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Abstract 

Consider the problem of numerically computing the exponential rate at which 
the tail of the hitting time of a ~arkov chain to a given set decreases to zero. One 
approach involves computing the solution to an eigenvalue problem. In this paper, 
we use a regenerative representation for the exponential rate constant to construct 
an associated simulation-based estimator. A strong law and central limit theorem 
for the estimator are also presented. 
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1 Introduction 
It has long been known that the hitting time distributions of ~arkov processes 
in hoth discrete and continuous time often exhibit exponential decay in their tail 
probabilities. However, the numerical computation of the corresponding decay rate 
constants has received less attention. 

In this paper, we consider a simulation-based approach for computing such 
decay rate constants (referred to, in the sequel. as the "large deviations exponent"). 
Our approach depends upon a regenerative representation for such exponents that 
was implicit in the work of :-<ey and :-<ummelin (1987) on large deviations for 
additive functionals of Markov processes. 

This paper is organized as follows . Section 2 sets up the basic mathematical 
framework in which our ana1ysis will be conducted. In Section 3, we represent 
the large deviations exponent of interest in terms of a regenerative quantity, and 
provide some associated theory. Section 4 describes our estimator. and provides a 
law of large numbers and central limit theorem for our methodology. 
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2 The Basic Framework 
Let X = (X" : n ~ 0) be a (time-homogeneous) ~arkov chain living on a finite 
or countably infinite stat.e space S, with one-step transition matrix P = (P(x. y) : 
x. yES). For a given non-empty subset A ~ S such that N '" 0, let 

T = inf{n ~ 0: X" E A} 

be the first hitting time of A. Our interest is in studying the rate at which the tail 
probabilities of T decrease to zero, given that the process is initially started in AC • 

Consider the assumption: 

Al The restriction of P to AC
, namely B = (P(x. y) : x , y E AC

), is irreducible. 

For xES, let Pz (·) = P(-IXo = x) . Using elementary arguments. it is straight
forward to establish the following result. due to Vere-Jones (1962) and Kingman 
(1963). 

Theorem 1 Under Assumption Ai, there exists A ~ 0 such that for each x , y E A C
, 

as n --+ 00. 

1 
-logPz(X" = y, T > n) --+ -A 
n 

Theorem 1 suggests the approximation 

Pz(X" = y, T > n) ::::: exp( -An) 

(1) 

(2) 

for n large. (An important consequence of the theorem is that the exponential rate 
constant A is independent of x and y.) This is, of course, a special type of "large 
deviations" asympototic. Our interest is in efficient numerical computation of the 
·'large deviations exponent" A. 

Before proceeding, it should be noted that Al does not generally imply either 

or that 

1 
-logPI'(X" = y, T > n) --+-,\ 
n 

1 
-logPz(T > n) ~ -,\ 
n 

as n --+ 00. (Here, P,.(-) is the probability distribution of X. conditional on Xo 
following distribution /-I.) It is easy to construct non-pathological examples in 
which the large deviations exponents for PI' (X" = y, T > n) and PI(T > n) differ 
from A. Even simple random walks provide such examples; see Kingman (1963) 
for details. (Of course, it is obvious that all such examples must involve chains in 
which IAcl = +00.) Thus, it is evident that additional restrictions must be imposed 
on X in order to guarantee that these various large deviations exponents coincide. 
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3 The Regenerative Viewpoint 

The regenerative structure of discrete state space Markov chains is commonly IISed 
to study the steady-state of such stochastic processes. Here, we consider the lise of 
regeneration in studying the hitting time distribution introduced in Section 2. 

For x, y E AC
, let 

a(n) = Pz(Xn = y, T > n) . 

Set, = inf{ n 2: 1 : Xn = x} and note that the strong Markov property, applied at 

time " implies that 

n 

a(n) = Pz(Xn = y, T 1\, > n) + L Pz(Xn = y, T > n" = j) (3) 

where 

}=I 
n 

= b(n) + L a(n - j)gU)· 
}=I 

b(n) = Pz(Xn = y, T 1\ , > n) 

g(n) = Pz (' = n.T > ,) 

( 4) 

Consequently, a = (a(n) : n 2: 0) satisfies a ( defective) renewal equation. The 
standard approach to studying such equations is to invoke the following assumption: 

A2 There exists 8 2: 0 such that 

X> 

L e
8n g(n) = 1 

"=1 

Assumption A2 may be rewritten in the form: There exists 8 2: 0 such that 

Ez[e8T
: T > , I = 1. 

In any case, if we let a(n) = e8na(n). b(n) = e8n b(nl. g(n) = eBng(n), we note that 
by multiplying through Equation -1 by e8n that we arrive at the following (proper) 
renewal equation: 

a(n) = b(n ) ..... L a(n - J)g(j) (5) 
} = I 

Since (g(n) : n 2: 1) is a probability mass function. conventional renewal theory 
may be applied to Equation 5. To do so. we require that: 

A3 i) (g(n) : n 2: 1) is an aperiodic sequence: 
ii) E::"=I ng(n) < 00. 

Observe that Assumption A3 ii) may be re-expressed as requiring that 

E%[,//T : T > , I < 00, 
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where (J is defined as in Assumption A2. Suppose y = I . Then 

00 :>0 

Lb(n) = L e8n b(n) 
n=O "=0 

:>0 

= L e8n P,(Xn = x. T 1\ T > n) 
n=O 

T "T -\ 

= Ex L J(Xn = x)e8n 

n==O 

= 1, 

since Xn i= x for 1 :s n < T. Under Assumptions A2 and A3, the renewal theorem 
therefore applies ( see, for example, Feller (1968) ). permitting us to conclude that 
if y = x. then 

:>0 :>0 

a(n) ~ L b(j)! L jg(j) 
) =0 }=o 

as n ~ ce. We have therefore established the following result. 

Proposition 1 Under Assumptions .-12 and .-1:1, 

as n ~?O. 

Comparing with Equation 2, we conclude that A = (J. Consequently. the large 
deviations exponent A may be characterized as the root A of the equation 

This characterization will form the basis of our numerical approach to computing 
A. 

Before proceeding to a discUS8ion of the algorithm. we wish to argue that under 
Assumption AI, if Assumptions A2 and A3 holds for one particular "regeneration 
state" x. then Assumptions A2 and A3 holds for all I E A.c . Without such a 
guarantee. the choice of regeneration state would be complicated greatly. 

Observe that if Assumption A2 holds for some x E A.c. then for y EX. 

Ey[e8T
: T > T] 

L e8 P(y,z)Ez [e8T :T > Tj+e8 p(y,x) 
z,#r ,zEAC 

= e9 L P(y, z)Ez [e8T T > Tj 
zEAC 

Hence. if we set h(y) = Ey[e9T
; T > Tj, we may conclude that for y E AC

, 

L P(y , z)h(z) = e- 8 h(y). 
zEAC 
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In other words. h is a (column) eigenvector of B corresponding to eigenvalue .. -' . 
Furthermore, under Assumption Ai. it is trivially evident that h is strictly positive. 
Also, h is finite-valued under Assumption Ai. becal\se 

1 = h(x) > Er[e'''';Ty < T < TI 

> Pz ( Ty < T < T)h(y) 

where Ty = inf{n 2: 1: X" = y}. Then we have established the following result . 

Proposition 2 Assume that .4.ssumption .4.2 holds. for some x E AC. Then under 
Assumption Al, there erists a strictly positive finite·valued (column) eigenvector 
of B such that 

Proposition 2 establishes that the large deviations exponent can be character
ized in terms of the Perron-Frobenius eigenvalue of B . Thus. one potential means 
of computing the large deviations exponent would involve computing the solution 
of the above eigenvalue problem. 

Let R = (R{y, z) : y, Z E AC
) be the matrix with entries 

R(y, z) = e' B(y, z)h(z)/ h(y) . 

It is easily verified that R is irreducible and stochastic. under our assumptions. Let 
J\,(-) and Ey {-} denote the probability distribution and expectation on the path
space of X under which Xo = y and X evolves according to one-step transition 
matrix R. Then, for y E .'\c, it is evident that 

- h{Xnl 9n 
EyZ = Ey[Z h(Xo): T > TI · e 

for any non-negative .r,,-measurable r.v. Z (.rn ~ cr(Xo, '" , X n ))· The above 
relation can be easily extended to .rT,-measurable Z: 

- g.,. h(XT.l h(z) ,.,.. 
Ey[Z;Tz < 00] = Ey[Ze ' h(X ) :T > T"Tz < 001 = h( )Ey[Ze ' ;T> Tzl· ° y (6) 

(We used here the fact that T > T z is incompatible with T z = +~.) Setting 
y = z = x and z == I, we arrive at the identity 

Consequently, Assumption A2 guarantees that R is a recurrent matrix. Cnder the 
irreducibility of Assumption A I, we know t hat recurrence is a "solidarity" property, 
so that Py{Ty < 00) = 1 for y E AC

• Relation 6 therefore implies that 

Ey[e''''' ; T > Ty] = 1 
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Setting y = z = x and Z ::: T , equation 6 yields 

E.,(T;T < 00) = E.,[Tes" ;T > TI < 00 

ThUll, if Assumption A2 and A3 hold for some x E AC
, then R is positive 

r~urrent. Since positive recurrence is also a "solidarity" property, evidently Ey (T < 
00) for y E AC

• Relation 6 therefore implies that 

00 > EyTy = Ey[Tyes"' ;T > Tyj , 

verifying Assumption A3 for y E AC
• We have therefore proved the following result. 

Proposition 3 Assume that Assumption Al hold8. Then, 

1. if Assumption A~ i" valid for one x E AC
, Assumption A~ is valid for all 

x E AC. 

2. if Assumption A3 i" valid for one X E AC
, Assumption A3 i" valid for all 

x E AC
• 

Before concluding this section, we note that we have essentially established 
that under Assumption AI , A2 is equivalent to requiring that B is R-recurrent 
(with R = eS ), whereas Assumptions A2 and A3 together imply that B is R
positive (again. with R = e'l . The concepts of R-recurrence and R-positivity are 
fundamental to the theory of quasi-stationary distributions: see for example. Seneta 
(1980) . 

In the next section, we describe our simulation-based estimator for computing 
the large deviations exponent A (or equivalently, 9) . 

4 A Simulation-Based Estimator 
If B is irreducible, then Proposition 3 establishes that if 

Ey[es", ; Ty < Tj = 1 (7) 

holds for one y E AC, then Equation 7 holds for all y E AC. So, fix L E AC, 
and consider simulating n Li.d. replicates of X up to time T 1\ Tz , conditioned on 
starting in state x. In particular. let 

Wi(-y) ~ e?"'I(T, < Til 

be the value of the r.v. e7", I(T,. < T) associated with i-th replicate. Set 

1 " 
W;{-y) = ; L Wih) · 

1= 1 

Clearly, W'nO, is strictly increasing and continuous, with Wn ( -x) = 0 and 
W',,(oo) = +00. Hence, for each n. there exists a unique root An to the equation 

It is easy to show that the empirical root An is consistent for A. 
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Proposition 4 Under Assumptions Al and A2. An ~ A almost SUIl!ly as n ~ 00. 

where A .. olves Equation 7. 

Proof: For 0 > O. the strong law of large numbers guarantees that 

W,,(A - e) ~ Er [e (A - '}Tz ; 'r < T] < 1 

W,,(A + 0) -+ E:r[e(AT!} Tz ; 'r < T] > 1 

as n -+ 00 . Consequently, A" E (A - o. A + e) for n sufficiently large. Since 0 wns 
arbitrary, this proves the result. 0 

We turn next to the central limit theorem (CLT) for An. Assume that: 

A4 E",[e2ATz
; '''' < ,] < 00. 

Theorem 2 Under A.,sumptiom AI. A 2 and .44, 

as n -+ 00, where w'z(A) = Ez['zeATz ; 'z < TI and Varz(-) ~ Var( ·j X o = x). 

Proof: Note that 

and consequently 

(8) 

where ~" lies between A and A" . Now, 

1 " 
W~(~,,) =;; LT,e{·T'l('i < Til . 

l=1 

Beca.use W~ (-) is strictly increasing a.nd An -+ A a.s . as n -+ x. it is ,'vident that 
for e > 0 and n la.rge enough. 

W~(A - t:) :s W~ (~n) :s W~(A +0) . 

But the strong law of large numbers ensures that 

W~(A- €) --+ W~(A-t:). 

W~(A + t:) --+ W~(A + 0) 

as n -+ 00. Since 0 was arbitrary. we may conclude that W,,(~,,) -+ U'~ ( A) a.s. a .. ~ 
n -+ 00 . On the other band. Assumption A4 ensures tbat 

(9) 

as n -+ 00. Combining Equations 8 and 9 yields tbe desired conciWlioll. 0 

766 



Given Proposition 3, it is perhaps surprising that the "second moment" hypoth
esis Assumption A4 is not a solidarity property in the presence of Assumption Ai. 
In particular. it is easy to construct examples in which Assumption A4 holds for 
one x E ,4C but not all x E ,4c. even in the presence of irreducibility. This raises 
the question of what happens when Assumption A4 fails to hold. We will study 
this issue further in future research. 

Given the CLT provided by Theorem 2, we may construct confidence intervals 
for the large deviations exponent 'x . In particular. let 

1 L" - 2 V,.h) = -- (W;(2-y) - W,,(-rll . 
n -1 

i=1 

It is easily verified that under the conditions of Theorem 2 (plus the additional 
proviso that Varz WI (,x) > 0), 

[
,X - z y'V,,(A,,) ,x + z ~V,, ( ,x,,) ] 

,. W~(,x,.) , n W~ ( 'xn) 

is an asymptotic (as n --+ 00) 100(1 - 8)% confidence interval for ,x . where z solves 
the equation P(N(O. 1) S z) = 1 - 8/2. 
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