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Let X = {X(t ): t 3 0) be a positive recurrent synchronous process (PRS), that is, a process for which 

there exists an increasing sequence of random times 7 = {T(k)} such that for each k the distribution of 

B,,,,X d&r {X( f + T(k)): t 3 0) is the same and the cycle lengths I-, ‘sr T( n + 1) - T(n) have finite first 

moment. Such processes (in general) do not converge to steady-state weakly (or in total variation) even 

when regularity conditions are placed on the cycles (such as non-lattice, spread-out, or mixing). 

Nonetheless, in the present paper we first show that the distributions of {0,X: s>O} are tight in the 

function space s(O, co). Then we investigate conditions under which the Cesaro averaged functionals 

p,(f) V(l/r) 1: E(f(B,X)) ds converge uniformly (over a class of functions) to r(f), where v is the 

stationary distribution of X. We show that P,(f) + r(f) uniformly over f satisfying (1 f IJcaG 1 (total 
variation convergence). We also show that to obtain uniform convergence over all S satisfying ) f) 5 g 

(g E L:(P) fixed) requires placing further conditions on the PRS. This is in sharp contrast to both classical 

regenerative processes and discrete time Harris recurrent Markov chains (where renewal theory can be 

applied) where such uniform convergence holds without any further conditions. For continuous time 

positive Harris recurrent Markov processes (where renewal theory cannot be applied) we show that these 

further conditions are in fact automatically satisfied. In this context, applications to queueing models 

are given. 

synchronous process * Cesaro convergence * limit theorems * point processes 

1. Preliminaries and introduction 

Throughout this paper, X = {X( t ): t > 0) will denote a stochastic process taking 

values in a complete separable metric state space (CSMS) Y and having paths in 

the space 9 = L&JO, 00) of functions f: R, + 9’ that are right continuous and have 

left hand limits. 9 is endowed with the Skorohod topology (and is a complete 
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separable metric space). (0,9, P) will denote the underlying probability space and 

we view X as a random element of 9. Let A denote an arbitrary fixed element not 

in the set 9 We then endow Ydgf Yu {A} with the one-point compactification 

topology (in order to keep in the framework of CSMS). 

Definition 1.1. X is said to be a synchronous process with respect to the random 

times 0s T(O) < ~(1) <. - . (with lim,,, 9-(n) = 03 a.s.) if {X, : n 2 1) forms a station- 

ary sequence in the space 9;, where 

X(T(~-l)+t), ifOst<T,, 

T,, !Cf T(n) - T(n - 1) is called the nth cycle length, X,, is called the nth cycle and 

we refer to (I) as the synch-times for X with counting process N( t ) = the number 

of synch times that fall in the interval [0, t]. 

Definition 1.2. A synchronous process X is called non-delayed if T(O) = 0 a.s., delayed 

otherwise. It is called positive recurrent if E( T,) < ~0, null recurrent otherwise. It is 

called ergodic if it is positive recurrent and the invariant g-field, 4, of {X,,, T,} is 

trivial. A dgf l/E( T1) is called the rate of the synch times. i ‘% l/E( T1 19) is called 

the conditional rate, 

From now on, PRS will be used to abbreviate positive recurrent synchronousprocess. 

To help the reader, an appendix is included at the end of this paper giving a brief 

introduction to PRS’s. 

f3, : 9 + 9 denotes the shift operator (0,x)(s) = x( t + s), P” denotes the probability 

measure under which X is non-delayed; P’(A) = P( 6J7C1jX E A) and P” denotes the 

probability measure under which X has the stationary distribution 

P(O,oXEA)ds 

(see the Appendix). 

I 

4 
(L(A) sf A P”(O,oX~A;T(l)>S)ds 

0 

denotes a distribution on 9 which when X is ergodic is the same as r, but, ergodic 

or not, 4 defines a stationary (w.r.t. the shifts 0,) distribution on 9 (see Proposition 

A.2 in the Appendix). 

The important point here is that at the random times T(k), X(t) and its future 

probabilistically start over. However, in contrast to classical regenerative processes 

(CRP’s), or the regenerative structure found in Harris recurrent Markov chains 

(HRMC’s), the future is not necessarily independent of any of the past 

{T(l), . . . , T(k); x(S): 0s S s T(k)}. In particular T does not (in general) form a 

renewal process and hence renewal theory does not apply to synchronous processes. 
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Natural questions arise, however, as to which of known limit theorems etc. that 

hold for CRP’s and HRMC’s actually do not depend upon renewal theory and can 

in fact be extended to cover PRS’s. We first show that for a PRS, the distributions 

of {0,0 X} are in fact tight in the function space .9(0, cc). Since it is known that 

weak or total variation convergence does not follow even when placing regularity 

conditions on the cycle distributions (such as non-lattice cycle length distribution 

or mixing cycles) as is the case for CRP’s and HRMC’s, we next attack problems 

concerning Cesaro limit theorems for PRS’s. For example, although N(t)/t +i, 

P-a.s. as t+oO, what can be said about 

E(N(t))/t+ El, (1.1) 

which does hold true for a renewal process? Similarly, for an ergodic PRS, although 

(llt)~:,f(QX)d s + n(f), PO-a.s. for any f E L,(T), what can be said about 

F,(f) d&f! E'f(% a Xl ds-, df 1, f E L,(T), (1.2) 

or 

,,;=Pr IL(f) - df )I + 0, (I-3) 

or (more generally) 

sup I&(f)-n(f)j+O for each gEL:(r), 
IfIG!? 

(1.4) 

all three of which holds true for CRP’s and HRMC’s? 

We show that (1.3) is always true for a PRS (ergodic or not), whereas (l.l), (1.2) 

and (1.4) require extra conditions (even in the ergodic case). These extra conditions 

turn out to be automatically satisfied for continuous time Harris recurrent Markov 

processes (HRMP’s). In this context we give some applications to queueing models. 

Although in the present paper, we are mainly concerned with tightness and Cesaro 

type limit theorems for a PRS X, we mention the book of Berbee [3] who considered 

some related problems. In order to generalize renewal process type results to other 

types of point processes, Berbee deeply analyzed point processes (with counting 

measure N(B)) that are constructed from a stationary ergodic sequence of interevent 

times. He is mainly concerned with obtaining total variation limit theorems (as 

t + 00) of the point process shifts, N,(B) dzf N(B - t). 

In the following theorem when for each t we consider the shift, X( t ) ‘!Sf 0,o X, 

as an element in function space, we are considering 9(0, ~0) as our function space, 

that is, we are leaving out the origin. This is only a technical detail that implies that 

{X( t ): t > 0) indeed defines a synchronous process with paths in 9,. The problem 

is that otherwise, the sample paths of X( t ) will not have left hand limits (in the 

Skorohod topology) at the jump times of X. On the other hand, when we consider 

the marginal distributions (i.e. the distribution of X( t ) for fixed t ) we are viewing 

X as a random element of 9[0,00) as originally assumed. 
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Theorem 1.1. A PRS has tight marginal distributions, that is, for each E > 0 there 

existsacompactsetK(e)C~suchthatP(X(t)EK(e))>l-eforallt~O. Infact 

the distributions of the shifts (0,~ X: t > 0) are tight in the function space 9(0, CO), 

that is, for each E > 0 there exists a compact set C(e) c 9(0,03) such that P(X( t ) E 

C(&))>l-eforallt>O. 

Proof. Let F(x) denote the cdf for ~(1). Fix E > 0 and then choose an a = a(e) > 0 

such that F(a) d i&h. From equation (A.4) it follows that 

I 

a 

G(A) 3 A P”(~,oXEA; T(l)>s)ds 
0 

I 

a 

Zh P’(~,~XEA; T(l)>a) ds. (1.5) 
0 

Observe that 

Substituting the above into (1.5) we obtain 

ll 

cCr(A)sh 
I 

P”( 8,o X E A) ds - aF( a), 
0 

and hence 

I 

0 
P”(e,oXEA)dsGA-‘$(A)++as. (1.6) 

0 

For each u>O and each compact set B of Y define A(B,u)={x~9:x(t)~R; 

t E [u, u + a]}. By the compact containment condition (see Ethier and Kurtz 

[4, Remark 7.3, p. 1291) there exists a compact set K, = K,(E, a) in Y such that 

$(A(KI, u)) > 1 -$a&. (1.7) 

Moreover, by stationarity of X under I,!I, K, doesn’t depend upon u. For any set A 

let A denote the complement of the set. From (1.6) and (1.7) we obtain 

I 

Cz 
P”(0,~X~A(K~,u))ds~A~‘q!r(A(K,,u))+~aa~as. (1.8) 

0 

But u + a E s+[u, u + a] for each s E [0, a] and hence for each s E [0, a], 

P”(X( u + a) E K,) =S P”( 0,~ X E A( K, , u)). Substituting into (1.8) yields 

P”(X(u+a)EK,)Se, uS0, 

or equivalently 

P’(X(t)E K,)> l-E, t?a. (1.9) 
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Using the compact containment condition again there exists a compact set K2 = 

K2( E, a) such that P”(X E A( Kz, 0)) > 1 - F; in particular P”(X( t ) E K,) > 1 - E for 

allt~[O,a]sothatforK,=K,uK~weobtainPo(X(t)~K,)~1-~forallt~0. 

We have just shown that the marginal distributions of a non-delayed PRS are tight. 

Since X is also synchronous (with the same embedded synch times), our theorem 

is proved in the non-delayed case. To handle the delayed case, suppose X is delayed, 

fix E > 0 and choose an M large enough so that P(r(0) > M) 6 E. For any compact 

set K if t>M then 

P(X(t)E&<P(X(t)EK;7(0)sM)+& 

GP(X(T(O)+~--s)cE, some se[O, Ml)+& 

= P”(X(t-M+.s)El?, some s~[0, MI)+& 

= P”(X( u + s) E K, some s E [0, M]) + E, (1.10) 

where u = t - M. But now we are dealing with the non-delayed version of X which 

we just showed was tight; thus, for any 6 > 0 we can choose a compact set of paths 

C(E) c 9 such that for all t > 0, P”( 0, 0 X E C(E)) > 1 - 6. Using this fact together 

with the compact containment condition, it follows that the last probability in (1.10) 

can be made arbitrarily small (uniformly over u 3 0) for appropriate compact sets 

K c 9. 

For t s M we can use the compact containment condition on X over the time 

interval [0, M] to obtain a compact set K such that P(X(t) E K) > 1 -E for all 

t E [0, M]. The proof is now complete. 0 

2. Limit theorems for N(t) 

In this section we present counterexamples showing that (1.1) is false in general. 

In fact we show that even in the ergodic case it is possible that E”N( t) = 00. 

Let r = {r(n)} be the synch times of a non-delayed PRS X. Let N( t ) denote the 

corresponding counting process. Under PO, X is non-delayed and the point process 

T is called a Palm version in which case {T,} forms a stationary sequence. Under 

P”, X is stationary as is the point process r (see for example, [9]). 

Example 1. Let 2 be a r.v. such that P(Z > 1) = 1 and E(Z) = CO. Define T, = l/Z 

(nzl). Then ~(n)=n/Z and E(T,,)~l<oo. Observe that P(N(t)>n)= 

P(~(n)<r)=P(tZ>n)sothatindeedE(N(t))=ooforallt>O.Observe,however, 

that {T,} is not ergodic; its invariant c-field is precisely a(Z). 

Whereas Example 1 is not ergodic, our next example is. 

Example 2. Consider a discrete time renewal process with cycle length distribution 

9 = {pk : k 2 l} having finite and non-zero first moment, l/,u, but infinite second 
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moment. Let B(n) denote the corresponding descrete time forward recurrence time 

process. B is a positive recurrent Markov chain with invariant probability distribution 

LY, ‘4%‘~ zk3,, pk (the equilibrium distribution of 9’). cy has infinite first moment; 

CT=, kak = a. Let h(k) = l/(k*+ 1) and define a point process by T, = h( B( n)); 

7(n)= T,+ T2+. * . + T,,. Observe that 0 < T,, i 1 for all n. Under (Y, {T,} is a 

stationary ergodic sequence and hence corresponds to a Palm version with O< 

A dzf {E,h( B(O))}-’ < 00. It is also positive recurrent regenerative; it regenerates 

whenever B(n) = 0. Let y = min{n SO: B(n) =O}, and observe that y= B(0). Let 

M =Cc, h(i). Consider the random time .Y= r(y) = Tl + * . . + T,. Observe that 

9< M s co and that N( .Y^) X0 = k) = k; thus, for t 2 M we obtain 

E”N( t ) = f E’{N( t) 1 B(0) = k}cuk 
k=I 

a f E’{N( 9) 1 B(0) = k}ak = f kcrk = ~3. 
k=l k=l 

The important point here is that in general, {N( t)/t: t 2 0} is not uniformly 

integrable (UI). In the following Proposition, we provide some sufficient conditions 

ensuring UI; we point out that the k-dependent case has already been proved in 

Janson [7, Theorem 2.21 using Martingales. We provide here our own proof. 

Proposition 2.1. Suppose 0 < A-’ = E”( Tl) <CO. If either there exists an E > 0 such 

that P”( T, > e) = 1, or the interevent times {T,,} form a k-dependent process, then (1.1) 

holds. 

Proof. Suppose P”( T, > E) = 1. Then for all t>O, N(t)/t< l/s + 1, P-a.s. (even in 

the delayed case) and hence is UI. Suppose now that the T, are k-dependent, that 

is, for each n, { T,,+j: j 2 k} is independent of {T, : m c n}. It follows that for each 

i (O~i<k-I), T(i)={T,,+,: n 3 1) defines a (possibly delayed) renewal process. 

Let N”‘( t ) denote the corresponding ith counting process. Clearly N( t ) s 
#‘J’(t)+~‘*‘(t)+. . .+N(k-‘1 (t ). Since N”‘( t )/ t is UI for each i (because, for 

each i, it is from a renewal process), so is N(I )/t. q 

Remark 2.1. By changing our Example 2 slightly, we can actually obtain a null 

recurrent version: Let {T,} and N(t) be from Example 2 (under (Y), and let H, 

denote the distribution of T,,. Let {&} be non-negative i.i.d. -HZ, with H2 having 

infinite first moment. Define y. = 0, yk+l = min{ n > yk : B(n) = 0). Between T,,_, and 

r,,,, insert &. The idea here is to start off the kth regenerative cycle with Lk and 

then proceed as before. This gives rise to a new sequence of interevent times Tn. 

Taking a Palm version of this new point process yields a stationary ergodic sequence 

f”,suchthatE(?$)=co; f”,--(l-p)H,+pH,wherep=l/(l+l/p).Lettingfi(t) 

denote the associated counting process, we obtain E (I?( t )) 2 (1 - p)E (N( t )) = cc 

for t2M. 
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Remark 2.2. In our Example 2, it is true, however (as is well known more generally 

in the point process literature), that E*( N( t )) = At for all t z 0 and hence that the 

intensity d2f E”(N(1)) is finite and is equal to A. It is only the Palm version that can 

blow up. 

3. Uniform limit theorems for X 

We first present an example of an ergodic PRS together with an f~ L,(r), such 

that F,(f) =oo. In particular, (1.2) does not hold. 

Example 3. Consider T, and B(n) from example (2). Form a semi-Markov process 

X(t)byusingT,astheholdingtimeforB(n),thatis,X(t)~ff(n);7(n-1)~t< 

r(n). Then for B(0) - (Y, X is an ergodic PRS with synch times r(n). Now choose 

anfs0 such thatJhELr(a) but 

Then 

I 

T(1) 
E0 f(X(s)) ds =C E” f(X(s)) ds; X(0) = k 

0 k I 

=~E”{f(k)h(k);X(0)=k}=~f(k)h(k)ak<~. 
k k 

Hence f~ L,( rr). On the other hand, for t 3 M, 

@t(f) = E” f(X(s)) ds z E” AX(s)) ds 

j-(X(s)) ds; X(0) = k 
I 

=c E”{ i f(k-j)h(k-j); X(O)= k 
k ,j=o 

We do, however, have the following: 

Theorem 3.1. IfX is PRS and g E L:(r) such that (l/t )E j,!,““” g( 0,X) ds + 0 and 

{(l/t)~~g(B,oX)ds: ts0) is UIunderP’, then 

,y:pR I&(f) - df)l -+a (3.1) 
G 
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Before proving Theorem 3.1 we state an important corollary obtained immediately 

by using the function g = 1. 

Corollary 3.1. If X is a PRS then fi, converges to rr in total variation. Cl 

Proof of Theorem 3.1. Assume at first that 0~ f s g and that X is non-delayed. 

For E > 0 let &(a, t ) denote the event {N( t ) 2 (i+ &)t}. Let J,, = J,,(f) ‘!Zf 

j$!,) f(0,oX) dt. Let E9 d enote E” conditional on the invariant c-field 9. Then 

f(e,X) ds; ,cg(&, t)” .f(@sx)ds; &Cc, t> 

g(W) ds; &(E, t) . 

Taking expectations in (3.2) with respect to E” yields 

$E” 
I 
’ fU@-) ds 

0 

~~(f)+(.+f)E”J,+fEo{~rg(R.X)ds;~(e,t)}. 
0 

(3.2) 

(3.3) 

By the uniform integrability hypothesis, the last term in (3.3) tends to zero. Moreover, 

E was arbitrary. We thus obtain 

limsup sup{p,(f)-r(f)}GO. 
r+m f<g 

(3.4) 

In a similar manner we obtain a lower bound: For E > 0, 

C J,c; &C--E, t) 

E J _A, 
9 1 t J 

r(X-E)rl 
c J/‘(g); a(-&, t)” 

k=l 
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which after taking expectations yields 

L(f)-4-)> -(&+;)EOEA-+Eo{ &(g); &4-e, r)“). 
(3.5) 

Since gEL,(rr), (l/t)C~~~J,(g) is UI since it converges as. to iE,J,(g) and has 

mean, E”{( [irl/f)E9Jl(g)}, for each t; thus, the last term in (3.5) tends to zero. 

Consequently 

lim sup sup {r(f) -i&(f)) c 0, 
,‘a2 fGg 

(3.6) 

and we obtain (3.1). The case off with arbitrary sign can be handled similarly; we 

leave out the details. In the delayed case, we have on the one hand that 

J ‘f(t?,~X) d 1 
0 I 

rnr(0) 
.YG-E 

t 0 
g(0,X) ds+iE” 

I 
’ f( f&o X) ds. (3.7) 

0 

The first term on their right-hand side tends to zero by assumption giving the 

necessary upper bound. On the other hand, for t 2 M 3 0, 

II 
t 

+E" f( &o X) ds; r(0) > M 
0 

{I 
f 

ZE f( 8,o X) ds; r(O) G M 
T(O) 

f( es0 X) ds; T(O) G M 

(I 
1-M 

SE0 f(es o X) ds 
0 

{I 
f 

-EO g( es0 X) ds; T(O) > M 
0 1 

’ SE0 
(I 

‘f(e,oX)ds -E” 
I {J g(e,oX)ds 

0 f-M I f 
-EO g( fi’,o X) ds; T(O) > M . (3.8) 

Using in M = et, O< E < 1, in (3.8) yields 

+E 
J 
h&W : 

(I 
‘j-(QX)ds -fE” 

I {I t sz-E” 
0 

a4 o w ds 
0 t--fe I 

1 ’ -- E0 
t {I 1 g( 8,~ X) ds; T(O) > et} 

I 

. 

0 
(3.9) 
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The last integral above tends to zero by the UI assumption under PO. The middle 

integral converges to EE”{~ES;Jl(g)}. Letting E tend to zero yields (together with 

(3.7)) the desired result. q 

Proposition 3.1. For a PRS, if either there exists an E > 0 such that P”( T, > E) = 1, 

or the cycles {X,,} form a k-dependent process, then (3.1) holds for all g E L:(n) such 

that E lo”” g( /3,X) ds < 03. 

Proof. From Theorem 3.1, it suffices to show that {(l/t) 5: g(0,o X) ds: t SO} is 

uniformly integrable under PO. If P”( TI > F) = 1 then (l/t ) 5: g( OS 0 X) ds s 

(I/t) C[“” Jk(g) which is UI for g E L:(n). Now suppose that the cycles are 

k-dependent (in particular, X is ergodic). Then 

I N(r)+k 

dh"X)ds~ C J,(g) 
j=l 

= i 4(g) +,j+, 4(g)l(Nt 1 aj - k). 
j=1 

(3.10) 

By the assumption of k-dependency, the indicator I (N( t ) 2 j - k) is independent 

of J,(g) and hence taking expectations in (3.10) yields 

I 

r 
E0 g(8,~X)ds~(E”N(t)+k)EoJ,(g). (3.11) 

0 

By Proposition 2.1, {N(t)/t} is UI and hence by (3.11) so is 

{(l/t)j:,g(es”X)ds: tz0). 0 

Remark 3.1. If X is null recurrent and non-ergodic, it is still possible that 7r as 

defined in (A.3) is a probability measure. In this case Theorem 3.1 remains valid. 

Take for example, a mixture of Poisson processes: Choose a r.v. Y such that 

P(0 < Y s 1) = 1 and E (l/ Y) = CO. Conditional on Y, let {T(k)} be a (non-delayed) 

Poisson process at rate Y. Define X( t ) as the forward recurrence time of this point 

process. Then the invariant u-field is precisely V( Y), E( TI 1 Y) = l/ Y and hence 

E( T,) = 00. Moreover, conditional on Y, the (marginal) steady-state distribution of 

X( t ) is exponential at rate Y and thus the (unconditional) steady-state distribution 

is given by F(x) = 1- E(emY”). 

Remark 3.2. The condition (l/t ) E jr”o’ g( 0,X) ds + 0 is equivalent to UI of 

{(l/t)j;“O’g(eSx)ds}. 

4. Continuous time Harris recurrent Markov processes 

In this section we establish uniform limit theorems for continuous time Harris 

recurrent Markov processes (HRMP’s) analogous to those already known (in the 
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literature) to be true for discrete time Harris recurrent Markov processes, called 

Harris recurrent Markov chains (HRMC’s). Although renewal theory can be used 

to analyze HRMC’s, the same is not true for general HRMP’s (as defined below). 

Let {.Z( f ): t 2 0) denote a Markov process with Polish state space Y and paths 

in BY. We shall always assume that 2 has the strong Markov property. 

2 is called Harris recurrent if there exists a non-trivial a-finite measure p on the 

Bore1 sets of 9’ such that for any Bore1 set AC 9, 

(I 
m 

p(A)>0 =a Pz l,oZ(t)dt=a =l for all z. 
0 > 

(4.1) 

It is known that an HRMP has a unique invariant measure (up to multiplicative 

constant); see for example, [2] and [12]. If the invariant measure is finite then it is 

normalized to a probability measure in which case 2 is called positive recurrent. 

In Theorem 2 of [12], it is proved that a Markov process 2 is a positive HRMP if 

and only if it is a positive recurrent one-dependent regenerative (od-R) process, 

that is, an ergodic synchronous process with one dependent cycles. In particular, 

Corollary 3.1 and Proposition 3.1 both apply to positive HRMP’s. So, for example, 

given any initial state Zo= z, it follows that the Cesaro averaged measures 

fit(A) ds‘ (l/t ) 5: E,ZA 0 (0,Z) ds converge to r in total variation as t + 00. 

Once the od-R points have been selected for an HRMP, a natural question arises 

as to whether or not, by placing some regularity conditions (non-lattice (or spread- 

out) cycle length distribution, etc.) on the cycles of an HRMP Z, the unaveruged 

distributions will converge weakly (or, even better, in total variation) to 7~, that is, 

if p:(f) dzf E,(f(B,Z))+ r(f) for all bounded continuous J: The answer is no; a 

counterexample is given in Remark (3.2) of [12]. However, an immediate application 

of Theorem 1.1 yields: 

Proposition 4.1. If Z is a positive HRMP then the shifts (t3,o Z} are tight in the 

function space 9(0,00). q 

Continuing in the spirit of Cesaro convergence we have: 

Proposition 4.2. If Z is a positive HRMP with stationary distribution TT then for each 

gE G(r), 

sup 1 @F(f) - ~(f)[ -9 0 for almost every z w.r.t. 97. (4.2) 
Ifl=g 

Proof. Let r(z) %Tf E, ~~“’ g( 0,*X) ds and E dsf {z: r(z) < 03). From Proposition 3.1 it 

suffices to show that T(E) = 1. Now, 

I 

r(1) 
V(E) = hEo I(r(Z(s) < ~0) ds. (4.3) 

0 
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Moreover, 

E'{r(Z(s); r(1) > s} = E” (g(fLZ) du }; T(l)> sl} 

=EO 
(s(W) du; 41)’ ~1 

{J 
T(1) 

SE0 (s(W) du <*. o I 
Thus T(Z(S)I(T( l>> s)) <cc, PO-as., and hence P”{r(Z(s)) < 00; r( 1) > s} = 1 for 

all s a 0. Integrating over s yields the result. Cl 

Proposition 4.3. If Z is a positive HRMP with stationary distribution T then 

J ddz) ,y”, I EL:(f) - df)l+ 0, (4.4) 
=G 

for all g E L:(T) such that E”{~~“’ ug( 0,X ) du} < 00. 

Proof. We must show that the error bounds for lfiL:( d )-n(f)\ can be integrated 

over z with respect to r. From the bounds obtained in (3.5)-(3.9) it suffices to show 

that h(z) dsf E, ji”’ g(O,X) ds is in L,(r). An easy calculation yields 

T(i) T(1) 
r(dz)h(z) = hEo 

I I 
0, o g( 0,X) du ds 

0 0 T(1) = AE” 
I J 

T(l) 
g( 0,X) du ds 

0 0 

= AE” J 
T(1) 

ug(8,X) du. Cl 
0 

Remark 4.1. In the proof of Proposition 4.2, the assertion that rr(.s) = 1 amounts, 

in the terminology of discrete time Markov chain theory, to showing that a.e. state 

z (with respect to n) is g-regular (see Proposition 5.13 of Nummelin [S]). In fact, 

Proposition 4.2 can be viewed as a continuous time Cesaro average analog of 

Corollary 6.7i in [S]. 

Remark 4.2. In Asmussen [l] the definition of HRMP is different than ours. Ours 

comes from Azema, Duflo and Revuz [2]. Asmussen’s definition is more restrictive 

and in particular implies the existence of an embedded renewal process. 

5. Applications to queues 

In [ll] the stability to open Jackson queueing networks with c nodes is established 

where service times at each node are i.i.d. with a general distribution, exogenous 
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interarrival times are i.i.d. with a general distribution, and the routing is Markovian. 

We present here some immediate consequences of Section 4 in the context of the 

above stability result. The discrete time Markov process X, = ( Qn, Y,,) denotes the 

queue length vector and residual service time vector at the c nodes at time t, - (the 

arrival time of the nth customer) and Z(t) = (Q(t), Y(t), Z?(t)) the associated 

continuous time Markov process (where B( t ) denotes the forward recurrence time 

of the exogenous renewal arrival process). pi denotes the long run average rate at 

which work arrives (exogenously) to the system destined for node i. The reader is 

referred to [l l] for the details of the model and the proofs of the following two 

theorems: 

Theorem 5.1. The Markov chain X = {X,,} for JON is Harris ergodic if pi < 1 for each 

i (lsisc). Cl 

Theorem 5.2. The Markov process 2 for JON is a positive HRMP if 0 < pi < 1 for 

each i (1 G is c). In particular it is positive recurrent one-dependent regenerative 

(od-R) with a unique steady-state distribution rr. In general, rr{(X( t ) = 0} = 0 and 

hence the regeneration points of Z are not described by consecutive visits of X to the 

empty state. q 

From the above theorem we see that Z is an ergodic PRS with one-dependent 

cycles and therefore so is any continuous functional f(Z( t )) such as total queue 

length QT(l) (sum of the c queue lengths). Moreover, total work in system w(t) is 

also; w( t ) denotes the sum of all remaining service times of all customers in the 

system (including their feedback) at time t (see Section 4 of [ll]). We thus obtain 

the following special cases of the results in Section 4: 

Proposition 5.1. For a JON with pi < 1 for each i (1 G is c), the following hold: 

{ ~$0 Qr} and { t3,o w} are tight in function space 

for each fixed initial condition, 

1 L 
; 

I 
Pz(w(s)~ .) d s + P,( w(0) E . ) in total variation for each z, 

0 

1 ’ 
; J Pz(Q~(sl E -1 d s + P,,( Q=(O) E 9 ) in total variation for each z. 

0 

ZfE,(w(O)) COO then 

1 ’ 
t 0 J E,(w(s)) ds+ E,(w(O)) for almost every z w.r.t. rr, 

1 ’ 
; J E,( QT(s)) ds + E,( Qr(0)) for almost every z w.r.t. T. q 

0 
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Remark 5.1. Although the above queueing model has the special feature of i.i.d. 

input, this is not the key ingredient. The real importance of the above results is that 

they apply to any queue that can be modeled as a positive HRMP (and there are 

many, see [12]). 

Appendix: A brief introduction to synchronous processes 

Our use of the word synchronous is from [5]. Other names have been given to a 

synchronous process; for example Serfozo [lo] refers to them as semi-stationary 

processes. In Rolski [9] they arise as Palm versions of stationary processes (associ- 

ated with point processes). Closely related to this is the general theory of stationary 

marked point processes [5]. In any case, the ergodic properties of synchronous 

processes are well known in the literature. We state several such results the proofs 

of which can be found in, for example [6] and [9]. 

Let 8, : 9 + 9 denote the shift operator (&x)(s) = x( t + s). 

Theorem A.l. Suppose X is a PRS and f: C?Zja, -+ Iw is measurable. Let J,, = J,(f) dsf 

,:;:‘,, f(R 0 X) dt. rfJo(lf I) <cc a.s. and ifeitherfs0 a.s. orE{JI(Jf))}<~ then 

(A.11 

where 9 denotes the invariant a-field associated with {(X,,, T,,)}. q 

Let P” denote the probability measure under which X is non-delayed, that is, 

P”(X E A) = P( e,,,, 0 X E A). 

Corollary A.l. Under the conditions of Theorem A.l, ifin addition 9 is trivial (every 

set has probability 0 or 1) then {J,,, T,: n 2 l} is ergodic and hence a.s. 

lim! ‘~(H,oX)ds=-$$=h 
I I 

00 
P”( 0,~ X E A; T( 1) > s) ds. (A.2) 

f_OD r 0 1 0 

Under these circumstances, X is called ergodic. 0 

The following Corollary follows from (A.l) by an elementary application of 

Fubini’s Theorem and the Bounded Convergence Theorem. 

Corollary A.2 Under the hypothesis of Theorem A.l, tf in addition f is bounded then 

(A.3) 

v above defines a measure on 9 and (for reasons given below in Proposition A. 1) is 

called the stationary probability measure for X. In particular, by choosing f = la (an 

indicator function), we have p,(A) + r(A) for each Bore1 set A of 9. In particular, 

the Cesaro averaged distributions converge weakly. q 
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Proposition A.l. Let T be the stationary measure of a PRS X. Then under T, 0 = (0,) 

is measure preserving on 9, that is, for each Bore1 set A, T(A) = T( &,A) for all s 2 0. 
In particular, tfX has distribution rr, then X is time stationary, that is, 0,X has the 
same distribution .for each t 2 0. 0 

Let P* denote the probability measure under which X has distribution r, that 

is, P*(X E A) = n(A). From (A.2) we obtain for an ergodic synchronous process that 

P*(XEA)=A JW P’(&oXEA; T(l)>s)ds. (A.4) 
0 

If X is positive recurrent but not ergodic then the right-hand side of (A.4) still 

defines a probability measure on 9 (but not necessarily the same as the r from 

(A.3)). In fact, more can be said: 

Proposition A.2. For a PRS the right-hand side of (A.4) defines a probability measure 
on 9 (in general, not the same as T) under which 0 = (13,) is measure preserving. q 
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