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Consider the method of independent replications with initial transient deletion for generating confidence intervals for 'steady-state' 
quantities. To produce intervals with good convergence characteristics, the relative growth rates of the number of replications, the 
length of each replication, and the deletion period must be controlled. Critical rates for these parameters are determined. The 
applicability of these results to simultaneously running multiple replications on a highly parallel computer is discussed. 
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1. Introduction 
One of the major practical problems in steady- 

state simulation output analysis concerns the 
question of how to deal with 'initial transient' 
effects. The term 'initial transient' refers to that 
initial segment of the simulation that is biased 
because of initialization of the simulation with an 
initial condition that is atypical of the steady-state. 
For example, simulations of open queueing net- 
works are often initialized by starting the simula- 
tion with all the stations empty. By permitting the 
simulation to run for a sufficiently long period of 
time, the queue-lengths in the network then build 
up to their respective steady-state values. Clearly, 
the observations collected as the system moves 
towards its steady-state are biased for the pur- 
poses of steady-state estimation. This biasing 
property of the 'initial transient' segment of the 
simulation can lead to significant degradation in 
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the quality of steady-state estimators and confi- 
dence intervals. As a consequence, considerable 
research effort has been devoted to development 
of procedures for elimination of the initial tran- 
sient segment; see, for example, Gafarian et al. 
(1978), Heidelberger and Welch (1983), Kelton 
(1980), Kelton and Law (1980), Schruben (1981, 
1982), Schruben, Singh and Tierney (1983), and 
Wilson and Pritsker (1978). 

In this paper, we provide some theoretical in- 
sight into the problem of initial transient deletion 
in the multiple replicate steady-state simulation 
setting. In particular, we show that without any 
initial transient deletion, significant convergence 
problems can arise if the length of each replication 
is not considerably larger than the total number of 
replications. On the other hand, if we delete an 
(asymptotically) negligible initial segment of each 
replication, these convergence difficulties disap- 
pear. One can then apply multiple replication 
procedures in which the total number of replicates 
is significantly larger than the length of each repli- 
cation. Since variance estimation is advanta- 
geously affected through the presence of a large 
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number of independent replications, this has im- 
portant theoretical ramifications for steady-state 
simulation output analysis. (Although as Schmeiser 
(1982) has shown in the context of batch means, 
the practical advantage of increasing the number 
of batches/replications beyond a certain point is 
marginal). Our approach also permits us to quan- 
tify (in a rough sense) the amount of initial tran- 
sient deletion that is appropriate for a given simu- 
lation. We view our analysis as offering theoretical 
support for the principle of initial transient dele- 
tion and providing some theoretical insight into 
how the deletion should be done. 

The primary motivation for these results is that 
they have important ramifications for steady-state 
estimation in a parallel computing environment. 
Probably the simplest and most powerful ap- 
proach to implementing a simulation on a parallel 
computer is to run independent replicates of the 
simulation, in parallel, on each of the available 
processors. The resulting estimator then corre- 
sponds to a multiple replicate estimator. Further- 
more, since the cost per processor is widely ex- 
pected to decline significantly in the future, one 
can expect to see parallel machines with (very) 
large numbers of processors available. Thus, it is 
appropriate to develop estimation procedures in 
which the number of replications may be large 
relative to the length of each replication. Such 
procedures would allow the simulation analyst to 
simultaneously run many simulation replications 
on a highly parallel computer and receive a valid, 
low variance estimator in a relatively short period 
of time. This results in a large turnaround time 
reduction over running the simulation on a single 
processor for a comparable amount of simulation 
time (divided into either one long replication, or 
multiple shorter replications). 

The results in this paper are appropriate to the 
analysis of such estimators, provided that the 
length of each replication and the deletion period 
are determined in units of simulated time. In 
particular, our results suggest that initial transient 
deletion becomes increasingly advantageous as the 
number of processors increases. In Glynn and 
Heidelberger (1989 and 1990), we discuss the (more 
complicated) situation in which the replication 
length and deletion interval are specified in units 
of computer time. 

Thus, on a highly parallel machine there is 
strong motivation to use a larger number of repli- 

cations. However, on a single processor (or a 
parallel processor with only a few processors), the 
motivation for many replications is less compell- 
ing since using either a single run procedure with, 
say, batch means and deletion to form confidence 
intervals, or using a modest number of repli- 
cations and deletion is less sensitive to the effects 
of initialization bias. In addition, on a single 
processor, there is no turnaround time advantage 
to running multiple replications as there is on 
parallel processors. 

Heidelberger (1988) and Glynn and Heidel- 
berger (1991) study related questions in parallel 
simulation of terminating simulations. However, 
while those results do apply to steady-state analy- 
sis of regenerative simulations, our discussion here 
is valid much more generally. On the other hand, 
most of the results of this paper are more qualita- 
tive in nature and do not (immediately) suggest 
operational procedures for dealing with initial 
transient deletion in a parallel simulation setting. 
Thus, the results of this paper complement those 
of Heidelberger (1988) and Glynn and Heidel- 
berger (1991), rather than subsume them. 

This paper is organized as follows. Section 2 
describes and discusses the main results of this 
paper, while Section 3 is devoted to proofs of the 
results. 

2. Description of the main results 

The basic setting for our analysis is the ex- 
istence of a real-valued stochastic process X =  
(X(t) :  t > 0) that represents the simulation output 
generated by a single replication of the stochastic 
system under study. We assume that there exist 
finite constants a and o such that 

1 fo tX ( s )ds - c { )=  oN(O, 1) (2.1) t l / 2 ( T  

as t--, ~ .  We note that standard weak conver- 
gence arguments show that (2.1) implies that 

1 ( 'X(s )  ds OL 
t go 

as t ~ ~ .  As a consequence, (2.1) implies that X 
has a long-run steady-state average value ~. The 
parameter a is called the steady-state mean of X; 
the constant o 2 is known as the time-average 
variance constant of X. The goal of steady-state 
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simulation is to estimate and produce confidence 
intervals for a. 

We will further require that X be appropriately 
uniformly integrable (uniform integrability per- 
mits one to pass limits through expectations). 
Specifically, we shall assume that 

2 

(2.2) 

as t --) oo. Assumptions (2.1) and (2.2) hold under 
a variety of different assumptions on the output 
process X. Regenerative processes (Smith (1955)), 
associated sequences (Newman and Wright 
(1981)), and mixing processes (Ethier and Kurtz 
(1986)) all satisfy the two assumptions under sui- 
table regularity hypotheses. As a consequence, the 
central limit theorem assumptions (2.1) and (2.2) 
can be viewed as being typically satisfied by most 
discrete-event simulations. 

We also need a further additional assumption 
that controls the extent to which the initial tran- 
sient biases the observations of a simulation. To 
be precise, let b( t )  = EX( t )  - a. We assume that 

0 9  

f0 Ib ( t )  d t < o o .  (2.3) 

We note that (2.3) holds whenever EX(t)- - - )a  
exponentially fast (i.e., the exist constants A, X > 0 
such that I E X ( t ) - a  I < A  e x p ( - X t )  for t > 0 ) .  
This exponential rate of convergence is typical of 
most reasonable stochastic processes. For exam- 
ple, autoregressive sequences and geometrically 
ergodic Markov chains (see Nummelin and 
Tuominen (1982)) have this type of behavior. 

In particular, irreducible aperiodic finite state 
space discrete time Markov chains exhibit ex- 
ponential convergence to steady-state (see Chapter 
5 of Doob (1953)) as do irreducible finite state 
continuous time Markov chains (see, e.g., Chapter 
4 of Karlin and Taylor (1975)). 

A consequence of (2.3) is that the bias of the 
estimator X(t)  & t - l f / )X(s)  ds goes to zero at rate 
1/ t .  To see this, note that we can write 

1 fotb(s) ds F 2 ( t )  - ~, = 7 

1 =l ff   (s)as 
= b / t  + o ( 1 / t )  

as t ---) oo where b ~= f~b ( s )  ds. 

We now turn to defining our replication esti- 
mator for the steady-state mean a. Let X 1, )(2 . . . . .  
be a sequence of i.i.d, replicates of the process X. 
Suppose T is a computational budget constraint 
which defines the total amount of simulation to be 
performed over all replications. Let m (T)  be the 
number of replications associated with computa- 
tional budget T. We assume that re(T) is a de- 
terministic quantity. Then, since the total simula- 
tion time equals 7", it follows that each replicate is 
simulated for I ( T ) =  T / m ( T )  time units. Finally, 
we let /3(T) be the (deterministic) length of the 
initial segment that is to be deleted from each 
replication. As discussed earlier, this deletion is 
performed so as to reduce the bias of the repli- 
cated estimator. Given the above description, our 
estimator a (T) ,  associated with computational 
budget T, then takes the form 

m(T) 
1 1 f l ( r )  ( ol (T)  

r e (T )  i~=1 I ( T ) - f l ( T ) . , ~ ( T )  X~ 
ds. S 

Our first theorem considers the case where no 
initial bias deletion is performed, so that f l (T)  - O. 
The theorem asserts that in order for a ( T )  to have 
T -  1/2 rate of convergence, it is necessary to choose 
re(T)  so that m ( T ) / T 1 / 2 - - ) O  as T - * o o  (or 
equivalently, m ( T ) / I ( T ) - - ) 0  as T ~  oc). Hence, 
if no initial bias deletion is performed, it is neces- 
sary to use a relatively small number of replicates 
(small relative to the length of each replication). 

Theorem 1. Assume (2.1)-(2.3) are in force and 
that f l (T)  = O. Then: 

(i) if m ( T ) / T  1/2 ~ oo and b 4= O, then 
T 1/2 l a ( Z ) -  al ~ oo as T---) oo, 

(ii) if m ( T ) / T  1 / 2 ~ m  ( 0 < m  < oo), then 
T1/2(a(T)  - a) ~ oN(0, 1) + b m  as T--) oo, 

(iii) /f m ( T ) / T  1/2---) 0, then T 1 / 2 ( a ( T ) -  a) 
oN(O, 1) as T ~ oo. 

This result appears as Theorem 3 of Glynn 
(1987). 

Our next result shows that when initial tran- 
sient deletion is applied to a stochastic process X 
in which the bias of X( t )  decreases polynomially 
fast (i.e., I b( t )  I = O ( t - r ) ,  for some r > 0, as t 
oo), the constraint on how many replications can 
be used relaxes considerably, Specifically, Theo- 
rem 2 shows that if Ib( t )  l = O ( t - ' )  for r >  1 
(note that (2.3) is typically violated if r < 1), then 
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initial transient deletion can be implemented so 
that the number of replications can grow as fast as 
T p ( p  < 1 - 1 / 2 r ) .  Note  that when the constant r 
is large, the constraint on p essentially disappears. 

Theorem 2. Assume (2.1)-(2.2) are in force and 
that I b( t )  I = O ( t - ' )  for some r > 1. Suppose that 
we choose i l ( T )  = T B and m ( T )  = [TPl where 1 > 

fl > 1 / 2 r  and p < 1 - il. Then 

r l / 2 ( a ( T )  - a)  = oN(O, 1) 

as T ~ oo. 

To further interpret Theorem 2, consider what 
happens if the deletion period i l ( T )  grows at its 
minimum rate i l ( T ) =  T 1/2" and the number  of 
replications grows at close to its maximum rate, 
i.e., r e ( T )  - T 1-1/2"-~ for a (small) c > 0. In this 
case, the total fraction of the simulation that is 
deleted is m ( T ) i l ( T ) / T -  T - ' ,  which goes to zero 
as T---, o0. Thus, we can delete an asymptotically 
negligible fraction of the simulation; this reflects 
itself in the asymptotic variance o 2 / T .  If  no dele- 
tion is performed, then by Theorem 1, we must 
have m ( T ) / l ( T )  bounded in order to obtain a 
convergence rate of T -1/2. However, in this case 
of asymptotically negligible deletion, we have 
m ( t ) / l ( T ) - T l - 2 c - 1 / r - - - ~ o O  as T ~ o ¢ .  As the 

convergence rate of the bias term b( t )  increases (o 
increases), one can delete less and replicate more. 

We note that application of Theorem 2 requires 
only that the simulation analyst have a lower 
bound on r, say r ' .  Then, choosing i l ( T )  = T l / 2 r '  

and m ( T ) = T  p, where p = l - ( 1 / 2 r ' ) - c ( ¢ >  
0), automatically satisfies the conditions of Theo- 
rem 2. The use of coupling techniques in the 
Markov process setting (see, for example, ~ Pitman 
(1974)) has proven successful in obtaining esti- 
mates of the form I b( t )  I = O ( t - - r )  • In particular, 
if the r ' t h  moment  of the expected return time to 
a fixed state is finite, such estimates ensue. Hence, 
a lower bound r '  on r is available whenever it is 
known that the return time to the initial state for 
the simulation has a finite r '  ' th moment.  

As noted earlier in this section, many discrete- 
event simulations in fact have the property that 
the bias function b( . )  goes to zero exponentially 
fast. For such simulations, the results of Theorem 
2 can be improved. Specifically, Theorem 3 shows 
that the number  of replications may grow at the 
rate T p for any p < 1. Exponential decay of the 

bias function typically holds in simulations for 
which it is known that the return time to the 
initial state has a moment  generating function 
which converges in a neighborhood of zero (see 
Nummelin  and Tuominen (1982)). 

We next consider asymptotically negligible de- 
letion rules ( m ( T ) i l ( T ) / T ~  0 as T ~  o0), in the 
case of exponentially decreasing bias. 

Theorem 3. Assume (2.1)-(2.2) are in force and 
that b ( t )  = O(e -x ' )  for  some X > O. Suppose 
m ( T ) f l ( T ) / T  ~ O  as T ~ oo. I f  either 

(i) m ( T ) / T  1/2 ~ ~ and i l ( T ) / l o g T  ~ oo, or 
(ii) m ( T ) / T  l/z ~ m  ( O < m <  oo) and f l ( T )  

---> ~ ,  or 
(iii) m ( T ) / T  1/2 ~ O, 

then 

T 1 / z ( a ( T )  - a)  = oN(0,  1) 

as T ~ oo. 

Comparing Theorem 3 to Theorem 1, we see 
that, with no deletion, only sampling plan (iii) 
with m ( T ) / T  1/2 ~ 0 produces a valid (or usable) 
central limit theorem for a. However, with dele- 
tion, sampling plans (i) and (ii) also produce 
central limit theorems for a with T -1/2 rate of 
convergence, provided il( T )  --, oo appropriately. 
From Theorem 3, the deletion period i l ( T )  can 
grow quite slowly. We note that one particular 
permisible choice is i l ( T )  = (logT) 1+8 and m ( T )  
= T  p f o r 6 > 0 a n d  p < l .  

The deletion plans given in Theorems 2 and 3 
are such that the total deletion length of the 
simulation m ( T ) i l ( T )  is large, but that the frac- 
tion of the total simulation effort that is deleted is 
asymptotically negligible. This results in an 
asymptotic variance of o2(T),  the same as in the 
case where no data is deleted. However, in prac- 
tice, a reasonable (and probably not uncommon) 
trancation rule is to delete a fixed fraction 13 
(0 < 13 < 1) of each replication, i.e., i l ( T )  = i l l (T) .  
In this case, the amount  of simulation data that is 
retained is T(1 - / 3 ) ;  the asymptotic variance then 
becomes o2/(1 - i l )T.  For 13 = 0, the increase in 
variance over the asymptotically negligible scheme 
is small. Even for a rather sizable /3 = 0.1, the 
variance increases by only about 11%. Such a 
fixed fractional truncation rule provides robust 
protection against the initial transient since, for 
example, in the case of exponentially decreasing 
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bias, E[a(T)  - a] decreases to zero exponentially 
fast in l (T) ,  the length of the replications. 

Theorem 4 gives a precise analysis of fixed 
fractional truncation rules. It turns out that this 
result requires that we strengthen (2.1) to a func- 
tional central limit theorem (FCLT) for X: There 
exist finite constants a and o such that 

Y, ~ oW (2.4) 

as e ~ 0 in the Skorohod space D[0, oe) where 

Y,( t) = ,for~'2(X(s) - a) ds, 

and W is a standard Wiener process (also known 
as a Brownian motion). From a practical stand- 
point (2.4) can be viewed as being essentially 
identical to (2.1), in the sense that (2.4) is typically 
valid whenever (2.1) is, and vice versa. In particu- 
lar, FCLT's are known to hold for regenerative 
processes (Glynn and Whitt (1987)), associated 
sequences (Newmann and Wright (1981)), martin- 
gale processes, and mixing sequences (Ethier and 
Kurtz (1986)). 

Theorem 4. Assume (2.2) and (2.4) are in force. 
Let m ( T ) =  [T p] and assume i l ( T ) =  i l l (T)  for 
some il(0 < il < 1). I f  either 

(i) b(t)  = O(t -r) for some r > 1 and p < 1 - 
1/2r,  or 

(ii) b(t)  = O(e -at)  for some ~ > 0 andp < 1, 
then 

Ta/2( ot( T ) - a) ~ (1 - il ) -  l/2oN(O, 1) 

as T ~  oo. 

We conclude this paper with a discussion of the 
implications of the above results for periodic 
processes. In particular, suppose X( t )  = Xtt 1, 
where (Xn: n > 0) is a periodic irreducible finite 
state Markov chain. Then, it is no longer true that 
b( t ) ~ 0 as t ~ oo, where b( t ) = EX(  t ) - a. The 
key to the theory developed in this paper is that a 
significant reduction in the bias of the replicated 
estimator a(T)  can be obtained by deleting an 
initial segment of length i l (T).  For a periodic 
Markov chain, such a bias reduction can still be 
accomplished, provided that i l (T)  is constrained 
so that l (T)  - i l (T)  is an integer multiple of the 
period of the Markov chain. Hence, Theorems 2 -4  
continue to hold in the periodic case, provided 
that i l (T),  in addition to satisfying the stated 

growth conditions, is selected so that I(T)  - i l (T)  
is a multiple of the period of the chain. This 
observation may have important operational im- 
plications for how initial deletion should be imple- 
mented for simulations possessing periodicities. 

3. Proofs 

Proof of Theorem 2. Let q = l - p  
a(T)  - a as 

T_q/2 m(T) 
a ( T ) - a =  re (T)  E W ~ ( T ) + B ( T )  

i=1 

where 

and write 

Tq/2 

W~(T) = I ( T )  - i l ( T )  

and 

a f ; i ~ ; b ( s ) d s .  n(T) = l(r) -il(r) 

We note that 

T 1 / 2 B ( T ) -  T 1/2 q f~"b(s) ds 

= T1/2-qo( T#O - , ) )  

= O ( T  13-q) --*0 

as T ~  oo. To conclude the proof, we therefore 
need to show that 

TO_q)~2 m(T) 
E W,(T) oN(O, 1) 

m ( r )  i=1 

as T ~ oo. This follows from the Lindeberg-Feller 
theorem, provided that we show that Lindeberg's 
condition is satisfied (see p. 205 of Chung (1974)). 
However, Lindeberg's condition reduces here to 
showing that 

E ( W / ( T ) 2 ;  Wi ( T ) 2 >  T l -q}  ~ 0  (3.1) 

as T ~ oo. But (2.1)-(2.2) together imply that 

Wi(T ) ~ oN(O, 1), 

EWi2(T) ~ 0 2 

as T ~  oo. As a consequence, {Wi(T)} is ap- 
propriately uniformly integrable (see Theorem 
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4.5.4 of Chung (1974)); the uniform integrability 
then yields (3.1). 

Proof of Theorem 3. We need only show that 
T1/2B(T) ~ 0 as T---, m, since the uniform inte- 
grability argument is the same as in Theorem 2. 
Observe that m ( T ) f l ( T ) / T +  0 is equivalent to 
f l ( T ) / I ( T )  ~ 0 as T ~ ~ .  Hence, I(T)  - B(T)  = 
/(T)(1 + o(1)). As a consequence, 

T I / 2  f l ( r ) b (  s ) d s  
T ' / 2 B ( T )  = I(T)(1  + o(1)) ~B(T) 

T1/2 

= I(T)(1  + o ( 1 ) )  O(e-Xa(Y)); 

this immediately yields parts (ii) and (iii). For part 
(i), note that I(T)  > f l (T)  ---, ~ ,  so T1/2 / I (T)  = 
O(T1 /2 ) ,  and thus 

T ' / 2 B ( T )  = o ( r l / 2  e-Xa(r)), 

which converges to zero, since fl(T)log T ~ ~ .  

Proof of Theorem 4. Note that 

1 at(T) 

T ' / Z ( a ( r )  - a) ~ i=IE x i ( T ) / (  1 - f i t ,  

where 

x , ( T )  = I (T) -a /2  f ' (T)  ( X i (s )  - a) ds. 
"l(T)fl 

But 

x , ( T )  Y,,T, ,,2(1) - 

= o[W(1)  - W(fl)]  

as T--+ m, where ~ denotes equality in distribu- 
tion. Furthermore, (2.2) implies that {YI~T) ,/:(t): 
T >  0} is uniformly integrable for any fixed t. 
Hence {xZ(T): T > 0 }  is uniformly integrable 
since x2(T)  < 2Y/(T)_-I//==(1)2 + 2Y/(T)-,/2(fl. )2.. Also 
T 1 / 2 ( E a ( T ) -  a) l(r) ~ 0 (the proof is ldenu- 
cal to that used in Theorems 2 and 3). As a 
consequence, ( )~i(T): T > 0} is uniformly integra- 
ble, where ~ i ( T ) =  x i ( T ) -  Ex~(T).  The Linde- 
berg-Feller theorem may then be applied (as in 
Theorem 2) to conclude that 

m(T) 
1 

i E--1 ~ , ( T ) / ( 1  - fl) 
m ( Cr5 

==* (1 -- /~)-1/2aN(0,  1) 

as T ~  ~ .  Using once again the fact that 
T1/2(Ea(T)  - a) ~ 0, we obtain the desired con- 
clusion. 
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