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1 Introduction 

In this paper, we study a class of Markov chains X = (Xn : n > 0) that arise as solutions 
to stochastic recursions of the form 

Xn+l = f (Xn,  Zn+l), (1) 

where Z = (Zn : n >__ 1) is an i.i.d, sequence, called the innovations sequence. Our 
motivation stems from the fact that discrete-event simulation are typically formulated and 
implemented as stochastic recursions of the form (1). Our aim is to study the behavior of 
X under perturbations of the distribution that governs Z. Suppose that 0 is a real-valued 
parameter under which the Zn's have common distribution Ko (say). We will provide 
conditions under which 

(i) the expectation of a r.v. (random variable) defined over a randomized time-horizon 
is differentiable in 0; and 

(ii) the stationary probability measure of X is differentiable in 0 (in a sense to be made 
more precise in §4). 

Our conditions are based on stochastic Lyapunov functions and can be expressed in 
terms of Ko and the one-step transition function of X. In addition to giving conditions 
for model "smoothness", our approach also provides derivative estimators which can 
be computed via simulation. In particular, we develop a likelihood ratio (LR) derivative 
estimator for the derivative of the steady-state expectation of a functional defined on a 
Harris recurrent Markov chain. 

In §2, we consider a finite horizon model where the horizon is a randomized stopping 
time and provide sufficient conditions under which the expected performance measure is 
differentiable. We also construct LR derivative estimators where the LR can be based on 
either the filtration associated with the "innovation process" or that associated with the 
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Markov chain itself. In §3, we construct LRs for Harris recurrent Markov chains, while 
in §4, we study the derivative of such LRs and construct LR derivative estimators for 
the steady-state performance measures. The main results are stated here without proof, 
due to space limitations. A complete version of the paper, including all the proofs and 
some examples, will appear elsewhere. 

2 LRs fnr Finite-Horizon Stochastic Recursions 

We consider the recursion (1), where for each n, X, and Z, take values in separable 
metric spaces S~ and $2, respectively, and f : S l x  $2 --+ $1 is jointly measurable. 
For each 0 E A, we assume that there exists a family of measurable functions {r,(0) : 
S7 +1 ~ [0, 1], n > 0} and a r.v. T such that Po[T = n I X] = r,(O, Xo . . . . .  Xn). 
The random stopping time T is the time horizon, and is determined as T = inf{j : 
Zn=l  j rn(O, Xo . . . . . .  X,) > U}, where U is a uniform r.v. over (0, 1). For each 0 E 
A = (a, b), Ko and/z0 are probability measures on $2 and $1, that act as the respective 
distribution of Z~ and Xo under 0. Let Po,x denote the probability law of the process, 
conditional on Xo = x, and Eo,x be the corresponding expectation. The sequence X is a 
time-homogeneous Markov chain having the one-step transition function P(O, x, dy) = 
Po,x[Xl E dy] forx,  y E SI. Define Po(dw) = fs, lzo(dx)Po,x(do)). 

Assumption 1. There exists e > 0 such that for each 0 ~ AE = (00 -- ~, O0 + E), 

(i) Ko is absolutely continuous with respect to Koo; 
(ii) lZo is absolutely continuous with respect to tZoo; 

(iii) rn(O, xo . . . . .  Xn) > 0 impl!es rn(Oo, xo . . . . .  xn) 
(xo,..., x,) ~ s~ +l. 

> 0 for a l l n  > O a n d a l l  

Let k(O, z) and u(O,x) be densities such that Ko(dz) = k(O, z)Koo(dz) and 
#o(dx) = u(O, x)#oo(dx). Let p(0)denote rr(0,  Xo . . . . .  XT)/rr(Oo, Xo . . . . .  Xr)  and 
let G, = or(U, Xo, Z1 . . . . .  Zn) for each n. 

Theorem 1. Let Y be a non-negative Gr-measurable r.v. and let Assumption 1 be in 
force. Then, there exists E > 0 such that 

Eo[Y I (T  < oc)] = Eoo[YL(O)I(T < co)] (2) 

for 0 E AE, where I denotes the indicator function and 

T 

L(O) = u(O, Xo)p(O) H k(O, Zi). 
i=1 

(3) 

Let p(O, x, y) be the density of P(O, x, .) with respect to P(0o, x, .). Set ~'n = 
cr (U, Xo . . . . .  Xn). One obtains an alternative LR representation by conditioning: if Y 

is a non-negative SeT-measurable r.v. then 

Eo[YI(T  < oc)] = Eoo[YL(O)I(T < oo)] (4) 
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where 

T 

L(O) = u(O, Xo)p(O) R p(O, Xi- l ,  Xi). 
i=1 

(5) 

Applying (4) to L(O) yields L(O) = Eoo[L(O) L 5or] on the set {T < oo}. One can use 
(2) or (4) to estimate functionals of the measure Po, while simulating X under 00. Since 
L(O) is a conditional expectation of L(0), the estimation based on (4) is statistically 
more efficient (or at least as efficient) in terms of variance; see Fox and Glynn (1986) for 
a similar argument. Generally speaking, the more information Z contains relative to X, 
the greater the gain in statistical efficiency should be. However, (2) could be much easier 
to implement, because the densities p(O,., .) are often rather complicated functions in 
practice. Therefore, there is typically a trade-off between variance reduction on the one 
side and ease of implementation and computational costs on the other. 

The stopping time T is non-randomized if each r,(O, X~ . . . . .  X , )  is either 0 or 1. 
In that case, p(O) = 1 P00-a.s. and the LRs simplify accordingly. 

To derive a LR representation for the derivative of Po, we shall require that Ko be 
suitably smooth in 0. To simplify the notation, we denote Poo and Eoo by P and E, 
respectively. A "prime" denotes the derivative with respect to 0. 

Assumption2, (i) There ex&ts e > 0 such thatfor all O e Ao Po[T < c~] = 1; 
(ii) There exists E > 0 such that for each x c Sl and z c Se, u(., xo) and k(., z) are 

continuously differentiable over A~. Also, p'(Oo) = limh~O(p(O0 + h) - p(Oo))/ h 
exists P-a. s.; 

(iii) For each p > O, there exists e = E(p) such that 

] E E sup [u((O, X0)l e + sup ]k'(O, Z1)] p < ( ~  and sup E -O-  00 < ~ "  
L0eA~ 0cA, 0eA~ 

To differentiate (2) or (4), and pass the derivative inside the expectation operator, 
we need to control the behavior of L(O) and L(O). For that, we will make the following 
assumption, to control the r.v.T. 

Assumption3. There exists z > I such that E[z T] < c~. 

Theorem2.  Let Y be a Ur-measurable r.v. and assume that there exists ~ > 0 such 
that E[[ Y 11+8] < c~. I f  Assumptions 1-3 hold, then Eo[Y] is differentiable at Oo and the 
derivative is given by E[YLI(Oo)] = E[YL'(Oo)], where 

L'(o) = L(o) 

L'(O) = L(O) 

- u'(O, Xo )  

u(O, Xo) 

-u' (O , Xo) p'(O) 
u(O, Xo) + - p - ~  + ~ p ' ( O ' X ' - ' ' X i ) l  
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3 LRs for Harris-Recurrent Stochastic Recursions 

We now turn our attention to the construction of LRs and derivative estimators for 
infinite-horizon (steady-state) systems. 

Assumpt ion4 .  There exists ~ > O, an integer m > O, a (measurable) subset A c Sb a 
probability 99 on $1, and a measurable function L > O for which 

i) For each 0 c AE, there exists a measurable function g(O, .) > 0 and a constant 
E(O) > 0 such that: (a) Eo,x[g(O, X1)] < g(O, x) - E(O) for x ~ A; and (b) 
SUpx~a Eo,x[g(O, X1)] < c~. 

ii) Po,x[Xm E dy] > L(x) ~o(dy) for x, y ~ S1, 0 ~ As; 

iii) inf {k(x) : x 6 A} ~ )~. > 0. 

In most applications, A is a compact set, and (ii-iii) follow via a continuity argument. 
Let T(A)  = inf {n > 1 : Xn ~ A}. Then, (i) ensures that SUpx~a EO,x[T(A)] < c,z and 
P [Xn ~ A i.o.] = 1 (see Nummelin 1984). The function g(0, -) is called a" tes t  function" 
or "stochastic Lyapunov function". 

Remark. Allowing m = 0 in Assumption 4 is non-standard, but permits us to simplify 
the estimators nicely for systems which have a regenerative state. To be more precise, 
suppose that there is a specific state x .  6 S1 that is hit a.s. in finite time from any other 
state. Define A = {x.} and ~o(dy) = I[x. ~ dy]. Then, Assumptions 4(ii-iii) hold with 
m = O, L(x) = I[x = x,] ,  and k .  = 1. In fact, this degenerate case is the only case 
where Assumption 4 can hold for m = 0. 

We can now use the so-called "splitting method" (Athreya and Ney 1978, and Num- 
melin 1978), to show that for each 0 c AE, X possesses a unique ~r-finite stationary 
measure yr(0) having a regenerative representation. Assumption 4 (ii) ensures the exis- 
tence of  a family of  transition functions Q(O) such that 

Po.x[Xm E dy] = L(x) 9(dy) + (1 - L(x)) Q(o, x, dy) (6) 

for 0 6 A, ,  x, y 6 S1. Roughly speaking, if X currently occupies state x 6 S, then 
m time units later, with probability L(x), the chain will be distributed according to 9. 
There is then a random time r for which X,  is distributed independently of  Xr-m, and 
the stationary distribution yr(0) can be represented in terms of  a ratio formula expressed 
over the time interval [0, r] .  I f  m = 0 and L. = 1, then 9 is concentrated on a single 
state x .  and r is the first hitting time of x. .  

For m > 1, we will shrink ~.(x) to make sure that the measures Q#(O, x, .) and 
Pro(O, x ,  ") ---~ PO,x[Xm E • ] are equivalent. Fix/~ E (0, 1) and let 

9~(x, dy) = fi~.(x) 9(dy),  
Q~(O, x, dy) = (1 - / 5 ) Z ( x )  ~o(dy) + (1 - 3.(x)) Q(O, x, dy) (7) 

= Po,x[Xm ~ dy] - ~X(x)9(dy).  

Then, there exist densities wi(O, x, y), i : 0, 1, such that 

Q,(O, x, dy) = Wo(O, x, y) Pro(O, x, dy); (8) 
9#(x, dy) = wt (0, x, y)Pm(O, x, dy), 
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and these densities satisfy Wo(0, x, y) + wi (0, x, y)  = t. 

Let So = - m  and Sj = inf {n > Sj-1 + m  • Xn 6 A} for j > 1 be a sequence of 
hitting times of A, spaced at least m steps apart. Define a r.v. r such that 

n-1 
Po[r = Sn + m [ Z] = Wl(0, Xs,, Xs,+m) H wo(O, Xsj, Xsj+m) 

j=I 

for each n > 1, and let y be such that S r + m = r .  On can identify r with the finite 
horizon T of  the previous section. Its distribution is concentrated on {Sn + m, n > 1 }, 
and one has 

F-1 
rr(O, XO . . . . .  Xr) : t01(0, XS v, Ssv+rn ) H W0(0' XSj' Xsj+m) 

j=l 

and/z0 - 9. This r is a time at which the distribution of X is independent of  its position 
at time r - m. It is the desired "regeneration time" for X under Po, and under Assumption 
4, there exists ¢ > 0 such that for 0 ~ A~, 

[~[~)-1 I(Xj E dx)] Eo =o 
no (dx) = (9) 

E0[z] 

To construct a LR representation of zr0 in terms of :r00, let Assumption 1 be in force 
and let pn(O, x, y) be the density of  Pn(O, x, .) with respect to Pn(0o, x, -) for n ___ 1 
and 0 6 A~. Then, it is possible to show that 

q o, ,,sj, ] 1 
p(O) = pm(O, Xsj, Xsj+m)} pm(O, St-m, St)' 

L ( O ) =  Hk(O,  ZD p(O), and L ( O ) =  p(O,X~_~,X~) p(O). 
\ i= t  i=l 

Combining this with (9) and Theorem 1, we obtain: 

Coro l l a ry  3. Under Assumptions 4 and l(i), there exists E > 0 such that for all 0 ~ Ao 

~o(dx) = 
Eoo [~;=-oI I (Xj e dx) L(0)] Eoo [Y]~.=~ I (Xj E dx) L(0)] 

In the degenerate case where m = 0, one can take t5 = t, so p(O) =-- I. 
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4 A LR Representation for the Derivative of the Stationary 
Distribution 

A glance at/ ,  (0) and L (0) suggests that a LR derivative formula for the stationary distri- 
bution should require differentiability of p,~ (.) and q (-) with respect to 0. By recognizing 
that the derivative of Pm (') can be defined in terms of the conditional expectation of the 
derivative of k(.), the required differentiability can be proved by imposing appropriate 
regularity conditions on k(.). These conditions force Pm(', x, y) and q(., x, y) to be 
well-behaved. 

Assumption5. (i) There exists ~ > 0 such that for each z e $2, k(., z) is continuously 
differentiable over AE ; 

(ii) For each p > O, there exists ~ = E(p) such that E [suP0e^ ' [k'(O, Z1)] p] < ~," 

(iii) For each r ~ R, lim,~0 E [suP0cA ' Ik(O, ZI)I r] = 1. 

To show that Assumption 2 (iii) and 3 hold, and apply the results of § 2, we need 
to control the behavior of r and y. Under suitable hypotheses (below), it can be shown 
that r and g have a geometrically dominated tail. We shall assume the existence of the 
following Lyapunov function: 

Assumption 6. There exists a function g >__ 0 defined on Sb e > O, and r < 1 such that 
Eoo.x [g(X~)] < r g(x) - e for  x ~ A and suPxeA Eoo.x[g(X1)] < oo. 

The set A is then a Kendall set for the Markov chain having transition function 
P ( O o ) , i . e . , i f T ( A )  = inf{n > 1 : Xn e A}, then there exists z > 1 such that 
SUPxeA Eoo.x [Z T(A)] < oo. (See Nummelin (1984), pp. 90-91 and Chap. 16 of Meyn 
and Tweedie (1993).) 

Proposition4. Under Assumptions l(i), 4, and5, P l y  > k] < (1 - ~ L . ) k f o r k  > O. 
I f  in addition, Assumption 6 is in force, then there exists Z > 1 such that E[z r ] < co. 

It is then possible to show that 

~" p'm(O, Xs~, Xs,+~) 
p'(O!, = q'(O, Xs,, _ pro(o, Xs , Xs,+m) 
p(O) q(O, X&, X&+m) i=1 

y-1 ptm(O, Xsi,Xsi+m) tOl(0, X&,X&+m) _ plm(O, Xsy,Xsv+m) 
= ~ pro(O, Xsj, X&+m) wo(O, X&'Xsj+m) pro(O, XS r, Xsv+m) i=1 

when these expressions exist. Under Assumptions l(i) and 4-6, one can prove that p'(Oo) 
exists a.s.. Verifying that condition does not seem direct, because there is no a priori 
reason to expect almost sure differentiability, or even continuity over 0 E AE, of the r.v.'s 
pro(O, Xsi, X&+,,) and q(O, Xsi, Xs~+~). The proof also turns out to be quite involved. 

Then, Assumptions 1-3 hold for our Harris-recurrent setup and Theorem 5 below 
shows that the stationary distributions ~0 are in fact differentiable in a very strong sense, 
namely in an extended version of the total variation norm. (For f = 1, the notion of 
convergence in Theorem 5 is precisely that of total variation.) Recent work of Vgsquez- 
Abad and Kushner (1992) also addresses this question. The hypotheses given there are 



435 

quite different and, in particular, are not given in terms of conditions that can be checked 
directly from the transition function of  the chain. For a measure /z  on Sl and a S1- 
measurable function f ,  we adopt the notation # f  = fs, f ( Y )  # (dy ) .  Let f _> 0 be 

Sl-measurable. This and our previous assumptions will imply that rr0o f~+~ is finite (see 
Tweedie 1983). 

Assumpt ion  7. There exists a function g > 0 defined on $1 and ~ > 0 such that 

Eoo,x[g(Xl)] < g(x)  - E f (x)l+~ for  x ~ A, andsuPx~A Eoo,x[g(Xi)] < cx~. 

T h e o r e m  5. Let Assumptions l(i) and 4 - 7  hold. Then, there exists a finite signed mea- 
sure Jr t such that 

lira sup 7roo+h g - 7roo g _ rr' g = 0 
h-+O igl<_f h 

and 

J r ' ( . )  = 
E[r ]  

Noting that L'(Oo) = E[L'(00) I 5rr] and that Y(g)  and r are both 5rr-measurable, 
we obtain file following corollary to Theorem 5. 

C o r o l l a r y &  Under the assumption o f  Theorem 5, Jrog is differentiabIe at 0 = Oo fo r  

any g satisfying I gl <_ f ,  and 

d-'-O zrog 0=0o = E[ r ]  = E[ r ]  
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