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The optimal linear combination of control variates is well known when the controls are 
assumed to be unbiased. We derive here the optimal linear combination of controls in 
the situation where asymptotically negligible bias is present. The small-sample linear 
control which minimizes the mean square error (MSE) is derived. When the optimal 
asymptotic linear control is used rather than the optimal small-sample control, the de- 
gradation in MSE is cln’, where n is the sample size and c is a known constant. This 
analysis is particularly relevant to the small-sample theory for control variates as applied 
to the steady-state estimation problem. Results for the method of multiple estimates are 
also given. 

1. INTRODUCTION 

The method of control variates has been extensively studied as a technique for 
obtaining variance reductions for complex simulations. The method basically requires 
that the practitioner be able to identify processes for which the exact or asymptotic 
mean is known; the knowledge of these means is then used to obtain a variance 
reduction. 

Our goal here is to study a specific aspect of the small-sample theory for control 
variates. Our particular interest focuses on the loss of efficiency incurred when only 
the asymptotic mean is known, as opposed to the true (small-sample) mean. The results 
obtained here have implications for the application of control variates to the steady- 
state estimation problem. Specifically, in many steady-state simulations, only the 
asymptotic means of the control variates are known; see, for example, Section 8 of 
Glynn and Whitt [6J in which the arrival process to a queue is used as a control. 

The results obtained here complement other small-sample studies on control variates 
(where it is assumed that the exact mean is known) in which the focus is on the 
degradation in performance caused by estimation of the optimal control coefficients; 
see, for example, Lavenberg, Moeller, and Welch [lo], Rubinstein and Marcus [12], 
and Venkatraman and Wilson [ 131. 

Our methods can also be used to study small-sample properties of the method of 
multiple estimates; see Section 6. Concluding remarks are stated in Section 7. 

2. BACKGROUND ON CONTROL VARIATES 

Suppose that one wishes to estimate a parameter r from a simulation. Assume that 
it is possible to generate variables (Xl,Yl), (X2,Y2), . . . ,(Xi E R’, Yi E Rd, d 2 1) 
such that 
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(3 denotes weak convergence) as n+m, where p is known. Clearly, the estimator x,, is consistent for r under (1). The main application we have in mind is the steady- 
state simulation problem in which r is a parameter associated with the steady-state 
distribution of the process {X,,: n 3 0). We do not assume the sequence {(X,,Y,):  
n 2 0) is independent, identically distributed, nor that E ( Y J  = p. Also we note that 
similar results could be obtained for processes with a continuous, rather than discrete, 
time parameter. 

In this section we summarize the standard approach to the asymptotic efficiency for 
control variates in the steady-state simulation problem. We later relate this approach 
to our small-sample results. 

Equations (1) and ( 2 )  together imply that for A E Rd, 
- 
U ,  (A) = 2, - A'@, - p) 3 r 

as n -+ m, so c,, (A) is also consistent for r .  (We adopt here the convention that all 
elements of R" are represented as column vectors; a' denotes the transpose of a E 
R".) Since p is known, n, (A) is an estimator which can legitimately be constructed 
from the simulated data. Furthermore, A is at our disposal, so that A may be chosen 
so as to maximize the efficiency of the estimator U ,  (A). 

To maximize the asymptotic efficiency of Urn (A), it is common to assume a strength- 
ened form of (1) and (2), namely, 

as n + x ,  where N(0 ,C)  is a multivariate normal distribution with mean vector zero 
and ( d  + 1) x (d  + 1) covariance matrix 

(cXy and c y  ? are d x 1 and d x d matrices, respectively.) Given ( 3 ) ,  the continuous 
mapping lemma (Billingsley [2, p. 311) shows that 

n"' (u,, (A) - r )  3 $(A) N ( 0 , l )  (4) 

as n --f x ,  where 

a2(A) = U: - Arc, -. ciyA + A'c,A. 

To optimize the asymptotic efficiency of u,, (A), (4) suggests that one should choose 
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A so as to minimize d (A). Assuming that c y y  is positive definite (and hence nonsin- 
gular), the value A* which minimizes d (A) is given by 

( 5 )  A* = cA1c 
Y Y V  

(see p. 31) of Anderson [l]; the corresponding value of d (A) is then 

U' (A*) = 4 - CLCY;'C~. ( 6 )  

3. THE OPTIMAL SOLUTION IN THE PRESENCE OF BIAS 

The development of the formulas (5 )  and (6) discussed in Section 2 relied heavily 
on the asymptotic limit theory for the estimator E, (A). A somewhat different approach, 
which permits study of small-sample behavior, can also be taken. As we shall see, 
the two viewpoints coincide, under appropriate regularity conditions, in the limit. 

A reasonable critrion (when small-sample bias is present) for choosing the control 
coefficient vector A is to choose A so that the mean square error (MSE) of U ,  (A) is 
minimized. For this criterion to make sense, assume that 

(7) E(XE + Y ~ Y , )  < 03 for n 3 1. 

b,(n) = E(X, - r ) ,  
by(n) = E(7, - p) .  

Let the biases in ?, and r, be denoted by 

Also let the second order moments be denoted by 

u:(n) = var (X,), 
c J n )  = E(X,Y,) - E(X,)E(Y,), 
cyy(n) = E(Y,E) - E(Y,)E(Y,)', 

and let 

MSEJA) = E(U,(A) - r)'. 

Then, 

MSE, (A) = VU(LI,(A)) + (E(U,(A) - r))' 
= ~:(n) - A ' c ~  ( n )  - c,(Tz)% 

+ A'cyy(n)X + b3n) (8) 
+ bx( n)A'by( n) + bx( n)by( n)'A 
+ A'by(n)by(n)'A. 

This quadratic form in A has precisely the same structure as does u2(X), so that the 
minimizer A: of MSE,(A) is given by 

A: = A ( n ) - ' d ( n ) ,  (9) 

where 

4 n )  = c y y ( n )  + by(n)by(n)' 
d(n)  = cXy(n) + bx(n)by(n).  
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Of course, we again require that c J n )  be positive definite. Note that this implies 
A ( n )  is positive definite. The corresponding minimal value of MSE,(A) is then 

MSE, (AX) = a:(n) + b:(n) 
- d(n) 'A(n) - 'd (n) .  

We summarize our discussion thus far with the following proposition. 

PROPOSITION 1: Assume (7). Then, if c,(n) is positive definite, the minimizer 
AX of MSEJA) is given by (9) and the minimizing value of MSE,(A) is given by (10). 

As promised earlier, we will now show that the MSE criterion used in this section 
coincides with the asymptotic efficiency criterion used in Section 2. We will require 
the additional regularity condition: 

(1  1) 

is uniformly integrable. This assumption allows us to pass expectations through the 
limit theorem (3), thereby yielding 

- r)* + n(7, - ply?, - p): n 5 l} 

n1l2bx(n) + 0, 

n'/2by(n) -+ 0, 

n u:(n) + u:, 

n cq(n) + cxy, 

n c y y ( n )  = c y y ,  

n A ( n )  + cry, 

n d ( n )  + c,. 

as n + m. We may therefore conclude that 

and 

So that if cyy is positive definite, then 

AX = (n A ( n ) ) - ' ( n  d ( n ) )  

4 cYj.lcq = A*. 

Similarly, 

n MSE,(AZ) + a2(A*) ,  

thereby yielding the following result. 

PROPOSITION 2: Assume (3) and (11). [Equation (11) implies (7).] If cyy is 
positive definite, then A$ + A* and n MSE,(AZ) + u2(A*), as n 30. 

This proposition is a formal statement of the fact that the MSE and asymptotic 
efficiency criterion coincide as n + m. 
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4. SMALL-SAMPLE THEORY FOR STEADY-STATE CONTROL 
VARIATE SCHEMES 

Suppose that r is a steady-state parameter of a stochastic system, and the ( X l , Y l ) , ( X 2 ,  
Y 2 ) ,  . . . represent observations gathered during the time evolution of the system. Our 
primary goal here is to obtain an asymptotic expansion for A: and MSE,(A:). 

We will need to assume that both (3) and (11) are valid for our steady-state sim- 
ulation. One condition which guarantees this is to require that {(Xn,Yn) : tt 2 1) be a 
nondelayed regenerative sequence with regeneration times To = 0, TI,T2,  . . . . If 
one imposes the moment condition 

then (3) and (1 1) follow (see pp. 99-104 of CHUNG [3] for a proof in the Markov 
chain setting; the general case can be argued in precisely the same way). 

We will further require that the bias terms take the form 

n 

n 

for some constants b, and b y .  It has been shown in Glynn [5] that the bias terms have 
this form for a wide class of equilibrium processes. The assumption (13) is satisfied 
in a variety of steady-state contexts. 

Suppose, for example, that 

Then, if we set 

it follows that 

P 

2 ]EXn - < CQ. 
n= 1 

m 

b, = x (EX, - r ) ,  
n= 1 

b,(n) = (EXi - r )  
n i = l  

1 1 "  
= - b, - - 2 (EXj - r )  

n n i = n + l  

= - 1 b, + o(-!). 
n 

A similar analysis for by(n) shows that 
m 

C IEYn - PI < CQ 
n =  I 
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is a sufficient condition for the second bias expansion. The absolute convergence of 
the sums in (14) and (15) occurs automatically if the expectations converge geomet- 
rically fast 

for some p satisfying Ip( < 1. The geometric convergence dictated by (16) is frequently 
satisfied in a Markov process context, for example. In particular, many aperiodic 
Markov chains satisfy (16) see Lemma 7.2, p. 224, of Doob [4] and pp. 75-101 of 
Kemeny and Snell [9]. 

Assuming now that (3), ( l l ) ,  and (13) are in force, observe that 

Xz = A ( n ) - '  d ( n )  

= ( n  A ( n ) ) -  ( n  d(n) ) .  

From ( 12) [this is implied by (1 1) and (1311 it is evident that 

1 
n 

n A ( n )  = c,, + - b,bi + o 

1 
n 

n d ( n )  = cq + - bxby + o 

Hence, assuming cvY is positive definite, 

Now for n large enough, the matrix 

1 
n 

F ( n )  = - cy;'b,bi,y + o 

has a special radius less than one since all elements converge 

( I  + F ( n ) ) - '  = I - F ( n )  +- F ( n ) 2  - F(n13 

to zero, so that 
+ . . .  

Consequent1 y 
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Similarly, we find that 

n MSE(AZ) = a,' - C ~ C Y ; ~ C ~  

1 1 
- - bxb$Yy'cq + - b,' 

n n 

1 
n 

- - c ~ c G 1 b X b y  

We therefore obtain the following result. 

THEOREM 1: Assume (3), ( l l ) ,  and (13). If cyy is positive definite, then 

1 
n 

+ - cG'b,by + o 

and 

2 
n MSEn(AZ) = a'@*) - - b X Y Y Y  b'c-lc, 

+ I b,' + o(k) 
n 

5. DEGRADATION USING ASYMPTOTIC CONTROL VECTOR 

It is of some interest to examine the degradation in MSE of the control variate 
scheme when the asymptotic control vector A* is used, rather than the small-sample 
optimal vector A:. 

Let Mn(X) = n MSE,(A). It is easily verified from (8) that for arbitrary A and ho, 

(17) Mn(h) = Mn(ho) - V Mn(h0)' (A - Ao) 

+ (A - Ao)' H n ( X  - XO), 

where 

V Mn(b) = 2n(cyy(n) + by(n)by(n>') Xo 

- 2nc,(n) + 2n bx(n)by(n) 

and 

Hn = n cyy(n) + n by(n) b:(n). 
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[This is just a Taylor expansion of M,,(A) around A = A,.] Setting A = A* and 
A, = AX, we observe that V M,(AZ) = 0, so that (17) becomes 

M,(A*) = M,(AZ) + (A* - AZ)W,(A* - AX). (18) 

Letting 

d = c ~ ’ b , b ~ c , j , * c ,  - cG’b,b,, 

Theorem 1 shows that A: = A* - d/n + o ( l /n) ,  whereas (12) yields H ,  + c, as 
n + a. It follows from (18) that 

1 
n2 

M,(A*) = M,(AZ) + - d‘c,,d + o 

As a consequence, we obtain the following result. 

PROPOSITION 3: Assume (3), ( l l ) ,  (131, and that cyv is positive definite. Then, 
the degradation in MSE,(A) caused by using A* rather than AX is given by n-3 drcyyd + o 
(l/n3). (Since cyy is positive definite, d‘c,# is always non-negative.) 

Thus, the degradation in MSE is of small order, since it decreases as the reciprocal 
of the cube of the sample size. However, in certain small-sample situations, the 
degradation could be significant. In such a situation, Theorem 1 provides a possible 
key to improving the performance of the control scheme. 

Let A, = A* - d/n. Noting that A, = A: + o(l/n), it follows from (18) that 
M , ( i , )  = M,(AX) + o( l /n2 ) .  Thus, using i, as the control vector is “almost” as good 
as using the optimal vector AX. 

Clearly, in order to obtain optimal asymptotic efficiency from the control variate 
scheme, A* = cy;’cXy must be estimated. Ordinarily, this will require consistent 
estimation of both c,, and cxy;  see Iglehart and Lewis [8] for details in the regenerative 
case. Thus, if the simulation can estimate the quantities b, and b y ,  A, can be obtained 
and used to improve performance. The terms b, and b y  can be estimated in the 
regenerative case using the results contained in [ 5 ] .  Note that even if the estimators 
are not particularly accurate, their influence “washes out” fairly rapidly since A, + 
A* as n + m. Thus, one should never lose too much efficiency, even with poor 
estimators. 

6. SMALL-SAMPLE THEORY FOR STEADY-STATE MULTIPLE 
ESTIMATE SCHEMES 

Our goal here is to establish small-sample results, analogous to those obtained in 
Section 4, for the method of multiple estimates. Given a steady-state parameter r E 
R and the vector e E Rd with all components 1 ,  suppose that one can generate an Rd- 
valued sequence ZlrZ2, . . . such that 

n1’* (2, - I e )  3 N ( O , C )  (19) 
as n + a, where 2, = (2, + * + Z,)/n, and C is a d X d covariance matrix. 
The idea behind the method of multiple estimates is that for any vector OL such that 
are  = 1, (19) implies that 

a‘ Z, + r; 
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one now chooses a so as to maximize efficiency. Heidelberger [7] explored this 
technique in the context of Markov chains, and showed how one can generate Zi's 
with property (20). 

It is worth pointing out that the method of multiple estimates can be viewed as a 
special case of control variates. Let 

X,, = e'Z,,ld. 

Then, 

a' Z,, = E,, - A' F,,, 
where Y,, = Z;, and A = eld - a. The constraint are = 1 translates into choosing A 
so that A'e = 0. With the (X,,Y,,)'s defined in this way, we are again in the setting 
of Section 2 through 4. Although it would be possible to derive all the asymptotic 
theory for multiple estimates by appealing to the previously developed results for 
control variates, it seems easier to obtain them directly. 

Note that the continuous mapping lemma, as applied to (19), yields 

n"2 (a' z,, - r )  3 aZ(a) N(O,l), 

where $(a) = a'Ca. The minimizer of a2(a) subject to a'e = 1 is given by 

a* = C-'e/e'C-'e, 

provided that C is positive definite (see p. 60 of Rao [ l l ]  . The minimal value of 
$(a) is then given by a2(a*) = (e'C'e)-' .  The following theorem summarizes the 
situation. 

THEOREM 2: Assume that (19) holds with C positive definite. Then (i) a2(a) 
has minimal value (eLC'e)-', and is minimized at a* = C'e/(e'C-'e).  

If, in addition, {n(Z,, - re)' (2, - re): n 3 1) is uniformly integrable and if E?,, 
= re + bln + o(l/n) for some b E Rd, then: (ii) MSE,(a) = E(a' 2, - r)' has 
minimal value (el( C( n )  + b( n)b( n)')-'e)-' and is minimized at 

(C( n )  + b (n)b( n)')-'e 
e'(C(n) + b (n)b(n)')-'e' 

a* = 

where C(n) = E(Z,,Zi) - (EZ,,) (EZ,,)' and b(n)  = EZ,, - re. 

(iii) 

and 

e'C-'bb'C'e) + o  (A) - 
( I +  n e'C-'e MSE(a$) = - 

e'C-'e 

(iv) MSE(a*) = MSE(a$) + ti3d'Cd + ~ ( n - ~ ) ,  where 
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Thus, the results obtained for the method of multiple estimates are qualitatively 
similar to those obtained for control variates. 

7. CONCLUSIONS 

Using the MSE criterion, we have shown that under rather general conditions, the 
small-sample optimal control coefficients A;, for steady-state simulations, differ from 
the asymptotically optimal control coefficients A* by a factor of order n-’. The first- 
order error term involves only the asymptotic covariance structure, and the first-order 
bias terms; the (exact) small-sample covariance structure plays no role, even in the 
case of a nonstationary steady-state simulation. The loss, in MSE efficiency, created 
by using the asymptotically optimal A*, rather than the small-sample optimal A;, is 
of order nm3. Thus, the loss in efficiency is of small order. Similar results hold for the 
method of multiple estimates. 
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