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We show, under regularity conditions, that a counting process satisfies a large 
deviations principle in R or the Ggrtner-Ellis condition (convergence of the normal- 
ized logarithmic moment generating functions) if and only if its inverse process does. 
We show, again under regularity conditions, that embedded regenerative structure is 
sufficient for the counting process or its inverse process to have exponential asymp- 
tofics, and thus satisfy the G/irtner-Ellis condition. These results help characterize 
the small-tail asymptotic behavior of steady-state distributions in queueing models, 
e.g., the waiting time, workload and queue length. 
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1. Introduction and summary 

Let T --- { Tn : n > 0} be a nondecreasing sequence of real-valued random 
variables with To = 0, and let 

N(t )=max{n>_O:Tn<t} ,  t_>0. (1) 

Then N - {N(t) : t _> 0} is a counting process and T is its inverse. Motivated by 
applications to queues, see Chang [3], Chang et al. [4], Glynn and Whitt  [1 l] and 
Whitt  [16], we want to relate the large deviations behavior of N to the large devia- 
tions behavior of T. This is in the same spirit as previous relations between other 
limits for N and T, such as the law of large numbers and central limit theorem; 
see w 7 of Whitt  [15], theorem 6 of Glynn and Whitt  [9] and w 2 of  Massey and Whitt  
[131. 

A real-valued stochastic process Z - {Z(t) : t >_ 0} will be said to satisfy the 
Gfirtner-Ellis condition with decay rate function ~ if its normalized logarithmic 
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moment generating function has a limit, i.e., if 

t -~ logEe ~ -~ ~(0) as t ~ ec for all 0 E R. (2) 

(For a discrete-time process, we let t run through the positive integers in (2).) For 
the queueing applications, we want to know when N and T satisfy (2) for 0 in an 
appropriate interval. In Glynn and Whitt [11] we consider a single-server queue 
with unlimited waiting space and a stationary sequence of interarrival times 
independent of a stationary sequence of service times. By theorem ! and proposi- 
tion 2 there, if the partial sums of the interarrival times and service times each 
satisfy (2) with decay rate functions ~a(0) and Ws(0), respectively, with these 
decay rate functions satisfying regularity conditions, then the steady-state waiting 
time has logarithmic asymptotics of the form x - l l o g P ( W >  x)- - - , -0"  as 
x--~ ec, where 0 ~ is the root of the equation ~ ( 0 ) - 0 ,  where ~ ( 0 ) =  
~s(0) + ~ a ( - 0 ) .  (We need (2) only in the neighborhood of 0".) Given this 
result, we want to be able to relate (2) for the interarrival-time partial sums (a 
process of the form T) to (2) for the corresponding arrival counting process 
(a process of the form N). 

Since log Ee ~ is convex in 0 for any random variable Z by H61der's inequal- 
ity, the decay rate function w in (2) is necessarily convex with ~b(0) = 0. For non- 
negative random variables Z, log Ee ~ is also nondecreasing in 0, so that ~(0) 
will be nondecreasing as well for the processes we consider. Let 31 and 3 u be the 
limits of the region of increase of w i.e., 

5z = sup{0: ~(0) = ~ ( - ec )}  and /3 u = inf{0 : ~(0) = ~(ec)}. (3) 

The decay rate function ~b in (2) will be said to satisfy the auxiliary large 
deviations (LD) regularity conditions if (4)-(7) below hold: 

/3 u > 0, 

~b is differentiable everywhere in ( - ee ,  3u), 

lim ~p'(0) = +ec  if~p(/3 u) < ec (~ is steep), and 
0Tr u 

lim ~p(0) = ~p(/3"). 
O T f l  '~ 

(4) 

(6) 

(7) 

Let I be the associated large deviations (LD) rate function (Legendre- 
Fenchel transform of ~p) defined by 

I(x) = ~b*(x) = sup{Ox- ~b(O)} for x E R. (8) 

By the G/irtner [7]-Ellis [6] theorem, under conditions (2) and (4)-(7), the large 
deviations principle (LDP) holds for Z with large deviations rate function I; i.e., 
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for each Borel set A 

inf I(x) < lim t -1 logP(t-lz(t)  E A) 
x E A ~ t---+ o c  

< lim t -1 logP(t-lZ(t) E A) <_ - inf I(x), 
t - - ~ o o  x E A  

(9) 

where A ~ and ~] are the interior and closure of A; see w of Bucklew [2], w 2.3 of 
Dembo and Zeitouni [5] and w 3.1 of  Shwartz and Weiss [14]. Moreover,  the large 
deviation rate function I and the decay rate function ~ are convex conjugates, i.e., 
they are closed (lower semicontinuous) convex functions related by 

r = ~b**(O) = I*(O) -- sup{Ox-  I(x)} for 0 E ]R; (10) 
x 

see p. 183 of Bucklew [2]. 
A typical LD rate function I is depicted in figure 1. Assuming that ~b is non- 

decreasing and convex with r > 0, then I is nonnegative and convex with 
I ( x )  = +ec  for x < 0, I ( r  = 0 and I ( x )  --, oe as x --+ ee. Hence, I is non- 
decreasing in the interval [r and nonincreasing in the interval 
( - e c ,  ~b~(0)]. Let 7" and 7 l be the upper and lower limits of finiteness for I, i.e., 

7" = sup{x_< r  I ( x )  < ec} and 7 t = i n f { x  > r  I ( x )  < ec}. (11) 

We first determine conditions under which the Gfirtner-Ellis limits (2) for N 
and T are equivalent. All proofs appear in section 2. Let r be the inverse of ~/; 
when ~b is finite. It will be clear for this result, and later results, that T need not be 
discrete-time and N need not be integer valued. It suffices for N to be nonnegative 

4-o0 +o<) 

/ /  
~'(0) ,u 

Fig. 1. A possible large deviations rate function I. 
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and nondecreasing; then we can relate the processes by the inverse map: 
x -l(t)  = inf{s : x(s) > t}, t > O. 

THEOREM 1 

If T satisfies (2) and (4)-(7), then N does too, with the possible exception of 
(2) for 0 =/3~'v when ~N(/3~'V) < oe. Similarly, if N satisfies (2) and (4),(7), then T 
does too, with the possible exception of (2) for 0 =/39 when ~r(/3~r) < ec. The 
decay rate functions are related by 

{ --/3}, 
ff)N(O) = - -~)T1 ( - - 0 ) ,  

+oo, 

o </3~N = --~r(/3}), 
/3tN __0_<9~, 
O > /3~V = --Vr(/33) = -->r(-O~) 

(12) 

and 

{ -/3~v, 
~DT(O ) -~- . ~ 3 N 1  ( - - 0 ) ,  

-+-oc, 

0 *( /33 =- --~)N(/3~V), 

/33 s 0_</39,  
o ~>/3~r = --~/)N(/3/) = --ff)N(--00) 

(13) 

for /3~r, /3~v, /3~- and /3~ defined by (3) with ~T and ~/)N, where 0 >/3~ _> - ~ ,  
0 >/3ZN > --oc, 0 < /3~r _< ec and 0 </3~v <_ ee  Moreover, the LD rate functions 
are related by 

f XlT(1/x), ~/N < X < "T~N, IN(X) (14) [ +c~, otherwise 

and 

IT(X) = ~ XYN(1/X), 71T ~ X ~ ~/~T, 
[ +ec, otherwise, 

(15) 

where 

7~v = 1/7~, 7~v = 1/73, (16) 

Iu(O ) = lim IT(X) and I~v(0)= + ~  i fT tN=0 (17) 
X----r OO X 

and 

IT(O ) = lim IN(X) and !~ (0 )=  +oe i f 7 3 = 0 .  (18) 
x --+ oo X 
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ql T (e) 

Z 

0--~ 

Fig. 2. Possible inverse decay rate functions ~PT and ~bN =--~b}1( -"  ) with finite asymptotes fir 
and /3 N. 

The ambiguous  behavior of  (2) at the upper  boundary  points  cannot  occur if 
~v(0)  > 0 and ~b)(0) > 0 for all 0 in ( - o c ,  0]. We could have included this condi t ion 
with (4)-(7), but  it is not  required to get the L D P  in (9). 

The condit ions of  theorem 1 imply that  one of  the decay rate functions ~ r  
and ~bN is a closed convex function. The conclusion implies that  both  are. Figure 
2 depicts the two inverse decay rate functions ~b r and ff)N o n  the same graph; ~ r  
appears in the usual posit ion, while ff)N increases to the left with its a rgument  aJ 
increasing down.  

To illustrate we give two simple examples. It is easy to see that  the condit ions 
of  theorem 1 hold  for these examples. 

E X A M P L E  1 

For  a deterministic stat ionary rate-1 process, T, = n for all n, so that  
~ r (0)  = ~N(0) = 0, while I t ( l )  = IN(l) = 0 and I t (x )  = IN(X) = +oc  for x r 1. 
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EXAMPLE 2 

For a rate-1 Poisson process, ~ r ( 0 ) = - l o g ( 1 -  0), 0 < 1, and f f )N(O) = 

e ~  Hence I N ( x ) = l - - x + x l o g x ,  x_> 1, and IN(X ) = l - x - x l o g x ,  
0 < x <  1; while IT(X ) = x - I + l o g x ,  0 < X < I ,  and I r ( x ) = x + l o g x - 1 ,  
x_>l .  

We now give another example (suggested by a referee), which shows how we 
can have ~r(/3 u) < ec with ~ r  steep as in (6). 

EXAMPLE 3 

Consider a renewal process with interrenewal-time density 

CpAe at, 0 < t < 1, 

gp(t) = Cpt_PAe_At ' t >_ 1, 

wherep is a nonnegative real number and Cp is chosen to make the total mass 1. The 
At case p = 0 is the exponential density Ae- . Note that gw (t)/gpl (t) is nonincreasing 

in t for Pl < P2, so that the family of distributions gp(t) is stochastically decreasing 
in p. Moreover,/3~ = A for all p, while ~rp (/3~-) < oc for p > 1 and ~ (3}-~) < cc 

" ~rp(/3rp) = ec, so that ~rp is fo rp  > 2. Hence, for 1 < p  < 2, ~rp(/3rp) < ec with ' u 
indeed steep as in (6). [] 

Theorem 1 establishes an equivalence of LDPs in Ii~ for the inverse processes 
N and T. As in section 7 of [15], it is natural to approach this inverse property via 
functional or sample path LDPs in the function space D[0, ec) because in the 
function space setting the inverse property can be expressed directly as a con- 
tinuous function with an appropriate topology on D[0, ec). A functional LDP 
analog of theorem 1 is established in Glynn et al. [8]. 

The processes N and T are easily related via their behavior in semi-infinite 
intervals; i.e., 

T n < t if and only if N(t) >_ n. (19) 

From (19), we obtain for any y > 0 and n _> l, 

n-1 logP(n-lT.  > y) = y(yn)-I logP((yn)-!N(an) < y-l).  (20) 

From (20) we easily get the following equivalence result. 
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THEOREM 2 

Let u be a nonincreasing funct ion and let l be a nondecreasing function. 
(a) There is convergence 

n -1 logP(n-lT,, > y) ~ u(y) as n --+ c~ (21) 

at all cont inui ty points  y of  u if and only if 

t-1 logP(t-lN(t) < y - l )  --~ [ (y - l )  _ y- lu(y  ) as t + c~ (22) 

for all cont inui ty points  of  y -I of  [ (y- l ) .  
(b) There is convergence 

n-llogP(n-lTn <_y) --+ l(y) a s n  + oc (23) 

for all cont inui ty points  y of  l if and only if 

t - l logP(t- lN(t)  >>_y-l) ~ ft(y-1) =_ y- l l (y  ) as t +  ee (24) 

for all cont inui ty points  y-1 of  fi(y-~). 

As a relatively easy consequence of  theorem 2, we can directly relate LDPs for 
N and T. For  this purpose we say that  the process Z satisfies a partial LDP if (9) 
holds for a proper  subclass of  the Borel subsets. We say that  an LD rate funct ion 
is without flat spots if for some 2 it is strictly decreasing where it is finite in 
( - o c ,  2) and strictly increasing where it is finite in (2, oo). 

THEOREM 3 

Let I be a closed convex funct ion on R wi thout  flat spots. A real-valued 
stochastic process Z satisfies an L D P  with rate funct ion I if and only if it satisfies 
a partial  L D P  with rate funct ion I with respect to all semi-infinite intervals 
( - oc ,  y] and [y, oo). 

We combine theorems 2 and 3 to relate the LDPs for T and N. 

THEOREM 4 

An L D P  holds for T with lower semicont inuous rate function IT wi thout  fiat 
spots if and only if an L D P  holds for N with lower semicont inuous rate funct ion IN 
without  flat spots, where I r  and IN are related by (14)-(18). The functions l and u 
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associated with T in theorem 2 are 

u(y) = - infI (x)  and l(y) = - in f l r (x ) ,  
x>_y x<y 

(25) 

and similarly for (N, IN). 

For example, theorem 4 and Cram&s theorem for partial sums of i.i.d. 
random variables in R in w of Dembo and Zeitouni [5] immediately imply that 
an LDP holds for the associated renewal counting process. 

Given that conditions (2) and (4)-(7) for T or N directly imply that an LDP 
holds for T or N, theorem 4 implies that we get LDPs for both T and N under the 
conditions of theorem 1. Elementary convex analysis implies that the decay rate 
functions ~br and ~3 N and the LD rate functions I T and I N are related by (12)- 
(18), see section 2. The remaining step in the proof of theorem 1 (in section 2) is 
to prove that the G/irtner-Ellis limit (2) holds for both T and N. 

So far we have shown how to relate LD asymptotics for T and N. Now we 
want to obtain general sufficient conditions for this LD asymptotics to hold for 
one of these processes. To do so, we will exploit regenerative structure. In particu- 
lar, we will assume that N(t) is a cumulative process with respect to a sequence of  
regeneration times { S n : n  2> 0} and So = 0. (We could equally well start with 
{Tn}.) We will require that the distribution of % = S(n) - S(n - 1) be spread out; 
see p. 140 of Asmussen [1]. Our result is stronger than (2). It also applies to general 
cumulative processes. Another LD result for regenerative processes is in Kuczek 
and Crank [12]; they use different arguments. 

Let ~b(0, t) be the moment generating function of N(t),  i.e., 

~(0, t) ~--- Be  ON(t), I 2> O. (26) 

If N is a cumulative process, then q~(0, o ) satisfies the renewal equation 

t 

t) = b(o, t) + I , (o ,  t - s)a(o,  ds), 
0 

(27) 

where 

b(o ,  t) = E[e~ > t] (28) 

and 

G(O, dt) = E[e~ ~-1 E dt]. (29) 

Let Yi = N(Si) - N(Si_I) ,  i >_ 1. 
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T H E O R E M  5 

Suppose that N is a cumulative process with respect to {Sn} where 7"1 has a 
spread out distribution. If 

(i) there exists a r o o t  2/;N(O ) to the equation 

E[exp(--~,bN(O)7" 1 q-0Y1) ] = 1, 

(ii) E exp(-~u(O)t+ON(t))dt < ec, (31) 

1)(O,t) - E[exp(--r + 0N(t));T 1 > t] < M (iii) 

for some M and 

(iv) 

then 

/~(0, t ) ~ 0  as t ~ c ~ ,  

(30) 

(32) 

CN(O, t) ~ O~N(O)e CN(O)t as t --+ c~, (33) 

where 

OtN(O)-~" EI!exp(-~bN(O)t+ON(t))dt 1 

E[7"1 exp(--r + 0Y1)] ' (34) 

so that (2) holds. 

In applications of theorem 5, it remains to verify conditions (i)-(iv) in 
theorem 5 and (4)-(7). It seems difficult to obtain good general results, but some- 
thing can be said under strong conditions. 

T H E O R E M  6 

Suppose that {N(t)} is a cumulative process with respect to {Sn} and that 71 
has a spread out distribution. In addition, suppose that P(7"1 > K1)= 0 and 
P(N(7"1) > K2) = 0 for some K1 and K2. Then a unique root CN(0) to (30) exists 
for all 0 and assumptions (ii)-(iv) of theorem 5 hold for all 0. Moreover, if3 u is 
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differentiable on R, with derivative 

0 
~)tN(O) O0 UN(~)N(O)' O) 

= , ( 3 5 )  
o 

O---~ fN(r 

where 

fN(%0) = E[exp(-7~-I + OY1)]. (36) 

We can see the duality between N and T in the basic equation (30). In par- 
ticular, if we switch the roles of Sn and N(Sn), then Sn --- N(Sn) may be regenerative 
times and ]'#n -- T#,-~ =- Sn may be cycles associated with the inverse process T. 
When both N and T are cumulative processes this way, we call N and T inverse 
cumulative processes. Then we have versions of equation (30) for both processes, 
i.e., in addition to (30) for N, we have 

E[exp(-~br(O) I11 + O-q)] = 1. (37) 

It follows from (30) and (37) that the decay rate functions ff)N and ~Pr must be 
related by --~T(--~N(0)) = 0 for all 0 where Zbu(O) is finite, i.e., which implies 
(12) and (13), which is consistent with theorem 1. 

Chang [3] focuses on a discrete-time version of the point process N. The fol- 
lowing comes from his example 2.2. Recall that a family of random variables 
Z1,. �9 �9 Zk is associated if 

E [ A ( z l ) . . . f . ( Z n ) ]  >_ . . .  e[L(Zn)] 

for all nondecreasing real-valued functions fi- 

THEOREM 7 (CHANG) 

If N has stationary and associated increments, then t -1 log Ee ~ is non- 
decreasing in t and thus convergent, for each 0. 

2. Proofs 

We prove the theorems in the order: 2, 3, 1, 5, 6. (No further proof is needed 
for theorem 4.) 
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Proof  o f  theorem 2 

Since T~ > a if and only if N(a) < n, 

P(n-IT~ > a) = P(T~ > an) = P(U(an) < n), 

from which (20) follows. From (20), we see that (21) holds if (22) holds, and (23) 
holds if (24) holds. To go the other way, note that, for any e > 0, 

P ( t - I N ( t )  < a - I )  _< P(N(aL t /a j  < ) / a l )  = P(T[,/~ l > aLt /a ] )  

<_ p ( (F t /a  I )-I TFt/al > a - e) 

when t is suitably large, where Lxj is the greatest integer less than or equal to x and 
Ix] is the least integer greater than or equal to x. Hence, if (21) holds, then 

tlim~ ~ t -1 l ogP( t - lN( t )  < a -1) -< tlim--,~ t -1 logP((Ft/al)  -1 T[t/a ] > a - e) 

= a - I u ( a - e ) .  

Since e was arbitrary and u is continuous at a, 

lim t -1 l ogP( t - lN( t )  < a -1) <_ a-lu(a). 
t'--+ O0 

Similarly, 

P( t - lN( t )  < a -1) >_ P ( N ( a ) / a ]  < It/aJ) = P(TLt/< > a[t /al)  

>_ P((Lt/aJ)-ITLt/aj > a + e) 

for t suitably large. Hence, if (21) holds, then 

lira t -1 l ogP( t - lN(a)  < a -1) > a-lu(a). 
t'---~ o 0  

Hence, (22) holds. A similar argument shows that (23) implies (24). [] 

Proof  o f  theorem 3 

We apply the characterizations of the LDP in (1.2.7) and (1.2.8) on p. 6 
of Dembo and Zeitouni [5]. First we consider the upper bound. For any a < c~, 
let xl and x2 be the lower and upper boundary points for the level set ~l(a)  
needed for the upper bound. (Here the notation ~i(a)  follows [5].) By the lower 
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semicontinuity of I,  any F with I' C_ ~z(a) c has the property that 

r _C (--o~,yl] U [y2, oo), 

where Yl < xl and Y2 > x2. Hence, for such F, 

t -1 logP( t - lZ ( t )  E i-') 

<_ t -1 l o g P ( t - l z ( t )  C ( - ~ , Y l ]  U [y2, co)) 

_< t -1 log max{2P( t - lZ ( t )  <_ Yl), 2P( t - I z ( t )  >- Y2)} 

<_ ( log2)/ t  4- max{t -1 l ogP( t - lZ ( t )  <_ Yl), t-l l ogP( t - lZ ( t )  >- Y2)}, 

so that 

lim t -1 l ogP( t - lZ ( t )  E r )  
t---+ ~ 

- - ~ t-~ logP( t - lZ ( t )  > Y2)} < max~ f 1-~ t -1 log P( t-l z (  t) < yl),t_~ ~ 
k t---+ c~  

_< m a x { - I ( y l ) , - I ( y 2 ) }  -< - a ,  

since Y l  < X l  < • < X2 < Y2.  

Now we consider the lower bound. For any x in the domain of I,  and any 
measurable F with x C 1 -'~ there is a neighborhood (x - 61, x + 62) C_ I "~ Let 2 be 
the location of the minimum of I and suppose that x < 2. (The argument when 
x _> s is essentially the same.) For  any e given, choose ~2 sufficiently small that 
I ( x  + 62) < I(x)  + e. Now 

lim t -1 l ogP( t - lZ ( t )  E F) 
t---~ Cx) 

> lim t -1 l o g P ( t - l z ( t )  E (x - ~l,X + 62) ) 
t ----4 (x) 

> lim t -1 l og (P( t - l z ( t )  <_ x 4- 62) - P( t - lZ ( t )  <_ x - 61) ). 
t---+ O0 

However, for any c', 

P( t - lZ ( t )  <_ x + 62) >_ e -t(I(x+62)+g) 

and 

P( t - lZ ( t )  < x - 61) ~_~ e -t(l(x-el)-`') 
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for all suitably large t. Hence,  

P(t- lZ(t)  < x + 62) - P(t - l z ( t )  <_ x - 61) 

> e-t(l(x+a2)+e')(1 _ e-t(I(x-a1)-I(x+~52)-2e')), 

so that,  af ter  choosing e', 61 and  62 so tha t  I (x  - 61) - I(x + 62) - 2e' > 0, 

lim t -1 l o g P ( t - l z ( t )  E P) > - I ( x  + 62) - e' > - I ( x )  - e - e'. 
t---+ o o  

Since e and  e' were arbi t rary,  

lim t -1 logP(t- lZ(t)  ~ P) _> - I (x ) .  
t---+ OO 

In  our  p r o o f  o f  t heo rem 1 we use the fol lowing two lemmas.  

L E M M A  1 

F o r  0 > O, 

Oo 

Eexp(ON(t)) = 1 + tO I exp(tOx)P(N(t) > tx)dx 
0 

and  for  0 < O, 

O0 

Eexp(ON(t)) = -tO I exp(tOx)P(N(t) 
0 

< tx)dx. 

Proof 

Note  tha t  

Eexp(ON(t ) ) -  1 = E 

N(t)/t 

I tOexp(tOx)dx 
o 
O0 

= EtO I exp(tOx)I(N(t) > tx)dx 
o 

= tO I exp(tOx)P(N(t) 
0 

> tx)dx. 

[] 
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For  0 < 0, observe that 

CX3 

tO I exp(tOx)P(N(t) > tx)dx = tO I exp(tOx)(1 - P(N(t) <_ tx)dx) 
0 0 

CO O0 

= I ,Oexp(tOx)dx- tO I exp(tOx)P(N(t) <_ tx)dx 
o o 

oO 

= 1 - tO Jf exp(tOx)P(N(t) < tx)dx, 
0 

since P(N(t)< t x )=P(N( t )<  tx) almost surely with respect to Lebesgue 
measure. U] 

LEMMA 2 

If (2) and (4)-(7) hold for T, then 

li-'-m t -1 logEe ~ < c ~  
t -  +o(? 

lim for 0 < 0 < - ~ r ( - e c )  - o__,_o ~br(0). 

Proof 

For 0 < 0 < - ~ b r ( - o o ) = / 3 ~ v ,  choose y so that 0<y<~b~r (0 )  and 
It(Y) > 0. To see that this is possible, recall that I r is continuous where it is finite 
and I t (0)  = -~br ( -oc)  if 7~ = 0. (If 7tr > 0, then I t ( y )  = oo for some y in this 
region.) Then, by the G/irtner-EUis theorem for {Tn}, 

lim n -1 logP(Tn < yn) = - I ( y )  - -  -It(Y).  
gt--~ O() 

We assume that I(y) < oo; a minor modification of the same argument treats the 
case I(y) = ec. Hence, there exists no such that for n >_ no 

n -t logP(Tn < yn) <_ - I (y )  + c, 

where e = (I(y) - 0)/2. Hence, for n > no, 

P(T n < yn) < exp(-n(I(y)-e)) .  (38) 



P.W. Glynn, W. Whitt/Large deviations behavior 121 

Now 

where 

O0 

EeON(O = E e~ = n) 
n=O 

(3O 

<_1 + e ~ 1 7 6  >n)  
n=O 

O0 

<_ 1 + e ~ 1 7 6  ~ < t) 
n=O 

Lt/yj oo 
<_ l +e  ~  e~ < t) +e  ~ E e~ < yn)' 

n = 0 n = )/Yl 
(39) 

Lt/yJ [ t / y j  

E e~ < t) <_ E eOn <- e~176 1) 
n=O n=O 

and, by (38), for t > yno, 

fx )  

E e~ <yn) <_ E 
n = [ t /y]  n = [ t / y  1 

e x p ( O n - n ( I ( y ) - e ) )  

(40) 

<exp( - I t / yJ ( I ( y  ) - 0)/2) (41) 
- 1 - e x p ( - ( I ( y ) - O ) / 2 ) "  

Combining (39)-(41), we obtain the desired conclusion. [] 

Proof of theorem 1 

We do the proof in only one direction, since the proofs in the two directions 
are similar. Suppose that { T,} satisfies (2) and (4)-(7) with decay rate function ~b r. 
Then, by the GS.rtner-Ellis theorem, {Tn} obeys the LDP with LD rate function 
I r  = ~}. By theorem 4, {N(t)} obeys the LDP with LD rate function I N defined 
by (14)-(18). We then let ~b N = I) .  Since I~r* = IN, it is easy to see that (12)-(18) 
are valid. For example, it is easy to see that ~N in (12) has the properties of a decay 
rate function (nondecreasing, convex, ~b(0) = 0 and (2)-(5)) if and only if ~br in (13) 
does. As indicated after theorem 1, this is easy to see from figure 2. More formally, 
to establish convexity, suppose that ~ r  is twice differentiable for a r  < 0 </3r  
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(where ~ ( 0 )  > 0). Since @N(O) = --~)7t(--0), q/)T(--@N(O)) = --0 and 

~t  -1 3 ~> 0. 
r ( r  ( -0 ) )  - 

Then we can represent a general Cr as the limit of a sequence {~r, : n > 1 } where 
each ~r. is strictly increasing and twice continuously differentiable in the interval 
(aT,/3r). Cun(0) --+ ~u(0) as n ~ ec. Since Cx, is convex for each n, so is ~u. 

Given Cr and ~U in (12) and (13), it is straightforward to verify that the con- 
vex conjugates I r  = r and IN = ~v defined by (6) have the properties (14)-(18). 
For example, for "/~v < x < 7~ and x > 0, 

'@;~(X) m- S u p { 0 x -  @'N(0): 0 e If{} 

= sup{0x - CX(0) : aN < 0 <_ ~N} 

= sup{~)N 1 (O)X -- O: a u ~ @N ! (0) ~ /~U} 

= 8up{--~PT(O)x -Jr- O: a N ~ --~,T(O) ~ ]~N} 

= Xsup{(O/X) -- @T(0) : a u "~ --~T(O) ~ ~N} 

= xsup{(O/X) - -  ~)T(0) : @'Tt(--flN) ~ 0 ~ ~)TI(--aN)} 

= xsup{(O/x)  - ~r(0) : a r < 0 _</3T} 

= x s u p { ( O / x ) -  ~r(0) :  0 C I~} = x~*r(1/x). 

For "Y~v = 0 = x ,  take the limit as x ~ 0, obtaining 

~v(O) = tim~v(x) ----timy-l~r(y) 
xlO yloc 

and 

*r X : 

I~r(O) = lim ~ (----~) lira ~2}(y)= oc. 
x~O X Y ~  

A similar argument yields •N = 1) and ~br = I~- given IN and It .  
We now show that (2) holds for N when 0 < 0 < - ~ r ( - e c )  =/3~T. By 

lemma 1, it suffices to prove that 

t -1 log I exp(tOx)P(N(t) > tx)dx ~//)N(0). 

0 

By lemma 2, we can choose 0 with 0 < 0 < - r  and 

_= lim t -1 log Ee ON(t) < ec. 
t---* c~ 

(42) 
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For  e > 0 given, let M be the constant 

M =  ( ~ -  ~ ) / (~ -  0). 

Then, by Markov 's  inequality, 

I AI exp(tOx)P(N(t) > tx)dx <_ Ee ~ exp(tOx - tOx)dx 
M M 

EdON(t) (e-t(O- O)M) /t(O -- O) 

1 
< ~ e x p ( - t ( 6 J  - O)M - logEe gN(t)) 
- t ( ~ -  o) 

1 
< - -  exp(-t[((J - O)M - ~ - el) 
- t ( ~ -  o) 

1 
exp(2et) 

t (O - o) 

for t sufficiently large. On the other hand, 

M 

j exp(tOx)P(N(t) > tx)dx 
0 

n -  1 (i+ ~)M/n 

E l exp(tOx)P(N(t) > tx)dx 
i=0  

iM /n 

<_ 
n - 1 (i+ l )M/n  

iM/n 

exp(tO(i + I)M/n)P(N(t) > itM/n)dx 

m n - 1  

<_-~i~oeXp(tO(i+.= 1)M/n)P(N(t) > itM/n) 

_< M-M-et~ exp(t[OMi/n - t -1 logP(t-lN(t) > iM/n)]) 
n 

i=o  

exp t[OMi/n- inf IN(X)] , 
fl  i ~ 0 x > iM /n 

(43) 

(44) 
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where n is an arbitrary positive integer. Combining (43) and (44), we obtain 

o o  

lim t -1 log J exp(tOx)P(N(t) > tx)dx 
t - - - o  o o  

0 {o i ) 
< 2e + 0 M  + max - inf I N(x) 

/'/ 0 < i < n - I  x>_iM/n 

by lemma 1.2.15 on p. 7 of  Dembo and Zeitouni [5]. However, 

~OMi } 
max inf IN(X) <_ sup{0x-- IN(X)} = ~u(O). 

0 < i < n - l [ '  ~ x>_iM/n 

n 

Letting e --, 0 and n --, ec, we complete the lim proof. 
We now turn to the lower bound. For  the same 0 and a new positive e, choose 

(5 and x0 such that 

Ox - IN(X ) > sup{0y -- Iu(Y)} -- e 
Y 

for I x - Xo[ < 6. Then 

(N3 

l exp(tOx)P(N(t) > tx)dx > 
0 

xo +~ 

I exp(tOx)P(N(t) > t(Xo + (5))dx 

xo - 8 

>_ 2(sexp(tO(xo - 6))P(t-lN(t) > x o + (5), 

so that 

lim t -1 log J exp(tOx)P(N(t) > tx)dx 
t ~ e ~  

0 

> O(X 0 --  (5) - -  I N ( X  0 + (5) = O(X 0 + (5) --  I N ( X  0 -4- (5) --  2~5 

_ sup{0y - IN(y)} -- 26 -- e 
Y 

~)N(O) -- 2~5 - ~. 

Finally, let 6 --+ 0 and e --+ 0 to complete the lim proof. Combining the lim and lim 
proofs yields (42). 
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We now consider the case in which 0 < 0. By lemma 1, it suffices to show 
that  

(x? 

t -1 log I exp(tOx)P(N(t) < tx)dx -+ @N(O) 

O 

as t + oc. (45) 

Let 2 = r and recall that  IN(2) = 0. Let x V y = max{x,  y}. Then note  that  

O0 

I exp(tOx)P(N(t) < tx)dx 

0 

<_ I exp(tOx)P(N(t) < tx)dx + i exp(tOx)dx 
0 Y~ 

< 
n - 1  

Z(2/n)exp( tOM/n)P(N(t )  < t2(i + 1)/n) - ( tO)  -1 exp(t02) 
i = 0  

- n - - 1  

<_ - exp(tO2i/n - tlN(2(i + 1)/n) + et) -- (tO) -~ exp(t02) 
t i  

for t sufficiently large. Hence, 

0(3 

lim t -1 log I exp(tOx)P(N(t) < tx)dx 
t - -+  o o  

0 

< max IN(2(i+ 1)/n) + e} V 02 l<i<n_a{(O2i/n) - 

_< sup{0x - I N ( X  ) + e -- 02/n} V 02 
x<_'2 

< ( r  + - v 

N o w  let e ~ 0 and n ~ oe, and note that  ~(0) > 0r for 0 < 0, to complete the 
lim proof.  

We now turn  to the lower bound.  For  e > 0 given, let ~5 > 0 and x0 be such 
that  

Ox - IN(X) >_ sup{Oy -- IN(y)} -- e. 
Y 
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Then 

e~ xo + 6 

I exp(tOx)P(N(t) < tx)dx >_ I exp(tOx)P(N(t) < t(Xo-6))dx 
0 Xo - 6 

>_ 26exp(tO(x o + 6)P(N(t) < t(xo - ~5)), 

so that 

oo 

lira t -1 log I exp(tOx)P(N(t) < tx)dx 
t---+ ~ 

0 

>_ O(xo + 6) - ~N(xO -- 6) = O(xo - 6) -- IN(xO -- 6) + 206 

_> sup{0y - i N ( y ) }  - -  e -+- 206 
Y 

~ N ( O )  - -  ~ -~- 2 0 6 .  

Now let 6 --+ 0 and e ~ 0 to complete the proof of (50). 
Finally, it remains to consider the upper boundary point/3~v when/3~v < c~. 

Clearly, 

lim t -1 logEe 3~N(t) > ~/)N(O) 
t--~ oo 

for any 0 < fl~v. Thus, when CN(fl~V) = ~ ,  

lim t -1 logEe r = ~bN(3UN) = + o o .  
t---~ oo 

The only ambiguous case is when 3~v < ec and C N ( f l ~ )  < (X). [] 

Proof of theorem 5 

In general, G(O, �9 ) in (29) is not a proper probability distribution. However, 
our choice of r in (30) guarantees that 

F(O, dt) = exp(-~b(O)t)G(O, dt) (46) 

is a probability distribution function. Furthermore, F(O, dt) is equivalent to 
P(zl ~ dt), so that F(O,. ) is spread out. Hence, we can apply Smith's key renewal 
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theorem, (4.4) on p. 120 of Asmussen [1], to the renewal equation 

t 

~(O, t) = f~(O, t) + I ~(O, t - s)F(O, ds), 
0 

(47) 

where/~(0, t) is in (32) and 

~(0, t) = exp(-~b(O)t)~(O, t) (48) 

to obtain 

I l;(O,s)d~ 
,5(0, t) ~ o 

I tF(O, dt) 
0 

as t --+ oc. (49) 

(Conditions (ii)-(iv) imply that/~(0, t) is directly Riemann integrable, using propo- 
sition 4.1 (ii) of Asmussen [1]; see proposition 9 of Glynn and Whitt [10] for a related 
argument.) By Fubini's theorem, we see that 

I t;(O,s)ds = 
0 

O0 

J E[exp(-~(O)t +ON(t));7-1 > t]dt 
0 

= E I exp(-~b(0)t + ON(t))I(~Cl > t)dt 
0 

= E exp(-~b(0)t + ON(t))dl (50) 

and 

J tF(O, dt) = 
0 

OG 

I tE[exp(-~b(O)t + ON(t); "q E dt] 
0 

= E[exp(-~b(0)T1 + OYt)~t]. (51) 

Combining (49)-(51), yields the desired (33) and (34). 
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Proof  o f  theorem 6 

Under  the boundedness  assumptions,  f ( 7 , 0 )  in (36) is bounded  by 
exp(171K1 + IOIK2) and infinitely differentiable in I~ 2. Also, for each 0, f ( . ,  0) is 
strictly decreasing with f ( 7 ,  0) ---, 0 as ~, ~ ec and  f ( %  0) ~ +co  as 3' ~ - e c .  
Hence,  the root  ~b(0) o f  (30) exists for each 0. Moreover ,  it is easy to see tha t  assump- 
tions (ii)-(iv) hold. 

To see tha t  ~b is differentiable with derivative (35), apply the implicit  funct ion 
theorem with (30). Note  tha t  0 / 0 7 f ( 7 ,  0) < 0 for  all (7, 0), so tha t  the denomina to r  
is non-zero.  [ ]  
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