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ANALYSIS OF INITIAL TRANSIENT DELETION FOR PARALLEL
STEADY-STATE SIMULATIONS*

PETER W. GLYNNT anp PHILIP HEIDELBERGER}

Abstract. This paper investigates theoretical properties of a simple method for using parallel
processors in discrete event simulations: running independent replications, in parallel, on multiple
processors and averaging the results at the end of the runs. Specifically, the problem of estimating
steady-state parameters from such an experiment is considered. Sampling plans are considered in
which the replication lengths are given by limits on either simulated or computer time, and in which
the beginning portion of each run may be deleted for the purpose of controlling initialization bias.
The critical relative growth rates for the number of processors, the length of each replication, and
the length of the deletion period that are required in order to produce valid confidence intervals for
steady-state parameters are determined. When the replication length is determined by computer
time, the straightforward estimator with deletion may not work for a large number of processors. In
this case, the deletion is essentially useless due to an additional bias term that arises because the
simulated time at the end of a replication is random. In this case, a new estimator can be used to
remove this source of bias.
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1. Introduction. A simple way to exploit the power of parallel processing in
computationally intensive discrete event simulations is to run multiple independent
replications, in parallel, on the processors and to appropriately average the results
at the end of the runs. At first glance, this method produces a p-fold speedup, i.e.,
reduction in completion time, over a sequential (one processor) simulation having the
same variance where p is the number of processors. We call this the parallel replications
approach.

An alternative approach is distributed simulation, in which all p processors coop-
erate on a single realization of the simulation. While significant speedups have been
achieved using distributed simulation in specific problem domains (see, e.g., Fujimoto
(1989, 1990); Goli, Heidelberger, Towsley, and Yu (1990); Lubachevsky (1989); Nicol
(1988); Unger and Fujimoto (1989); Unger and Jefferson (1988); and Yu, Towsley, and
Heidelberger (1989)), in our opinion, distributed simulation has not yet been demon-
strated to be a robust and effective general purpose technique for dealing with the
types of complex models arising in manufacturing, computer, and communications
systems.

In contrast, parallel replications are conceptually and practically simple to apply
and are almost universally applicable. The widespread applicability stems from the
fact that a major reason why many models must run for a long time is the slow rate
at which a simulation estimate’s variance decreases. Essentially, parallel replications
are inappropriate only when either
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1. The model is such that a single replication cannot be completed on a single
processor within a reasonable amount of time. This may be due to either an excep-
tionally large model, which, e.g., may not fit into the memory of a single processor, or,
in steady-state simulations, to a model with a very slowly dissipating initial transient.

2. The variance from each replication is very small, in which case the output
is nearly deterministic and having a large number of replications is merely a waste of
computing resources.

A simple analytic model for comparing the statistical efficiencies of distributed
simulation and parallel replications that justifies the above conclusion was developed
in Heidelberger (1986).

However, there are some potentially serious statistical problems associated with
the parallel replications approach, especially for a large number of processors. In the
case of estimating expected values of so-called transient quantities, these problems
have been studied in Heidelberger (1988) and Glynn and Heidelberger (1991a). The
source of the problem can be illustrated as follows. Suppose that replications are run
on each of p processors and that one sets a completion time constraint of ¢ units of
(computer) time per processor. The number of replications completed on each pro-
cessor by time f is a random variable. While there are a number of different ways
the output can be averaged, there is some sampling bias due to the fixed completion
time t and the associated random number of replications. If { remains fixed, then as
p — 00, the estimates can converge to the wrong quantity. A variety of estimators
that alleviate this situation can be devised, but they have the property that some or
all of the replications in progress at time ¢ must be completed before the estimator
can be formed. Thus one must pay a completion time penalty in order to obtain the
correct convergence behavior. Even in the case of a single processor, some care needs
to be taken in order to best handle the bias associated with stopping the simulation
at time t; see Meketon and Heidelberger (1982), Glynn (1989b), and Glynn and Hei-
delberger (1990). In our discussion, the above results are described primarily in terms
of estimating transient quantities, but they also apply to steady-state estimation in
regenerative simulations (see Smith (1955) or Crane and Iglehart (1975)) since, in
this case, steady-state performance measures can be expressed as a ratio of expected
values of “transient” quantities. Bhavsar and Isaac (1987) discuss other properties
associated with parallel replication schemes for transient quantities.

In this paper, we consider the parallel replications approach to the steady-state

estimation problem in more generality. Specifically, we consider sampling schemes that

delete some initial part of each run in order to reduce “initialization bias,” i.e., bias due
to the fact that the model cannot typically be started in its steady-state distribution

 (otherwise, there would be no need to simulate). We determine the critical relative
‘growth rates for

1. the number of processors {replications),
2. the length of each replication, and
3. the length of the deletion period

- that are required in order for the method of parallel replications with initial transient
deletion to obey a usable central limit theorem. By a usable central limit theorem,

We mean one that is centered about the unknown steady-state parameter and upon

which confidence intervals for the steady-state parameter can be based.

Determining the length of each replication is a basic issue in such an experiment.

- We consider two approaches: the first, based on simulated time, and the second, based
On computer time. The approach chosen makes a difference, in terms of both com-

bletion time and estimator bias. Deletion helps to reduce bias in the first approach;
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however, the completion time is a random variable. On the other hand, when the
replication length is based on computer time, the completion time is deterministic.
However, an additional source of estimator bias is introduced in this case. Further-
more, this additional source of bias is not eliminated by deletion, and thus initial
transient deletion is essentially useless in this case. This bias, which is of order one
over the replication length, is due to the fact that the estimate from each processor
takes the form of a ratio of two random variables. The denominator in this ratio
is the (random) length of the replication in simulated time (minus the initialization
period). When the run is based on simulated time, the denominator is deterministic
and this additional bias is not introduced. A new estimator (also based on computer
time) that gets around this problem is proposed and analyzed. This estimator has a
deterministic stopping time and benefits from the initial transient deletion.

Some comments about the analysis techniques used in this paper are appropriate.
First, we state limit theorems in a triangular array setting, i.e., we simultaneously let
p — oo and t(p) — oo where p is the number of processors and ¢(p) is the length of each
replication. Since in practice only a fixed, finite number of processors are available,
these results should be interpreted as determining (qualitatively) appropriate values
for ¢(p) in order to obtain proper convergence behavior for large values of p. Second,
many of the results are established under regenerative assumptions that would appear
to limit the applicability of the results. However, this is done mainly as a mathematical
convenience and does not impose significant restrictions since

1. Many systems have (hidden) regenerative structure. For example, Glynn

(1989a) shows that many finite state space generalized semi-Markov processes (GSMPs)

are regenerative. Essentially all discrete event simulation models can be described as
GSMPs.

2. The estimators involved do not make any specific use of the regenerative
structure, i.e., one need not identify regeneration points and group the data by regen-
erative cycles. To further amplify this point, Glynn (1989b) derives bias expansions
for certain integrals of regenerative processes and then proposes a bias-reducing tech-
nique based on the form of these expansions. However, to employ that method in
practice requires identifying the regeneration times and estimating expectations of
random variables defined over the regenerative cycles. No such requirement is made
here.

Section 4 contains further discussion of these points.

In order to present a complete and self-contained description of the relevant

results, certain theorems are restated from other papers, specifically, Glynn (1987,
1989b) and Glynn and Heidelberger (1991b). The rest of the paper is organized as

follows. In §2 we describe the formal mathematical framework, and in §3 we consider

estimators based on a fixed amount of simulated time, both with and without dele-

tion. Section 4 treats estimators based on computer time but without deletion, while

85 treats estimators based on computer time with deletion. The proofs are contained
in §6. Finally, the results are summarized in §7.
The focus of this paper is theoretical. However, in Glynn and Heidelberger (1992)

we describe experiments with these estimators on simple queueing network models.

of computer systems. The experimental results reported in that paper confirm the
theoretical results developed in this paper.

2. The framework. Suppose that our goal is to estimate the steady-state mean

of X = (X(t) : t > 0), where X is a real-valued stochastic process. We let C = (C(%)
t > 0) be the associated cumulative computer time process, so that C(t) represents the
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random amount of computer time required to generate X over the interval [0,t]. Let
= denote weak convergence, or convergence in distribution (see Billingsley (1968)).
We assume that (X, C) satisfies the following set of hypotheses:
(2.1)

(i) C is a nondecreasing process.

(ii) There exist (deterministic) constants o, A=1 (0 < A=! < 00), and a 2 x 2
matrix G such that

Z:() = GB(")

as € | 0 in D[0, 00) (the Skorohod space of functions z : [0,00) — IR? that are right
continuous and have left limits), where B is a two-dimensional standard Brownian
motion and

t/e?

Zo(t) = e-1 <52 X(s)ds — at, e20(t/e2) — A—lt) .

Assumption (2.1) (i) is reasonable in view of the interpretation of C(t). As for
(2.1) (ii), we note that one consequence of the assumption is that X and C satisfy a
joint central limit theorem (CLT):

(2.2) T1/2 (% /0 " X(s)ds — o @ - )\—1) = N(0, H)

as T — oo, where H = GGt. (In this case note that GN(0, ) has the same distri-
bution as N(0,H) where I is the identity matrix. In one dimension, oN(0,1) has
the same distribution as N(0,02).) Thus, assumption (2.1) (ii) is best viewed as a
strengthened version of the ordinary CLT. Because of the fact that (2.1) (ii) deals
with weak convergence of stochastic processes (as opposed to ordinary random vari-
ables), it is typically termed a functional central limit theorem (FCLT) hypothesis.
See Billingsley (1968) for further discussion of FCLTs.

It turns out that a great variety of stochastic processes exhibit FCLT behavior.
For example, suppose that C(-) has a positive derivative so that it can be represented
as

¢
(2.3) C(t) =/ x(s)ds, where x(t)>0 as. for ¢>0.
0

Under (2.3), x(s) is the rate at which computer time is consumed at simulated time s.
If the process ((X(t),x(t)) : t > 0) is regenerative and satisfies certain moment condi-
tions, then (2.1) (ii) is known to be valid (see Glynn and Whitt (1987)). Regenerative
structure is present in many of the stochastic models that are commonly simulated;
see, for example, Glynn (1982). In addition, (2.1) (ii) holds if ((X(¢),x(t)) : ¢t > 0)
Is a martingale process or mixing process satisfying certain regularity hypotheses (see
Ethier and Kurtz (1986)) or if it is an associated sequence (see Newman and Wright
(1981)). Also, (2.1) (ii) is known to be valid for a large class of Markov processes (see
Maigret (1978) and Nummelin (1984)). Because of the broad validity of (2.1) (ii), we
view this condition as a mild regularity hypothesis that is satisfied by virtually all
“real world” simulations.
One consequence of the joint CLT (2.2) is that

(2.4) %/TX(s)ds = q,
0
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as T — oo, where 02 = H;; (i =1,2). In order to carry out certain arguments, we
will need to assume that the expectation operator can be passed through (3.1):

1 (T ’
TE T/o X(s)ds—a) — 02,

TE (@ - )\—1)2 — o2

(2.5) %C(T) = A1,

as T — 0o. The law of large numbers (2.4) states that the process X “settles down,”
on average, to the constant «; the parameter « is known as the steady-state mean of
X. The goal of the steady-state simulation algorithms to be described in this paper
is the efficient estimation of a. Also, (2.5) states that A—1 may be interpreted as
the long-run rate at which computer time is expended per unit of simulated time.
Equivalently, \ is the long-run rate at which simulated time is generated per unit of
computer time.

Two different (reasonable) strategies for estimating o can be employed by the
simulation analyst. The first possibility is to generate a fixed amount of simulated
time on each of the p processors, and to obtain an estimator for o by averaging
the resulting observations over each of the p processors. This class of estimators,
together with related initial transient deletion strategies, is discussed in §3. The
second approach is to fix the amount of computer time available on each of the p
processors, and to obtain an estimator for a by averaging over the random amount of
simulated time generated on each of the p processors within the computational budget
constraint. For ¢ > 0, let Ti(c) = sup{t > 0 : Ci(t) < c} be the inverse process to
Ci(-). The random variable (r.v.) Ti(c) can be interpreted as the amount of simulated
time that is generated on processor i in the first ¢ units of computer time; we refer to
T;i(c) as the cumulative simulated time process associated with processor i. Hence, the
second estimator involves averaging the process X; over the random interval [0, T3(c)]
and all p processors. Section 4 is devoted to studying this class of estimators when no
initial transient deletion is applied, whereas §5 considers these estimators when initial
transient deletion is applied.

(3.2)

23

as ' — oo. A variety of stochastic processes obey (3.2), including regenerative pro-
cesses (Smith (1955)), mixing and martingale process sequences (Ethier and Kurtz
(1986)), and associated sequences (Newman and Wright (1981)) under appropriate mo-
ment conditions. Condition (3.2) is equivalent to asserting that {T(7-! fOTX (s)ds —
a)? : T > to} and {T(C(T)/T — A=1)2 : T > to} are uniformly integrable for some
(finite) to (see Chung (1974, p. 97)).

We will also need an assumption that controls the extent to which the initial
transient biases the observations of the simulation. To be precise, let b(t) = EX (t)—a.
We assume that

(3.3) /Ooo |b(s)|ds < o0.

Assumption (3.2) holds whenever EX (t) — a exponentially fast (i.e., there exist con-
stants A, A > 0 such that |b(t)] < Ae—*t). This exponential rate of convergence is
typical of most “real world” simulations. For example, finite-state irreducible aperi-
odic discrete-time Markov chains and finite-state irreducible continuous-time Markov
chains both exhibit exponential convergence to their steady-state values (see Karlin
and Taylor (1975)). Also, Nummelin and Tuominen (1982) prove exponential conver-
gence rate results in a general state space Markov chain setting.

Our first theorem considers the case in which no initial bias deletion is performed,
so that B(t) = 0. Let b= [, b(s)ds.

THEOREM 1. Assume (2.1),(3.2), and (3.3) are in force and that 3(t) = 0. Then,

(i) if p/t(p) — oo, t(p) — o0, and b # 0, then /pt(p) |as(p) — o = o as

p— o0,

(i) ifp/t(p) = m (0 < m < ), then \/pt(p) (as(p) — a) = o1 N(0,1) + by/m
as p — 0o,

(i) if p/t(p) — 0, then /pt(p) (as(p) — @) = 01N(0,1) as p — oco.

The proof of this result appears in Glynn (1987). Note that if no truncation is
used, as(1,t) =¢t-1 fcf X1(s)ds. Then, (2.2) asserts that

3. Steady-state estimation using simulated time. Suppose that the pro-
cess X is simulated up to (deterministic) time ¢ on each of the p available processors.
If the first B(t) simulated time units are deleted from the initial segment of each copy
X;, we obtain the estimator

1 1 ¢ X\
as(p7t)_52't__m 506) Z(S) S

=1

(the subscript s stands for simulated time).
In our limit theorems, we shall be interested in determining how large the time

horizon ¢ needs to be for the parallel estimation algorithm to work efficiently. We shall

therefore view t as a deterministic function ¢ = ¢(p) of the number of processors. Then

B(t) = B(t(p)) is also a deterministic function of p. The limit theorems will include

growth conditions on ¢(p) and B(¢(p)). To simplify the notation, we shall write a, (»)

and f,(p) as shorthand for as(p,t(p)) and B(t(p)), respectively. 7
A consequence of (2.2) (and hence (2.1)) is that

(3.4) as(1,t) 2 %N(O, 1)

> ;
for large t (= denotes “approximately equal in distribution”). On the other hand,
Theorem 1 (iii) states that

(3.5) o (9, £(p)) X —==N(0,1)

v/ pt(p)

under the conditions stated there. Comparing (3.5) to (3.4), we see that (3.5) implies
a p-fold speedup in the algorithm over that achieved with a single processor, i.e.,

1 /T ’
T = X (s)ds — a) = 0?N(0,1)2,
(3.1) <T /"

T (Q(I_’;’fl - ,\—1)2 = 02N(0,1)2,
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as(1,pt(p)) & as(p, t(p)).

Of course, a p-fold speedup is the best possible rate increase that we can expect in a
parallel processing environment. Hence, Theorem 1 can be interpreted as stating that
the time horizon ¢t = #(p) to be simulated on each of the p processors should satisfy
t >> p, in order that the parallel algorithm achieve optimal efficiency.

Our next theorem considers the situation in which initial transient deletion is
implemented. We note that Gs(p)/t(p) is the fraction of the total simulated time that
is deleted. The strategies that are considered here delete an asymptotically negligible
fraction of the total observation set that is simulated.

THEOREM 2. Assume (2.1) and (3.2) are in force and that b(t) — O ezponentially
fast. Suppose B:(p)/t(p) — 0 asp — oco. If

(i) p/t(p) — oo and Bs(p)/logp — oo, or

(ii) p/t(p) » m (0 <m < 00) and Bs(p) — oo, or

(iii) p/t(p) =0
as p — 00, then

Vpt(p)(as(p) — a) = o1N(0,1)

as p — 00.

For a proof, see Glynn and Heidelberger (1991b). Theorem 2 shows that with
a modest amount of initial transient deletion, one can reduce the length of the time
horizon significantly without affecting the p-fold speedup factor. In particular, if t(p) =
p" (r > 0), the p-fold speedup is retained so long as Bs(p) = p¢ (0 < &€ < r). Thus,
when initial transient deletion is suitably implemented, p-fold increases in efficiency
ensue from time horizons that grow essentially arbitrarily slowly in p. A result similar
to Theorem 2 can also be derived when the bias function b(-) decays polynomially
fast (i.e., there exists A,r > 0, such that |b(¢)] < At~ for t > 0); see Glynn and
Heidelberger (1991b) for further details.

In our next theorem, we consider the case in which the fraction of the total simula-
tion time that is deleted is fixed, so that the fraction deleted is no longer negligible. As
might be expected, this rule, although reasonable from an implementation viewpoint,
has a cost in terms of (greater) asymptotic variability.

THEOREM 3. Assume (2.1) and (3.2) are in force and that b(t) — 0 ezponentially

fast. If Bs(p) = Bt(p) (0 < B < 1) and t(p) =p" (r > 0), then

V pt(p)(as(p) - a) = (1 - ﬂ)—-(1/2)01N(0, 1)

as p — co.

For a proof, see Glynn and Heidelberger (1991b). Theorem 3, like Theorem 2,
asserts that the time horizon over which we achieve a p-fold increase in efficiency is
broadened considerably by using initial bias deletion. However, because of the fact
that one deletes a fixed fraction of the total observation set, one pays a cost in the
sense that the asymptotic variance is inflated by a factor of (1 — §)~1. On the other
hand, for 8 = 0.1, the increase in the variance is only about 11 percent. Thus, the
statistical cost incurred in using such a procedure is quite modest.

We conclude this section with a discussion of the computational cost associated
with using estimators based on simulated time. In particular, assuming that the ma-
chine is (temporarily) dedicated to the estimation of a, the question of the algorithm’s

completion time is of significant importance. Recalling that C;(¢) is the time at which -
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the ith processor completes the simulation of X over [0,], the completion time for a
simulated time horizon of ¢ is given by

C(p,t) = Joax Ci(t).

An additional relevant performance characteristic is the total idle time cumulated over
all p processors, assuming that each processor must remain idle until all p processors
have completed their assigned tasks. The idle time quantity is defined as

p

I(p,t) = Y [C(p, 1) - Ci(t)].

i=1

Set Cs(p) = C(p,t(p)) and I;(p) = I(p,t(p)). Our final theorem of this section
examines the behavior of Cs(p) and I(p) when the number of processors p is large.
We will need one further assumption. Note that one consequence of (2.2) is that if
o2 > 0, then

(3.6) Fy(z) — ()

ast — oo, where Fy(z) = P{t~(/2(C(t)—A~1t) /o2 < 2} and ®(z) = P{N(0,1) < z}.
We wish to strengthen (3.6) to

3.7 sup  |Fi(z) - &(z)| = 0(t~(/2)

—oco<z <o
as t — oo. This condition is known, in the probability literature, as a Berry-Esséen
condition. The convergence result (3.7) is usually valid for stochastic processes satisfy-
ing (2.1). For example, regenerative processes (Bolthausen (1980)) and general state
space Markov chains (Bolthausen (1982)) are known to satisfy (3.7) under suitable
regularity hypotheses.

THEOREM 4. Assume that (2.1) is in force with 03 > 0 and that (3.2) and (3.7)
hold. If t(p)/p? — oo, then
(i)
Cs(p) — A't(p)

o2+/2t(p) logp

Is(p)
a2py/2t(p) logp

=1,

(i)

as p — 00.
According to Theorem 4, if ¢(p) >> p, then we may approximate Cs(p) and Is(p)
as

D
Cs(p) = A~1t(p) + 024/2t(p) log p,

(3.8) .
Is(p) = cap/2t(p) logp.

Since A~! and o3 are typically unknown, the magnitude of the completion time
Cs(p) is, to some extent, a priori unpredictable. This is clearly undesirable. Fur-
thermore, (3.8) shows that the total idle time can potentially be quite large. As a
consequence, the machine may be significantly underutilized with estimators of the
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type considered in this section (assuming that processors are not freed until time
Cs(p)). For these reasons, the remainder of this paper explores estimators in which
the completion time is fixed.

4. Steady-state estimation using computer time: No initial transient
deletion. In this section, we suppose that each processor simulates X for a fixed
(deterministic) amount of computer time c. At the completion time c, processor i
will have generated X; up to time T;(c). Given that no initial transient deletion is
employed, two different estimators immediately suggest themselves:

.0 1 zp: 1 Ti(c)
ai(p,c) = — _— Xi(s)ds,
W= g [ x

Ti C
o Xi(s)ds

az(p,c) =

Note that az(p, c) bears a strong resemblance to the usual ratio estimator for steady-
state parameters in regenerative simulations (identify T;(c) as the length of the ith
regenerative cycle).

As in §3, we shall be interested in limit theorems that describe how large the
(computer) time horizon ¢ should be, relative to the number of processors, in order that
a p-fold speedup ensues. We shall therefore take ¢ as a deterministic function ¢ = ¢(p)
of the number of processors p. The limit theorems will then provide appropriate growth
conditions on ¢(p). As a shorthand notation, we will write a;(p) = ai(p, ¢(p)) (i = 1, 2).

Our first task is to understand the behavior of the sample means obtained from
the individual processors.

THEOREM 5. Assume that (2.1) and (2.3) hold. Then,

(i) Zc() = GB(-) ase | 0 in D[0, ), where

GGt = f{ and Iqu = )\th glz = f{21 = —-/\2H12, I;[QQ = )\3H22.

(if)

~

T(c
c1/2< 0()X(s)ds_

7(c)
T(C) a, —“E‘——' ) :>N(O,H)

as ¢ — oo, where Hu = A—1Hq, Hai = —AH12, and Hoo = A3Has.
As in §3, we shall require that the cumulative processes defined on the time scale

of computer time be appropriately uniformly integrable. Specifically, we shall need to
assume that

() Jo

T(c) 2
c'E <‘/0 [X(s) — a}ds) — Ao?,

2
cFE <T_(C_) — )\) — )\3(7%’
[

1 [TE 2
cE X(s)ds—a | — A1l

(4.1)
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as ¢ — oo (recall that Hy; = 02).

Theorem 5 asserts that the central limit behavior of X is preserved, in a qualitative
sense, when the time scale is changed from that of simulated time to computer time.
Since initial transient bias plays a critical role in the study of the estimators considered
in this paper, it is incumbent upon us to also consider the extent to which the bias
characteristics of X are altered by a change in the time scale.

We start by noting that if EfOT(c) | X (s)|ds < oo and if (2.3) holds where x(t) > 0
almost surely for ¢ > 0, a change-of-variables formula can be applied to obtain

T(c)

; X(s)ds = /OC Y(s)ds as.,

where Y (s) = X(T(s))/x(T(s)). The process Y = (Y(t) : t > 0) is, in some sense,
the original process X with its time scale transformed from simulated time to com-
puter time. It turns out that the transformation that sends X into Y preserves any
regenerative structure that may be present on the time scale of simulated time.

PROPOSITION 1. Assume that (2.3) holds. If (X (t),x(t)) : t > 0) is regenerative
with respect to the random times (1, : n > 1), then (Y (¢) : t > 0) is regenerative with
respect to the sequence (1 : n > 1), where 1, = C(Tn).

As indicated earlier in this paper, regenerative structure is to be found in many
of the stochastic processes X that are simulated in practice. Given that X is regen-
erative, it is reasonable to further assume that the pair (X,x) is also regenerative.
Thus, we view regenerative hypotheses on the pair (X, x) as a fairly mild restriction
on the class of processes to be analyzed here. It is worth noting that while the proof
techniques that appear in the remainder of this paper demand, to some extent, re-
generative structure, our estimation strategies will be completely independent of the
nature of the regenerations. As a consequence, our estimators will not require explicit
identification of the regeneration points during the course of the simulation. The re-
generative hypotheses will appear solely as mathematical regularity conditions and
not as a vital component of the methodology itself.

The following hypotheses help to simplify certain proofs; they are not necessary
to the development, however, and can be relaxed significantly, at the cost of greater
mathematical complexity. Because we do not require that the simulation be started
in the regeneration state, we need to make a distinction between the first (atypical)
regeneration time 71 and the subsequent regeneration times. Let §j = n2 — m1 and
T=7T2 —T1.

(4.2) There exists a constant 0 < z; < co such that x(s) > z1 a.s.,
E[m] < 00, E{TQ} < o0, E[nsz] < 00,
(4.3) E [/ lx(s)]ds} <oo and FE [ng/ ]X(s)]ds] < 00,
0 0

Both 71 and 7 have probability density functions.

Assumption (4.2) merely states that there is a minimum rate at which computer time
is consumed. ,
We are now ready to describe the behavior of the bias of the estimators ou(p)

and aa(p).
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THEOREM 6. Assume that (2.1), (2.3), (4.1), (4.2), and (4.3) hold. If, in addi-
tion, ¢(p) — 00 as p — oo, then

b; 1
Eoi(p) =a+ @ +o0 <-C—(—I-J—)—)

as p — oo (i = 1,2), where by = a + Hiz, by = a, and

a=F [/OTI(X(S) -—a)ds} /A—E [/:/:X(Tl +u)du(X (11 + ) —a)ds] /E7.

Roughly speaking, the bias in ai(p) is due to two factors. First, the estimator
a1(p) is a ratio estimator, i.e., it is expressible as the ratio of two r.v.’s. The nonlin-
earity inherent in ratio estimators gives rise to the term Hiz/c(p). In addition, the

expectation of the centered numerator r.v. fOT © [X (s) —a]ds is nonzero, and this gives
rise to the additional bias term a/c(p). As for the bias of az2(p), the ratio estimator
bias is reduced by a factor of p because of the p-fold increase in the sample size of the
numerator and denominator r.v.’s that appear in as(p).

Suppose that x(s) = A~! almost surely. In this case, computer time is propor-
tional to simulated time, i.e., C(T) = T/A. Thus, C(T')/T is deterministic, in which
case 02 = 0 and Hyz = 0. Therefore, by = by and the additional bias due to the
randomness in C(T") disappears.

The following theorem provides the analogue of Theorem 1 in the current setting,
in which estimation occurs on the time scale of computer time rather than simulated
time.

THEOREM 7. Under the same hypotheses as in Theorem 6, the following results
hold:

(i) If p/c(p) — o0, c(p) — oo, and b; # 0, then /pc(p)|ai(p) — o = oo as
p— oo (i=1,2).

(i) Ifp/c(p) = m (0 < m < o0), then 1/pe(p)(ai(p) — a) = A=(1/2aN(0,1) +
b;m(t/2) asp — oo (i = 1,2).

(iii) If p/c(p) — 0 as p — oo, then /pc(p)(ai(p) — @) = A~ /DaN(0,1) as
p—oo(i=1,2).

According to Theorem 7, we typically need to choose ¢(p) >> p when no initial
bias deletion is used in order to achieve the desired p-fold increase in efficiency.

5. Steady-state estimation using computer time: Initial transient dele-
tion. This section is devoted to analyzing modified versions of the estimators intro-
duced in §4. Specifically, we shall modify the two estimators so that an initial segment
is deleted from the observations generated by each processor. To precisely define the
modified estimators, we let k(c) < ¢ be a deterministic deletion point specified on the
time scale of computer time. In other words, all observations generated in the first
#(c) units of computer time are discarded. Of course, this just amounts to throwing
away the initial segment (X;(¢) : 0 <t < 7;(c)), where v;(c) = T;(k(c)). The modified
versions of the two estimators studied in §4 are then defined as

G =23 et [ Koy
ag(p,Cc) = — —_— i\s)as,
P Ti(c) = 7i(e) Jyi(e)

T-L(C)
i1 (o Xi(s)ds

=1Ti(e) = 7i(e)]

aa(p,c) =
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Once again, to simplify notation, we set o;(p) = a;(p, c(p)) (¢ = 3,4) and kc(p) =
k(c(p)). We note that the assumption k.(p)/c(p) — 0 as p — oo is just a statement
that the fraction of computer time devoted to observations that will eventually be
deleted tends to zero in the limit.

Just as Theorem 2 required exponentially decreasing bias (on the simulated time
scale), we will need some additional hypotheses to generate exponentially decreasing
bias on the computer time scale.

(5.1) Eexptne < oo for some t > 0,

(5.2) X is a bounded process, i.e., sup{|X (¢, w)|: ¢ >0, weQ}éHXH < oo,

Note that (5.1) is true if Fexptare < oo for some t2 > 0 and x(s) < M < oo
almost surely for all s > 0 (since 772 < My in this case). Thus if X is a bounded
process, exponential tail behavior of 72 is inherited from that of 7.

THEOREM 8. Suppose that k.(p)/c(p) — 0 as p — oo. If, in addition to the
hypotheses of Theorem 6, (5.1) and (5.2) hold, then

(i) if p/c(p) — o0, c(p) — o0, and Hiz # 0, then \/pc(p)las(p) — o = oo as
P — 00

(i) if p/e(p) = m (0 <m < 00), then v/pe(p)(as(p) — a) = A~1/2AeN(0,1) +
Hiom(1/2) a5 p — oo

(iii) if p/c(p) — 0, then /pc(p)(as(p) — a) = A=(1/2aN(0,1) as p — oo.

Theorem 8 shows that even in the presence of initial bias deletion, the estimator
a3(p) does not effectively achieve a p-fold increase in efficiency unless the computer
time ¢(p) assigned to each processor is large (i.e., ¢(p) >> p). Thus, the estimator
a3(p) has essentially the same behavior as ai(p) (see Theorem 7). In other words,
a3(p) does not benefit from the initial bias deletion present in the estimator. The basic
problem is that deleting the initial segment from each processor’s observations does
not deal with the bias introduced by the nonlinearity of the ratio estimator obtained
from each processor. This is reflected in Theorem 8 through the fact that the bias
term that appears in part (ii) depends only on Hi2 and not also on the constant a
that appears in Theorem 6.

Our next theorem describes the behavior of a4(p).

THEOREM 9. Suppose that k.(p)/c(p) — 0 as p — oo and that the same hypothe-
ses as in Theorem 8 hold. If

(i) p/e(p) — oo and ke(p)/logp — oo, or

(ii) p/e(p) = m (0 <m < o0) and ke(p) — oo, or

(iii) p/c(p) — 0,
as p — 0o, then

Vpe(p)(eu(p) — ) = A=0/2aN(0,1)

as p — 00.

According to Theorem 9, initial bias deletion has a significant positive impact on
the estimator a4(p). With a modest amount of initial bias deletion from the obser-
vations associated with each processor, a p-fold speedup in efficiency can be obtained
with computer time horizons that are significantly shorter than those associated with
no initial transient deletion. Since the estimator a4(p) incurs none of the comple-
tion time and idle time costs associated with the “simulated time” estimators of §3,
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this result suggests that the estimator a4(p) is preferable to all the other estimators
considered in this paper.

Our final theorem describes the behavior of as(p) when k(c) = ke for 0 < £ < 1,
¢ > 0, i.e., when a proportion x of all the observations are deleted before forming the
estimator a4(p).

THEOREM 10. Assume the same hypotheses as in Theorem 6. If kc(p) =
ke(p) (0 <k < 1) and c(p) =p~ (r < 0), then

Vpelp)(ea(p) — @) = (1 — K)=Y/2A-1/20N (0, 1)

as p — 00.
The proof of Theorem 10 is similar to that of Theorem 9 and is therefore omit-
ted. As in Theorem 3, deleting a positive fraction of all the observations leads to an
asymptotic increase in the variability of the estimator of (1 — k)~1. Of course, as
pointed out in §3, this increase is quite modest if we choose k small (say x = 0.1).

6. Proofs.
Proof of Theorem 4. Let

Ba)=1-%(z) and Wi(p) = (Cilt(p)) — \"14(p))/t(p) /D02,

Note that the independence of the W;(p)’s yields

P{Cs(p) < z03+/2t(p) log p + A—lt(p)}
= P{Wi(p) < o+/2logp, 1 <i <p}
= Fy(p)(z+/2logp)?
= (1~ 3(a+/2108p) + 0(1/VE®)))

The quantity ®(z+/2log p) may be estimated by using Lemma 2 of Feller (1968, p. 179).
Noting that O(1/+1/t(p)) = o(1/p), it is then straightforward to show that

0, z<1,
P{Cs(p) < 202/24(p) log p + A-1t(p)} — { 0 z<l
proving part (i). For part (ii), note that it is sufficient to prove that

p

> Wilp)/py/logp = 0

i=1

as p — 0o. Fix € > 0 and use Markov’s inequality to obtain

g E[Wi(p)|
p '— Wi(p l >ey/logp p < ——=.
{ p ; 2 e+/logp
Assumption (3.2) states that {W(p)2 : p > po} is uniformly integrable for some (finite)
Po, from which one may conclude that E|Wi(p)| is bounded in p. Hence, the right-hand
side converges to zero as p — oo, proving (ii).
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Proof of Theorem 5. We first note that (2.1) implies that
Ce= Xle

as € | 0, where C.(t) = £2C(t/e2) and e(t) = t. Since x is positive, it is evident that
¢ () is continuous and satisfies Cz* o C. = e. We may then apply Theorem 3.3 of
Whitt (1980) to conclude that C;' = Xe as ¢ | 0. But C:' = Tk, where Te(c) =
€2T(c/e?). Since composition is continuous as a mapping on the space of continuous
functions (see Billingsley (1968, §17)), we obtain Z. o T, = GB(\e) as ¢ | 0. As a
consequence, the continuous mapping principle implies that h(Z. o T;) = h(GB()e)),
where h(z,y) = (z, Ay); this proves part (i).
For part (ii), we let X(s) = X(s) — . We note that part (i) implies that

(o) -
c—(1/2) ( X(s)ds, T(c) — )\c) = N(0,H)
0

as ¢ — oo. Therefore, the continuous mapping principle shows that

T(c T(c

: X(s)ds — c(1/2) ) X (s)ds/T(c)

0 0

(A ) o [ % (sds = 0
= — c s)ds =
e .

c

A—1e—(1/2)

as ¢ — 00. The proof of part (ii) is complete, if we note that

c—(1/2) | \-1
4]

as ¢ — 00, and apply a converging-together argument.
Proof of Proposition 1. We first note that o(Y'(¢) : t <nn) C o((X(t),x(t)) : t <
Tn), SO it suffices to show that

(6.1) P{Y (ngn + JeAlX(t), x(t) it <1} =P{Y(m + )eA}

" X(s)ds, T(c) — )\c) = N(0,H)

for arbitrary (measurable) sets A. Now, Y (n, +t) = V(T(9n + t)), where V(¢)
X(#)/x(®), and T(nn +t) = T(nn) + ATn(t) = 7n + AT (t), where AT, (t) = T(nn
t) — T'(nn). We now observe that AT,(-) is the inverse to the process ACy(t)
C(tn +t) — C(s), in the sense that AC, o AT, = e. As a consequence, AT}, can
be represented as a function g(V,), where Vo (t) = (V(7n +t), x(mn +t)). Hence,
Y (nn +t) = k(Va(t)), where k(%) = z1((g 0 )(t)) and & = (z1,z2). Thus, Y (1 + )
is a functional of the “shifted path” V,, and (7.1) is trivially satisfied.

Proof of Theorem 6. The proof for a1(p) can be found in Glynn (1989b) (the

assumptions 4.3 are heavily used there). For part (ii), we let Si(c) = OTi(c) [Xi(s) —

alds. Then,
TR Si(e)
w2b) == S Telo)

+

We note that for ¢ > 0,
(6.2)

D) o e 1
P{l; pe(p) /\I> }SPC(P)52

Ti(e) =de®) | _ (1 |
NED) }—O<p6(p)) 0
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as p — 0o, where the uniform integrability condition (4.1) was used to guarantee that
the variance term was bounded in p. Hence, }7_, T;(c(p))/pc(p) = X as p — oo (this

result will be used in Theorem 7). Expand pc(p)/ -5, Ti(c(p)) in a first-order Taylor

expansion about A—1, to obtain

pep) ., _ 1 Ti(e(p)) _
©3 L) P (Z; pel) ")’

where £(p) lies between A and Y +_, T;(c(p))/pc(p).
Since x(s) is bounded from below, there exists a finite constant M such that
[1/€(p)?| < M. By using the Taylor expansion and taking expectations we have

Bl(oa(p) - {Z S;;jég)}
o Sl - (Tl ~ )
iclp Ti(ce(p Ae(p
[; pe(p) ; £(p)?pe(p) ]
To handle the first term on the right-hand side of (6.4), we use Glynn (1989b) to show
that
1
(65) )\Pc(p L; Sulele)) ] ( ) (@)
as p — oo.

To deal with the second term on the right-hand side of (6.4), we bound it by

pc(p)

The second term in (6.6) is dominated by

oME [Z (Ti(e(p)) - Ac(p))} :

2
— Si(c(p)
(6.6) 2E L; ] +2E ) ne)

c Ac
Z;( i(e(p) — (p))]

pa pe(p)
(6.7) 2
_ f(f)z’ (E[Ti(c(p) — Ae(®))])? +

using (4.1)’s uniform integrability. The first term in (6.5) can be handled similarly,
yielding an estimate of O(1/¢(p)). Combining (6.4) through (6.6) yields the result for

a2 (p).
Proof of Theorem 7. We first consider ai(p). We note that Theorem 6 implies

that
vpe(p)(aa(p) — @)

2M2
(p) V&I’(Tl (C(p)) - )\c(p))
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where
j‘T i(c(p)) X (S ds
Vi®) = V)7 o) = Bautr)

By condition (4.1), {Vi(p)2 : p > po} is umformly integrable for some (finite) po.
We can therefore apply the Lindeberg-Feller theorem (see Chung (1974, p. 205)) to
conclude that

p
p=1/2 3 "Vi(p) = A-(/2gN(0,1)
i=1

as p — o0; this proves all three implications for the estimator a;(p).
The second estimator is handled similarly. We note that

Voe(p)(ez2(p) — a) = % [P w2 Zsz(P) Vo ( ) 1(@}
where S;(p) = c(p)~(/2[S;(c(p)) — ESi(c(p))]. From (7.2), it is evident that

c(p)/ Y Ti(c(p)) = A= as p — oo.

=1

A uniform integrability argument similar to that for «1(p) then shows that

P
p~ W2y " 5i(p) = M/ N(0,1).

i=1

To complete the proof, we refer to Glynn (1989b), where it is shown that ES;(c(p)) =
Abz/c(p) + o(1/c(p)).

B

Proof of Theorem 8. The argument largely mimics the proof of Theorem 7. The

first step is to obtain an expression for the bias of as(p). We claim that the bias takes
the form

(6.8) Eac(p)—a—l—{{(—%—k (éo))

as p — oo. A careful study of Glynn (1989b) shows that the proof there needs to be
modified in two respects. First, one needs to argue that

T(c) 2
c1 (/( ) [X(s) —a]ds) tc>cp

is uniformly integrable for some ¢o < 0o. This follows from the observation that

2

() T(x(c)) T(c) 2
L RECRE ds§2( /O [X(s)—-a}ds) +2( /0 [X(s)—a}ds) ;

each of the processes on the right-hand side is uniformly integrable as a result of (4.1)
and hence the left-hand side is umformly integrable (Chung (1974, p. 100)). Second,
we note that

=p~(1/2) Z Vi(p) + +/pe(p)(Eou (p) — )
p T(c) c
= p—(1/2) I/; bl E X(s) —alds =
P ; ®)+ V < ) G ( (p)) ~(e) () el x(©)

EY (s)ds,
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where Y(c) = [X (T(c)) — a/x(T(c)). Since || X|| < oo and x is bounded away from

zero, it follows that Y is a bounded process. Hence, the results of Nummelin and

Tuominen (1982) apply, showing that EY (t) — 0 exponentially fast. It is then evident
that .
/ BV (s)ds = o(1)
x(c)
as ¢ — 00. As a consequence, the term that contributes the quantity a/c(p) to the
asymptotic bias of a1 (p) is o(1/c(p)) in the current setting. This yields (6.7).

The proof of Theorem 8 is completed in much the same way as Theorem 7.
The uniform integrability established above allows us to apply the Lindeberg—Feller
theorem once again, finishing the proof.

Proof of Theorem 9. The analogue of (6.8) for the estimator au(p) is

Eau(p) = a+o(1/c(p)),

and is established in basically the same way. The result of the proof goes through as
in Theorem 8.

7. Summary. This paper has investigated theoretical properties of an attractive
method for using parallel processors in discrete event simulations: running indepen-
dent replications, in parallel, on multiple processors and averaging the results at the
end of the runs. In previous papers, we considered the problem of estimating tran-
sient quantities, while in this paper we consider the steady-state estimation procedure.
While the method of replications with initial transient deletion is conceptually simple
to apply, some care needs to be taken in order to obtain estimators with the proper
convergence behavior. Specifically, the growth rates for the number of processors
(replications), the length of the replications, and the length of the deletion period
need to be controlled in order to produce valid confidence intervals for steady-state
parameters. In the parallel processing setting, a sampling plan in which the replication
lengths are given by limits on computer time is particularly attractive since the com-
pletion time of the experiment is deterministic (assuming the machine is dedicated to
running the simulation experiment). However, in this case, the leading term in the bias
expansion of the straightforward estimator without deletion, a1 (p), is (a + Hi2)/c{p)
where ¢(p) is the computer time per replication, a is due to initialization bias, and
His is due to the fact that the denominator in the ratio estimate is random. Delet-
ing an appropriate portion of each replication removes the initialization bias a/c(p),
but does not remove the ratio bias Hiz/c(p). Thus, when this estimator is used and
the replication length is determined by computer time, deletion is essentially useless.
On the other hand, the bias expansion of a new estimator, as(p), has leading term
a/c(p), which is removed entirely by appropriate deletion. Therefore, in practice, we
recommend use of the new estimator with deletion, a4(p).

Experimental results concerning the performance of these estimators in simu-
lations of simple queueing network models are reported in Glynn and Heidelberger
(1992). Those experimental results confirm the theoretical results presented here and
reinforce our recommendation to use a4(p) rather than a3(p). Our experiments showed
that a4(p) outperforms a3(p), in terms of exhibiting less bias and truer confidence in-
terval coverage, when the number of processors is large and the amount of time per
processor is relatively small.

While we have described the results in terms of a computer time constraint on
the replication lengths, they remain valid for essentially any other measure of replica-
tion length. Examples include computing charges (which may involve costs for CPU,
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memory, and I/O use), real time (i.e., wall-clock time, which may differ in multipro-
grammed environments), the total number of events processed, and the total number
of events of a certain type processed (such as departures from a network). In addi-
tion, the results are applicable to simulation experiments on a single processor if the
replication lengths are determined in the above fashion.
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AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD
WITHOUT MULTIPOLES*

CHRISTOPHER R. ANDERSONT

Abstract. An implementation is presented of the fast multipole method, which uses approxima-
tions based on Poisson’s formula. Details for the implementation in both two and three dimensions
are given. Also discussed is how the multigrid aspect of the fast multipole method can be exploited
to yield efficient programming procedures. The issue of the selection of an appropriate refinement
level for the method is addressed. Computational results are given that show the importance of good
level selection. An efficient technique that can be used to determine an optimal level to choose for
the method is presented.

Key words. Poisson equation, fast summation, point sources
AMS(MOS) subject classifications. 65C99, 35J05, 34B27

1. Introduction. The purpose of this paper is three-fold. First we will present a
method for computing N-body interactions that is similar to the fast multipole method
(FMM) as developed by Greengard and Rokhlin [5], [6] and Van Dommelen and
Rundensteiner [15], but one that does not use complex power series in two dimensions
or spherical harmonic expansions in three dimensions. Qur procedure will be based
on the use of Poisson’s formula for representing solutions of Laplace’s equation. While
the accuracy and operation count of the resulting method is almost identical to the
fast multipole method, the method does offer some advantages. One advantage is that
the component operations of the multipole method, such as shifting and combining
multipoles, are very easy to formulate for approximations based on Poisson’s formula.
Another advantage is that the difference between the two- and three-dimensional
methods is very slight, and so programming a three-dimensional method is relatively
straightforward once a two-dimensional method has been programmed. The second
aspect this paper discusses is how multigrid programming strategy can be used to
facilitate the programming of our method and others like it (such as the original
fast multipole method). Third, we wish to discuss the issue of parameter selection
when using these “fast” methods. Essentially, the computational efficiency of these
methods depends critically upon the choice of a level of refinement of physical space.
A wrong choice can lead to a very inefficient algorithm. We shall present a procedure
for obtaining an optimal choice of the refinement level.

The problem of calculating N-body interactions occurs in a wide variety of com-
putational problems—discrete vortex calculations, galaxy simulations, plasma sim-
ulations, etc. For each of these computational problems the calculation takes on a
slightly different form, but each shares the common feature that the interaction is
determined via solutions of Laplace’s equation. So, rather than address each different
application, we will discuss the following N-body model problem: Given N charged
particles at locations z; with strengths x; the goal is to calculate the potential ¢(z;),

* Received by the editors July 23, 1990; accepted for publication (in revised form) May 16, 1991.

t Department of Mathematics, University of California, Los Angeles, California, 90024. This
research was supported by Office of Naval Research contract N00014-86-K-0691, National Science
Foundation grant DM586-57663, and IBM fellowship D880908.

923



