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COMPLEXITY O F  NON-ADAPTIVE OPTIMIZATION 

ALGORITHMS FOR A CLASS O F  DIFFUSIONS 

James M. CALVIN 

School of Industrial and Systems Engineering 
Georgia Institute of Technology 

Atlanta, GA 30332-0205 

Peter W. GLYNN 

Department of Operations Research 
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Stanford, CA 94305-4022 

Abstract 

This paper is concerned with the analysis of the average error in ap- 
proximating the global minimum of a 1-dimensional, time-homogeneous 
diffusion by non-adaptive methods. We derive the limiting distribu- 
tion of the suitably normalized approximation error for both random 
and deterministic non-adaptive approximation methods. We identify 
the form of the asymptotically optimal random non-adaptive approx- 
imation methods. 

Key words and phrases. Global optimization, average-case com- 
plexity, diffusion processes. 

Copyright O 1996 by Marcel Dekker, Inc. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
a
n
f
o
r
d
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
6
:
2
1
 
2
1
 
J
u
l
y
 
2
0
1
0



CALVIN AND GLYNN 

1 Introduction 

This paper is a study of the average error in approximating the global 
minimum of a one-dimensional diffusion using non-adaptive optimiza- 
tion algorithms. This topic is part of the general area of average-case 
performance analysis of global optimization algorithms. Our motiva- 
tion for studying the problem in the one-dimensional diffusion setting 
is to generalize properties that have been established for the special 
case of Brownian motion, and to gain a detailed understanding of the 
relative performance of different non-adaptive methods in this special 
setting. 

The probabilistic setting in which average performance of global 
optimization algorithms has usually been studied is the case of Brow- 
nian motion. Ritter [Ill showed that any non-adaptive optimization 
algorithm has average convergence rate of order n-'I2 in the number 
of observations n. Calvin [3] and Al-Mharmah and Calvin [I] com- 
pared the average performance of deterministic and random grids, 
and the latter reference derives the optimal random sampling density 
for Brownian motion. Asmussen et a1 [2] characterized the limiting 
normalized average error for a deterministic uniformly spaced grid of 
observations. Calvin and Glynn [4] derive the limiting distribution of 
the normalized error in the case of uniform sampling, and show that 
the error fails to converge for almost all Brownian paths (so for con- 
vergence, the error must be averaged over all paths). While Brownian 
motion has served as a model in many studies, it is not clear how the 
results and intuition obtained from the studies would change for more 
general Markov processes. 

Our primary purpose is to show that the results obtained for Brow- 
nian motion carry over in some form to a large class of one-dimensional 
diffusions, namely the diffusions that appear "locally Brownian". Since 
the asymptotic study of the error depends on the sample path only in 
a neighborhood of the global minimum, processes that evolve over a 
short time period like Brownian motion should behave in a neighbor- 
hood of the global minimum the way that Brownian motion does. Pre- 
vious results for Brownian motion have relied on a path decomposition 
and limit theorem that gives that the difference between the path and 
the global minimum after the minimum, with time scaled by n-l and 
space scaled by n-'I2, converges in distribution to a 3-dimensional 
Bessel process. Similarly, the same process going to  the left of the 
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 345 

minimizer converges in distribution to an independent 3-dimensional 
Bessel process. Using a path decomposition of Fitzsimmons [7], which 
generalizes an earlier path decomposition of Williams [14], we derive a 
similar result for general diffusions. The main difference is that the dif- 
fusion coefficient at  the level of the global minimum comes into play 
in the normalization. This result allows us to characterize optimal 
random non-adaptive algorithms for specific diffusions. 

In all cases we consider, the error multiplied by the square root of 
the number of observations converges in distribution. By "optimal" 
we mean that the limiting random variable has the smallest mean. 
Therefore, the algorithms we consider need not be optimal in any sense 
for a fixed number of observations, and we consider two algorithms 
to have equivalent asymptotic performance if their errors differ by 
o(n-'I2) as the number of observations n goes to infinity. 

In Section 2 we establish notation and assumptions and review 
some essential results on linear diffusions. Section 3 contains Fitzsim- 
mons' path decomposition and the two-sided Bessel process limit re- 
sult. The implications for non-adaptive algorithms are given in Section 
4, where optimality results are given along with precise convergence 
rates. 

2 Notation and Background 
Let ( X ( t )  : t 2 0) be a time homogeneous regular diffusion process on 
the real line with generator A acting on C 2  functions as 

and 

b2 ( x )  + 0 2 ( x )  5 K(1-t x 2 )  (3) 

for some constant K > 0. We assume that all paths of X are contin- 
uous and that X enjoys the strong Markov property. In terms of the 
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346 CALVIN AND GLYNN 

functions u and b, the scale function S can be expressed as 

and the speed measure has density m with respect to Lebesgue mea- 
sure, where 

We recall some facts about diffusions; see for example It6 and 
McKean [8], Sections 4.6 and 4.11. For each a > 0 there are strictly 
positive, linearly independent solutions g r  and gg of 

such that gf" is increasing and g$ is decreasing, g;Y vanishes at  -m and 
g,Q' vanishes a t  oo. (Because of our assumptions (2) and (3), -m and 
+oo are natural boundaries, and the last conditions on gf", g$ are the 
appropriate boundary conditions for the domain of the generator; see 
Ethier and Kurtz [6], p. 367.) Both functions are determined uniquely 
up to a positive multiple. Since gf" and g; are linearly independent, 
the Wronskian Bff  = gy+g% - gygy+ is constant, where g+ is the 
right-hand scale derivative of g: 

gS(x) = lim 9 ( ~ )  - 9(x) 
YJX S(y) - S(x) ' 

In the following we will suppress a in the notation. The process has a 
symmetric transition density p(t; x, y) = p(t; y, x) with respect to the 
speed measure, and p is jointly continuous in all three variables. The 
Green function g is given by 

Let f (t; x, y) be the density (with respect to Lebesgue measure) of 
the first hitting time from x to y (for the existence of the density, see 
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 347 

CsAki et a1 [5]). The Laplace transforms of hitting times are expressed 
by 

Let Mt = rnino<,<t X(s)  and Tt = inf{s _< t : X(s) = Mt). We 
will have use for the joint distribution of Mt, Tt, and X(t) .  This was 
derived by Fitzsimmons [7] and Cskki et a1 [5]. 

Theorem 1 For x > y, b 2 y, and 0 < s 5 t, 

Pb(Mt E dy,X(t)  E dx,Tt E ds) = 

With the exception of Lemma 10, we will be concerned only with the 
minimum over the unit interval, and will then write M,  T instead of 
Ml, TI. 

Let Q! be the semigroup of excursions above the level y; this semi- 
group has density qY(t; x, z) with respect to the speed measure: 

qY(t; x, z)m(z)dz = P,(X(t) E dz, ry > t). 

The density is jointly continuous, and symmetric in x > y, z > y. The 
following formula is derived in CsAki et a1 [5]. 

Finally, we show that under our assumptions on b and a, X is 
"locally Brownian". 

Lemma 2 For any xo E R, under P,,, the processes defined by 

converge in distribution to standard Brownian motion. 
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348 CALVIN AND GLYNN 

Proof: Because of our assumptions (2) and (3) on b and a, the 
stochastic integral equation 

has a weak solution, unique in the sense of probability law, for each 
xo E W (see Karatzas and Shreve [9], Theorem 5.2.9); equivalently, the 
time homogeneous martingale problem associated with the coefficients 
is well posed. Therefore, there exists a Brownian motion B such that 
X is the solution of (8), and so 

Since JnB(u/n)  is a Brownian motion, this shows that the generator 
of Yn is given by 

The coefficients of f" and f' in (9) converge to 112 and 0, respectively, 
both uniformly on compact intervals. Therefore, by Theorem 11.1.4 of 
Stroock and Varadhan [13], Y, converges in distribution to standard 
Brownian motion. I 

3 Path Decomposition 

Our goal in this section is to prove a weak convergence result for X in 
a neighborhood of the global minimizer. This result will be similar to 
that obtained previously for Brownian motion, in that suitably scaled, 
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 349 

the process to either side of the minimizer looks in the limit like a "two- 
sided Bessel process". We start with a path decomposition result. The 
following notation, and Theorem 3 below, are from Fitzsimmons [7]. 

Let R be the set of continuous functions w : R+ + IR and Rt 
the continuous functions w : [O,t] + R. Define the coordinate map- 
pings X( t )  : R + R by X(t ,w)  = w(t). For each t > 0 let Ft = 
u ( X ( s ) ;  0 5 s 2 t),  and F = Vt>oFt. For 0 < 1 < 1 and y < x,  de- 
fine the law I? on (01, 6) by the  absolute probability and transition 
probabilities 

I ? ~ ~ ' ~ ~ ( x ( t )  E dz) = qY(I - t;  z ,  x ) f  (t; 2, Y)  
f (1; x,  Y)  

m(z)dt ,  

and 

for t + v < I ,  w > y. It can be shown that ZY>'>" is the law of the 
diffusion X starting from y conditioned to always stay above y, and 
conditioned to be killed at  time 1 at  level x. 

Let K Y ~ ' ~ ~  denote the image of I?Y.'.X under the time reversal map- 
ping yl on that takes w € Rl into the path ylw defined by (nw)(t)  = 
w(1 - t). 

Theorem 3 Under  P,,, the  path fragments (X(t)  : 0 < t < T) and 

( X ( T  + u) : 0 5 u < 1 - T) are conditionally independent  given 

( M , T , X ( l ) ) .  Given  (M = y , T  = u , X ( l )  = x) (0 < u < 1 ,y  < x),  

the  above processes have the  conditional laws K x O ~ U ~ y  and I?yjt-";", 

respectively. 

Let Px,,xl,y,t be a regular version of the conditional probability 
PxO(. I M = y, T = t , X ( l )  = xl), and denote the corresponding ex- 
pectation by Ex,,xl,y,t. 
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350 CALVIN AND GLYNN 

The following result will be key in showing convergence of the 
densities of the scaled path components. 

Lemma 4 For x > 0, 

Proof: Taking Laplace transforms gives 

The last equality is by (4). Inverting the Laplace transform (using 
(6)) gives the result. I 
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 35 1 

converges in distribution in C ([0, A])  to a 3-dimensional Bessel pro- 

cess as n + m. 

Proof: By a suitable change of variables, the transition density of Y, 
is given by 

where we have written a for ~ ( y ) .  By Lemma 4, 

By Lemma 2, 

converges to the transition density from z > 0 to  w > 0 in time v of a 
Brownian excursion above 0,  which is 

This shows that p, (t,  z; t + v, w) converges to po (v; z ,  w)w/z, which is 
the transition density of the 3-dimensional Bessel process. 

We apply a similar analysis to the entrance law of Y,, which has 
density with respect t o  Lebesgue measure 

By Lemma 4 the first term in the numerator converges to the denom- 
inator. Again by Lemma 2, 

z" z 1 
exp (-z2/2t), 
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352 CALVIN AND GLYNN 

the first hitting time density for standard Brownian motion. Combin- 
ing the results, we conclude that 

222 1 
An(t,z) -+ -- exp (-z2/2t), 

t &a 
which is the entrance law of the 3-dimensional Bessel process. By 
Scheff6's theorem, the entrance and transition laws converge to the 
corresponding laws for the 3-dimensional Bessel process, and so we 
have shown that the finite-dimensional distributions converge to the 
finite-dimensional distributions of the Bessel process. 

It remains to establish tightness of the probabilities to conclude 
weak convergence. Applying Kolmogorov's criterion to our setting 
(Revuz and Yor [lo], p. 474), it suffices to find strictly positive con- 
stants a, p, y such that for every n and s,  t > 0, 

In terms of the unscaled process X ,  (13) is equivalent to 

for all n. We must therefore have y + 1 2 a /2 ,  and it is sufficient for 
our needs if there exists an a > 2 and a constant C such that 

This can be established using the transition densities directly. For 
example, taking s = 0 and using ( lo) ,  

lim qY(l - t ;  z ,  x) = limqY(1- t; z ,  x) = 0, 
z t m  Z J Y  

so by the joint continuity of qY, 
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 

Therefore, 

where we have used the symmetry of p(t; ., .). The result now follows 
from (3) and, for example, Problem 3.15, p. 306, of Karatzas and 
Shreve [9]. I 

Let R1 and Rz be two independent 3-dimensional Bessel processes, 
and define a "two-sided Bessel process" ii by 

Theorem 6 Conditioning on T = t ,  M = y, let 

Jn Y ~ ( s )  = - (X (min(t + s /n ,  1)) - y) , 
4 Y )  

and 

and set 

For fixed A > 0, under Px,,x,,y,t, 

in C([-A,A]) as n + oo. 

Proof: This is an immediate consequence of Theorems 3 and 5. 1 
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354 CALVIN AND GLYNN 

4 Approximation of the Minimum 
In this section we will investigate asymptotic error associated with 
several non-adaptive methods of approximating the global minimum 
of a diffusion path. We begin by considering random methods; i.e., 
the observation points are chosen independently according to a fixed 
probability density. 

Let h be a probability density on [O, 11. We suppose that the 
minimum is approximated by 

Mn = min X(t i ) ,  
l<i<n 

where the ti are independent with density 
A 

h. Set A, = Mn - M ,  
the error after n observations. If the support of h is [0, 11, then A, 
converges to 0 almost surely, and we confine our attention to such h. 

We first derive a limit result describing the observation process. We 
will use this with the result on the behavior of the process near the 
global minimum established in the last section. Since we are consider- 
ing only non-adaptive algorithms, the two processes are independent. 

Suppose that tl ,  ta,  . . . , t, are independent with density h, where 
h is a smooth density. Fix t E (0, I ) ,  and define the counting processes 

N;+(s) = #{1 5 i < n : t < ti < t + min(s, 1 - t)) 

N;-(s) = #{1 < i < n : t - min(s, t) < ti < t )  

for s 2 0. Note that N;+(S) - Binomial(n, ~:+,d h(u) du) for 0 < s < 
1 - t .  

Lemma 7 As n + oo, 

where N- and N+ are independent Poisson processes with unit inten- 

sity. 

Proof: The finite-dimensional distributions are multinomial and are 
easily shown to converge to the appropriate limits. Since all the pro- 
cesses are step functions, the result follows. I 
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 355 

We will also need the following lemma to prove the main result. 

Lemma 8 Let {X(t) : t 2 0) be a 3-dimensional Bessel process, and 

define an independent Poisson process with intensity 1 and points of 

increase {TI, T2, T3, . . . ). Set Z = mini>l X(Ti). Then - 

Proof: Let L, = sup{t : X(t )  = y). Since X is transient, L, < co 
a.s. The process Y(t) = X(L, - t), 0 5 t 5 L, has the same law 
as {B(t) : 0 5 t 5 To), where B is a Brownian motion starting a t  y 
and run until it hits zero; see Williams [14]. The problem is therefore 
reduced to that of determining the law of the minimum of a Markov 
chain W, that has the transition law of Brownian motion, sampled a t  
exponentially distributed intervals and killed on hitting 0. Specifically, 
let r be the transition function of W. Then 

03 

r(y, z) = Lzo e - t ~ ,  (B(t)  E dz, To > t )  dt 

03 

- (Y - z)2 (Y + 2l2 e-t' [exp (- 2t ) - eXP (- 2t )] dt 
- Lo m 

&exp( -az )s inh(&y)  i fO<  y <  z, 

.\/Zexp (-f iy)  sinh ( h z )  if y > z > 0. 

Let V(y) = P ( Z  < y), y > 0, and let T -- Exp(1). Then 
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356 CALVIN AND GLYNN 

Let A be a non-negative random variable that has the distribution 

This random variable, which has mean 2-'12, will appear as the limit 
of the normalized approximation errors under random observations. 

Denote by gxo (y, t )  the joint density of (M, T) under Px, , which is 
given by Theorem 1. 

Theorem 9 If observations are chosen  independently  according t o  t he  

smooth  densi ty  h, t h e n  under  P,o,x,,y,t, 

and 

as n+ oo. For z > 0 ,  

I n  particular, if u ( y )  = u and h ( t )  = 1 are constant ,  t h e n  u n d e r  P,,, 

Combining (20)  and (21 ) ,  we observe that under PxO,xl,Y,t, 

as n + co. The unconditional version of (24)  holds in the case of 
constant a and h. 

The proof of Theorem 9 will make use of the following two lemmas. 
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 

Lemma 10 For 0 < a < b and y < x ,  

Proof: Using Theorem 1 and the expression for the Laplace trans- 
forms of the hitting time densities (6), the Laplace transform of the 
left hand side of (25)  can be expressed as 

f ( s  - u ;  x ,  z ) S ( d z )  d u d s  

Taking the limit as n + oo gives 

which is the Laplace transform of the right hand side of (25) .  I 
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6: = min X ( t )  - y. 
A<t<l n- - 

Lemma 11 For 0 < a < m, 

Proof: For 1 > 0 and x ,  z  E W, let Pf'l be the law of the diffusion 
bridge from z  a t  time 0 to x  a t  time 1 (see Salminen [12]); i.e., ~ f "  
is a regular conditional P, distribution of ( X ( s )  : 0 5 s 5 1 )  given 
(X(Z)  = x ) .  Then 

CO 

- 
- Ly K Y ~ ' ? ~  ( h 6 f  5 a I X ( A / n )  = z )  K ~ ~ ' ~ '  ( X ( A / n )  E dz)  

K Y I ' . ~  (6 ( X ( A / n )  - y )  E dz)  

KY~'~'  (6 ( X ( A / n )  - y) E dz)  

8 ~ ~ ~ 7 ~  (fi ( X ( A / n )  - y) E dz)  

~ y . ~ j ~  (fi ( X ( A / n )  - y) E dz)  

K Y . ' ~ ~  (fi ( X ( A / n )  - y) E dz)  
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NON-ADAPTIVE OPTIMIZATION ALGORITHMS 

K~~~~~ (fi (X(A/n) - y) E dz) . 

The second to last equation follows from the fact that for A E o{X(s) : 
0 5 s 5 11, 

Pz(A, X(1) E dx) = P$~(A)P,(X(Z) E dx). 

By Theorem 5, under K Y ~ ~ ~ " ,  

as n + co, where R is a 3-dimensional Bessel process. By Lemma 10, 
the ratio in the integrand in the last line of (26) converges to a lz ,  and 
SO 

~y~~~~ (fit 5 a) 

As A co the last two expressions each converge to 0, which completes 
the proof. I 

Proof of Theorem 9: Conditioning on M = y, T = t, and X ( l )  = x, 
let A: represent the error to the right of t; the analysis of the error 
to the left is similar. If N$ is the number of the first n observations 
that fall to the right of t,  then 

m m ,hi-A; = Jn- 4~ 
min{X(t +T;) - y, .  . . , X ( t  + T;~) - y}, 

4 Y )  

where the t + rin's represent the ordered observations to the right of 
t. Using the scaled process Yn defined in Theorem 5 (and noting that 
the definition of Y, makes sense for positive n not necessarily integer), 
the above becomes 
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and 

Let Y be a 3-dimensional Bessel process, and {Ti : i > I) be the jump 
times of an independent Poisson process with rate 1. Set 

Z A  = min { Y  (Ti))  . 
Ti<A 

Then for z > 0, with Z as defined in Lemma 8, 

Now, 

IP(Zn 5 t) - P ( Z ~  5 t)l 5 ~ ( f i 6 , "  < z) + 0 

as n, and then A m,by Lemma 11. Since Ynh(t) converges to a 3- 
dimensional Bessel process, the arguments of Ynh(t) converge to the 
jump times of a Poisson process by Lemma 7 ,  and N$ -+ m as . ,  we 
conclude from Lemma 8 that 

I P ( Z ~  < z )  - p ( Z A  < z)l -+ 0 

as n i  m .  Since Z A  3 Z as A t m ,  

1p(zA  5 z) - P(Z  5 z)\-+ 0. 

2) Therefore, Zn -+ Z as n -+ m ,  i.e., 
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Since An = min{A;, A;), where A: and A; have the same distri- 
bution and are independent, (20) follows. 

The limit in (21) follows from the uniform integrability of {+A, : 

n 2 1) under Pxo,xl,y,t. To show uniform integrability, it is enough to  
establish that 

But A, 5 X(t2)  - X ( t ) ,  where t: is the closest observation to the 
right of t. Let yn be the length of the observation gap straddling t .  
Then 

SUP Exo,x,,y,t ( n ~ i )  5 SUP Exo,zl ,y, t  (x2 ( ~ n ) )  3 
n n 

(28) 

where X has law ~ y ? ' y ~ l .  By (14), there is a constant C such that 

thus confirming uniform integrability of the family { f iAn  : n _> 1) 
lmder Px,,x,,y,t. 

Finally, (22) is obtained from 

Px,(M E d y ,  T E dt, X ( l )  E dxl) 

It is natural to consider the problem of finding the optimal obser- 
vation density h in the sense of minimizing the asymptotic normalized 
expected error. Recall that g x o ( y ,  t )  is the joint P,, density of ( M ,  T). 
If the {fin, : n > 1) are uniformly integrable under Pxo, then 
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the mean of the limiting distribution given by (22). This holds for 
Brownian motion, for example. Assuming that ( 3 0 )  holds, then the 
optimization problem is the following calculus of variations problem: 
Choose a smooth density h to minimize 

The optimal density is given by 

In particular, if a ( . )  is constant, the optimal observation density is 
proportional to the density of the location of the minimizer raised to 
the power 213. 

Next, we consider deterministic approximation schemes. The sim- 
plest is given by a uniform grid: 

The following is a straightforward adaptation of Theorem 1 of As- 
mussen et a1 [2] to the present situation. 

Theorem 12 If .(y) = u is constant and if observations are chosen 

according to  the uniform grid (31), then 

@ A ~  3 w 
u 

as n + m, where 

W = m i n { g ( ~  + k)}, 
k E Z  

U is uni form(O,l ) ,  independent of 2 ,  the two-sided Bessel process 

defined at (16). 
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While an explicit formula for the law of W is not available, the mean 
is given by 

where < is Riemann's zeta function. 
We conclude by noting the implications of our results for some 

particular diffusions. 
For Brownian motion, the error has been analyzed by several au- 

thors, including Ritter [ll] and Al-Mharmah and Calvin [I]. The 
distribution of the location of the minimizer is arcsine, and the opti- 
mal sampling density is Beta(2/3,2/3) (see Al-Mharmah and Calvin 
[I]). The corresponding limiting normalized mean error is 

1 
&E (A,) -+ -23(2/3,2/3)312 = 0.662281, 

4 
where B is the beta function. 

If Po is the law of Brownian motion starting from 0, then under 
Po,o,u,t, the coordinate process is a Brownian bridge with minimum 
~ ( t )  = y. From Theorem 9, under Po,o,y,t 

and 

Since the minimizer is uniformly distributed over the unit interval, this 
shows that the optimal sampling density is h = 1, i.e., the uniform 
distribution. The corresponding limiting normalized mean error for 
the Brownian bridge is 

&E (A,) -+ 2 % 0.707107 JZ 
For a diffusion with constant diffusion coefficient a, the optimal 

sampling density is proportional to the density of the minimizer raised 
to  the power 213. However, manageable expressions for the distribu- 
tion of the minimizer are available for few diffusions. 
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