 
and Rdv6sz (1981)) implies that  (4.12) is almost surely asymptotic to (1 - p)da(d),  logt, 
where 

a(d) = sup(x "iI~f exp(-tgx)IEe ~ >_ e-1/d). 

Hence, if (1 - p ) log t  --, oo, (4.12) grows to infinity at a rate determined not just by # 
and a 2 but by the function a(.). We conclude that  the strong approximation breaks down 
for functionals that  involve the path history over time scales t >> exp((1 - p)-l) .  
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5. H e a v y  Traffic Spa t i a l  Scales  

In this section, we are again interested in a single-server queue in heavy traffic. We shall 
be concerned here with the spatial scales over which such a queue can be approximated 
by a RBM when the time scale is of the conventional heavy-traffic order of magnitude, 
namely (1 - p)-2. 

As seen earlier in Section 3, RBM clearly gives good approximations over spatial scales 
of order (1 - p)- l .  The question is: How does RBM perform as an approximation to a 
single-server queue over both smaller and larger spatial scales than (1 - p) - l?  We start  
with a discussion of the relevant behavior at smaller spatial scales. 

Clearly, if x = x(p) << (1 - p)- l ,  then IP(W(t(1 - p ) - 2 ;  p) ~ x)  ---, 0 a s  p , 7  1. Hence, 
by a good approximation, we are interested in finding conditions on x such that  

IP(W(t(1 - p)-2; p) _< x) ,,~ IP(Z(t(1 - p)-2; o-, c(1 - p)) ___ x) (5.1) 

as p / 1. Our focus will be on the range of p E (0, 1) for which (5.1) holds when 
x -- y (1  -- p)p-1 for  y > 0 fixed. We can easily simplify the right-hand side of (5.1). Note 
that  

IP(Z(t(1 - p)-2;a,c(1 - p)) <_ x) 

= IP((1 - p)-'Z(t;a,c) <_ x) 

z + ct ~ _ exp(_2cz/a2)ap ( - z  + ct 
-- ~P(atl/2 ] at1~2 ) 

where r = IP(N(0, 1) _< .) and z = y(1 - p)P. (The transition distribution of RBM 
may be found, for example, in Harrison (1985), p.15.) Since z $ 0 as p / z  1, the latter 
probability is asymptotic to z multiplied by the value of the transition density at the 
origin. Consequently, 

lP(Z(t(1-p)-2;a,c(1 P))<-x)~2y(1 P ) P [ a - ~ ~ ( ~ x ~ ) +  ~---aP # )] - - o v q  (5 .2)  

as p / z  1, where ~(.) is the density of a N(0, 1) r.v. 
We now turn to the left-hand side of (5.1). Let r be the "error term" r.v. in the 

strong approximation, namely, 

6(p) = sup IS(u) - ~ u -  a B ( u ) l .  O<u<t(1-p) -2 

We shall require that  S satisfy (4.2), so that  the results of Koml6s, Major, and Tusns 
(1975, 1976) imply that  

lP(r > d l o g ( ( 1 -  p)-') + r)<_ Ke -~  (5.3) 

for some finite, positive constants d, K and A. Then, 

lP(r > (d + 2p/A)log((1 - p ) - l ) )  _- O((1 - p)2p) 
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as p / z  1. Note that  

IP(W(t(1 - p)-2; p) _< y(1 - p ) p - 1 )  

<_ IP(Z(t(1 - p)-2; a, c(1 - p)) _< y(1 - p)P-' + (d + 2p/A)log((1 - p ) - l ) )  

= 2(y(1 - p)P + (d + 2p/A)log((1 - p)- ' ) (1  - p)) 

. ~ _ _ ~ ( ~  [ 1 v / ~ ) + a ~  . # r  

= 2 y ( 1 - p ) P  __  + \ a v / t /  + o ( (1 -p )P)  

as p 7 1, where the first equality follows from an argument similar to that used to 
obtain (5.2). A similar lower bound on lP(W(t(1 - p)-2; p) _< y(1 - p)p-1) can easily be 
computed. These two bounds, in conjunction with (5.2), prove the following result. 

P r o p o s i t i o n  3 Suppose that S satisfies (4.2). Then, for each p e (0, 1), y > o, 

IP(W(t(1 - p)-2; p) _< y(1 - p)P-') 

IP(Z(t(1 - p)-2; a, c(1 - p)) <_ y(1 - p)P-') 

[ 1 ( ~ ) #  ( _ ~ ) ]  
= 2y(1 - p)P ~ - - ~  v/t + ~--~r x/t + o((1 - p)P) 

(5.4) 

a s p S 1 .  

We conclude that  the heavy traffic approximation is valid, in the sense described by 
Proposition 3, over spatial scales as small as (1 - p)p-1 for any p > 0. 

We turn now to larger spatial scales. We wish to know the range of p > 0 for which 

IP(W(t(1 - p)-2; p) > y(1 - p)- ' -P)  

lP(Z(t(1 - p)-2; a, c(1 - p)) > y(1 - p)- ' -P)  
(5.5) 

is valid, as p 7 1 (for y > 0 fixed). We follow the same approach as that  used to obtain 
Proposition 3. Considering first the right-hand side of (5.5), observe that 

IP(Z(t(1 - p)-2; a, c(1 - p)) > y(1 - p)- ' -P)  

= IP(Z(t; a, c) > y(1 - p)-P) 

= IP(N(0, 1) > (z + ct)/at 1/2) + exp(-2cz/a2)lP(N(O, 1) < ( - z  + ct)/atl/2), 

where z = y(1 - p)-P. 
Recall that 

1) > x)  (z)lz 
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as x --, oc; see Feller (1968), p. 175. Then, 

IP(Z(t(1 - p)-2; a,c(1 - p)) > y(1 - p ) - l - p )  

= ID(N(0, 1) > (z + ct)/atl/2). [1 + exp(-2cz/a 2) 1P(N(0, 1) > (z - ct)/at 1/2) 
IP(N(0, 1) > (z + ct)/atl/2) 

= IP(N(0, 1) > (z + ct)/atl/2) �9 [1 + exp(-2cz/a 2) ~((z~p((z +- ct)/atl/2)ct)/atl/2) + o(1)] 

= IP(N(O, 1)>(z+ct)/at l /2)  �9 [1 + e x p  ( -2cz /a  2-(z-2a2t ct)2 + (z+ct)2)2a2t + o(1)] 

= ID(N(0, 1) > (z + ct)/atl/2)(2 + o(1)), 

so that  

IP(Z(t(1 - p)-2; a, c(1 - p)) > y(1 - p) - l -p)  ~ 21P(N(0, 1) > (z + #t)/at 1/2) (5.6) 

as p / ~  1. 
To analyze the left-hand side of (5.5), we again assume (4.2). Then, (5.3) yields the 

inequality 

IP(r > dlog((1 - p) - l )  + v(1 - p)-q) <_ K exp(-Av(1 - p)-q) 
for v, q > 0. Hence, as in (5.6), 

 (w(t(1 - p) > y(1  - 

_< IP(Z(t(1 - p)-2; a, c(1 - p)) > y ( 1 -  p)-l-p_ v(1 - p)-q) 
+ lP(r > v(1 - p)-q) (5.7) 

_< IP(N(0, 1) > (y(1 - p)-P - v(1 - fl)l-q -b #t)/atl/2)(2 + o(1)) 
+ K exp(-Av(1 - p)-q). 

In order that  the error term exp(-Av(1 - p)-q) be small relative to (5.6), we must choose 
q > 2p. On the other hand, in order that  our "upper bound" IP(N(0, 1) > (y(1 - p)-P - 
v(1 - p)l-q + #t)/atl/2) be asymptotic to (5.6), we are required to choose q < 1 - p .  
Hence, we find that  

IP(W(t(1 - p)-2; p) > y(1 - p ) - l - p )  , ~  IP(Z(t(1 - p)-2; a, c(1 - p)) > y(1 - p ) - l - p )  

as p 7 1, provided that  we can find a q > 0 with the property that  2p < q < 1 - p .  
So, p must lie on the interval (0, 1/3), in order that  the above argument be valid. We 
summarize our discussion with the following proposition. 

P r o p o s i t i o n  4 Suppose that S satisfies (~.2). Then, for 0 < p < 1/3, y > 0, 

�9 ( w ( t ( 1  - p) > y (1  - 

]P(Z(t(1 - p)-2; a, c(1 - p)) > y(1 - p)- l -p)  

= IP(N(0, 1) > (y(1 - p)-P + #t)/atl/2)(2 + o(1)) 

a s p T 1 .  
So, the heavy-traffic RBM approximation is valid over spatial scales as large as 

( 1 -  p)-4/3. This is a heavy-traffic analog to the CLT tail asymptotic given by, for 
example, Theorem 1, p. 549, of Feller (1971). 
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6. Conc lud ing  R e m a r k s  and  O p e n  P r o b l e m s  

In the previous three sections, we have focussed on the heavy-traffic behavior of the 
single-server queue, using strong approximation as our principal mathematical tool. 
Heavy-traffic theorems for networks of queues also exist. Specifically, we refer to the work 
of Horvgth (1992) and Chen and Mandelbaum (1994), in which strong approximations 
for a family of single customer class queueing networks in heavy-traffic were developed. 

Roughly speaking, the theory for a d station network goes as follows. Suppose that 
#i is the rate at which work flows into the i 'th station of the network, and let c~ be the 
processing rate of the server at station i (1 < i _ d). Set pi = #i /c~ ,  and suppose that 
pi < 1 for 1 5_ i < d, so that there is adequate processing capacity at each station for its 
associated incoming workload. If 

p =  m i n p i ~ l ,  
l < i < d  

then the network is in "heavy traffic", and the network's temporal dynamics can be ap- 
proximated by a d-dimensional reflecting Brownian motion on the orthant. Furthermore, 
the heavy-traffic time and spatial scaling is as in the single-station case. In particular, on 
time scales of order (1 - p)-2 and spatial scales of order (1 - p)-l,  the network (vector) 
workload process behaves like an RBM (having no dependence on p). 

Our analysis of Sections 4 and 5 suggest that: 

i). the RBM network approximation to the marginal distribution of the vector workload 
process is valid provided t is large (but may be of smaller order than (1 - p)-i when 
t << (1 - p)-2); 

ii). the RBM network approximation to the vector workload process is valid for func- 
tionals that depend on a segment of the path history that is small relative to 
exp((1 - p ) - l ) ;  

iii). on time scales of order (1 - p ) - 2 ,  the RBM provides accurate approximations to the 
marginal distribution of the network workload process over spatial scales of as small 
as (1 - p)-q (0 < q < 1) to as large as (1 - p)-4/3. 

The current state of knowledge for multi-class network is more muddled. Such networks 
are poorly understood, relative to their single-class counterparts, in part because even the 
question of "stability" is not yet settled. For some insight into the "heavy-traffic" behavior 
of such multi-class networks, see Harrison (1995). 

We conclude this section by providing a couple of open problems that may be of the- 
oretical interest to the "strong approximation" community. Each of these problems is 
motivated by certain issues that arise in the application of strong approximation ideas to 
queueing systems. 

In certain arguments, it would be convenient to invoke a "triangular array" version 
of the strong approximation principle in which logarithmic error terms appear (as in 
(4.3)). Such a result is needed, for example, in studying the behavior of a sequence of 
single-station systems going into heavy-traffic, in which the arriving work process is itself 
permitted to depend upon the traffic intensity p. (In Sections 3, 4, and 5 of this paper, 
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W(.; p) was constructed from a single arrival process defined independently of p.) A 
partial result in this direction would be the following. 

Open  P r o b l e m  1" Investigate how the constants d, K,  and A appearing in (5.3) depend 
on the distribution of S. (This would potentially permit one to obtain some control on the 
strong approximation that is uniform as one "moves down" the triangular array.) 

The solution of this problem would also be useful in generalizing the results of Glynn 
and Whitt (1991) to the setting in which the consecutive customers passing through the 
network are permitted to have different processing time distributions. 

A second theoretical problem arises as follows. In many applications, it is highly un- 
realistic to assume that the arriving work process has stationary independent increments 
(as we did earlier in (4.2)). In fact, a more widely accepted model assumes that 

/o S(t) = f ( X ( s ) ) d s ,  

where X = ( X ( t ) ' t  > 0) is a Markov process, and f is a real-valued functional defined 
on the states of X. In order that S look Brownian, one typically requires that X be 
positive recurrent in some sense. One widely used notion of recurrence is that of Harris 
recurrence (in continuous time). For example, d-dimensional (nice) diffusions are typically 
recurrent in this sense. In order to develop a strong approximation principle like (4.3), 
the most obvious theoretical approach is to attempt to reduce the analysis to that of a 
sum of i.i.d.r.v.'s via use of "regenerative" ideas; one can then directly apply the results 
of Komlds, Major, and Tusns (1975, 1976) to obtain a strong approximation with 
logarithmic error bounds. 

The difficulty is that processes X that are Harris recurrent in continuous time are 
not typically regenerative. To see this, let X be a d-dimensional diffusion, and suppose 
there exists a sequence of random times To < T1 < T2 < - "  such that ((X(T~_I + u) �9 
0 _ u < T~) �9 i > 1) (T~ = T~-T~_I) is i.i.d. Consequently, for each i > 1, X(T~-) 
is independent of X(T~+). But, by path continuity, X (T~-) = X(Ti+) = X (T~). Hence, 
X(Ti) is deterministic for i > 1. It follows that X must visit some fixed deterministic 
point infinitely often. In general, this is false for diffusions in dimensions two or higher. 
So, we conclude that such diffusions do not typically exhibit this type of regenerative 
structure. 

Instead, it turns out that one can establish existence, for any Markov process that is 
Harris recurrent (in continuous time), of a sequence of random times To < T1 < " -  such 
that {(X(T~_I + u) �9 0 _< u < Ti)" i _ 1} is identically distributed and 1-dependent; see 
Sigman (1990). Let 

Y~ = f (X ( s ) )  ds 
--1 

for i _ 0 (setting T-1 - 0). Then, under mild conditions on (Y1, T1), 

1 , ,  IEY1 
-sttj-  , = 
t ]ST 1 

as t -~ c~. Furthermore, 

N(0 
s ( t )  - , t  (Y ,  - 

i --1 
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where N(t) - max{n >__ -1  �9 Tn _< t}. Evidently, then, a major step towards obtaining 
good strong approximations for a process S constructed from such a Harris recurrent X 
would be the solution of the following open problem" 

Open Prob lem 2: Let (Wi �9 i >_ 1) be a sequence of identically distributed one-dependent 
r.v. 's. Find conditions on W1 such that there exist constants # and a for which 

g l  

w ,  - n .  - oB( ) + O 0 o g  n) 
i = l  

a . s .  

for some standard Brownian motion B (on a suitably defined probability space). 

With a positive solution to this second problem, strong approximation principles for 
a very wide class of recurrent Markov processes (having logarithmic error term) would 
potentially be made available. 
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