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ABSTRACT 

This  paper  discusses likelihood ratio derivative estima- 

tion techniques for stochastic systems. After a brief review 

of the basic concepts, likelihood ratio derivative est imators 

are presented for the following classes of stochastic processes: 

t ime homogeneous dlscrete-time Markov chains, non-t ime ho- 

mogeneous discrete-time Markov chains, time homogeneous 

continuous-time Markov chains, semi-Markov processes, non- 

t ime homogeneous continuous-t ime Markov chains, and gen- 

eralized semi-Markov processes. 

1. I N T R O D U C T I O N  

In recent years, an extensive l i terature has begun to 

develop within the simulation communi ty  on efficient esti- 

mat ion  of derivatives of performance measures with respect 

to decision parameters .  In this paper, we shall focus on de- 

scribing the basic ideas tha t  underlie a recently introduced 

derivative est imation method  known as l i ke l i hood  r a t i o  

d e r i v a t i v e  e s t i m a t i o n  (also known as the eff ic ient  s c o r e  

m e t h o d ) .  This  technique has been previously described in 

GLYNN (1986, 1987), REIMAN and WEISS (1986), and RU- 

BINSTEIN (1986). 

In Section 2, we describe the basic likelihood ratio 

derivative es t imator  in a general set t ing in which the essential 

idea is most  t ransparent .  Section 3 specializes the est imator 

to discrete-time stochastic processes. We derive likelihood 

ratio derivative est imators  for bo th  time homogeneous and 

non-tlme homogeneous discrete-time Markov chains. In Sec- 

tion 4, we conclude the paper with a discussion of likelihood 

ratio derivative est imation in continuous time. We present, 

as examples of our analysis, the derivative est imators for: 

t ime homogeneous continuons-t ime Markov chains, non-t ime 

homogeneous continuous-time Markov chains, semi-Markov 

processes, and generalized serni-Markov processes. In all our 

examples, we require tha t  the performance measure corre- 

spond to a terminat ing simulation. 

As mentioned earlier, the likelihood ratio derivative es- 

t imation technique has  been previously investigated in a 

number  of different papers. Our  main  contribution here is 

to specialize the general idea underlying this family of deriva- 

tive est imators to the various classes of stochastic processes 

described above. 

2. L I K E L I H O O D  R A T I O  D E R I V A T I V E  

E S T I M A T I O N  

In this section, we provide a brief introduction to the 

basic ideas tha t  underlie likelihood ratio derivative estima- 

tion. To set the stage, consider a family of stochastic sys- 

tems that  is indexed by a scalar decision parameter  0. For 

example in a queueing context, 0 might  correspond to the 

service rate at a part icular station. Given the sample space 

~ ,  let X(Ü, W) be the sample performance measure  observed 

at  sample outcome w and decision parameter  0; we permit 

X(O, w) to depend explicitly on 0 in order to encompass sit- 

uat ions in which the "cost" of running  the stochastic sys tem 

(as measured through X(O)) depends on the parameter  0. 

(However, in many est imation settings, X(O) is independent 

of 0 and therefore depends only on w .) In addition, the prob- 

ability distr ibution PO on ~ typically depends on 0; PO then 

reflects the maxmer in which the random environment is af- 

fected by the decision parameter .  The  performance measure 

Ct(0) associated with parameter  value 0 is then defined as 

the expectation 

a(O) = ~ X(O, w)Po(dw). 

Our goal is to describe an est imation methodology for calcu- 

lating a'(00). 

The likelihood ratio method  for derivative est imation 

is based on the following idea. Suppose tha t  there exists a 

measure ~ (not necessarily a probability measure) such tha t  

Po(dw) : f(O,w)p(dw) i.e. f(O, .)is the density of Po 
with respect to ~ .  Then,  

c~(O) = 9~ X(O'w)f(O'w)lp(dw)" 

Assuming tha t  the derivative and  integral can be inter- 

changed, we obtain 
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~'(Oo) = In x'(Oo,.,)f(Oo, ~):,(d,.) 

+/,~ X(Oo,,O)f(Oo,,O)/~(d,.). 
(2.1) 

see GLYNN and  IGLEHAR T (1989) for fu r ther  details.  Un- 

fortunately,  the  opt imal  sampl ing  densi ty  g* basically re- 

quires knowledge of the  integral  (appear ing  in the  second 

te rm in (2.1)) tha t  we are t ry ing to es t imate .  Therefore,  the 

choice of g* as defined by (2.5) is typically impract ical  to 

implement .  

We note  tha t  the  first t e rm on the  r igh t -hand  side of (2.1) is 

jus t  EOoXt(O0) (where EO(') denotes the  expec ta t ion  oper- 

a tor  associa ted wi th  PO ). Since this t e rm can be represented 

as the  expec ta t ion  of a r.v.,  s t anda rd  Monte  Carlo me thods  

may be appl ied to es t imate  it. Specifically, suppose tha t  one 

simulates i.i.d, replicates of Xt(Oo) under  dis t r ibut ion Pa0; 

the  sample  mean  of these observat ions then  converges (at rate  

n -1/2 in the  number  n of observations) to the first te rm.  

To handle  the  second te rm using Monte  Carlo methods ,  

we need to represent  it  as the  expecta t ion  of a r.v. To ac- 

complish this, suppose  tha t  g ( w )  is a non-negat ive  funct ion 

such tha t  

We now describe a popular  a l ternat ive to g* .  Suppose 

tha t  the densit ies f(O,~) are such tha t  for 0 in an  open 

ne ighborhood  of 00, 

A(O) = {w : f(O,w) > 0} 

independen t  of 0. 

is 
(2.6) 

Then,  f(Oo,w) = 0 implies tha t  f(O,w) vanishes in a 

ne ighborhood  of 0, f rom which it follows tha t  ft(O0, w) = O, 
so tha t  ft(Oo,w)X(Oo,w) = 0. Thus,  g ( N )  = 

f ( 0 0 ,  w)lp(dw) satisfies b o t h  (2.2) and (2.3). In this case, 

f g(w)#(dw) = 1. (2.2) 
H(O0 ,  w) - -  f'(Oo, w) : ( 0 0 ,  w ) )  ; 

f(Oo,w) ( =  ~ 0  l ° g  (2.7) 

Then,  the  measure  P(dw) = g(w)lp(dw ) is a probabi l i ty  

d is t r ibut ion on Q.  ff g has the  addi t ional  proper ty  tha t  

IX(Oo,co)f'(Oo,~o)l > 0 implies 

tha t  g ( ~ )  > 0,  
(2.3) 

then  we can represent  the second te rm as 

~ X(Oo, w) g(w)#(dw) = f'(Oo, ¢d ) 
EX(Oo)H(Oo) 

(2.4) 

where H ( 0 0 , c d  ) ---- ft(Oo,co)/g(¢o ) and Z ( ' )  denotes  ex- 

pec ta t ion  relative to the probabi l i ty  P .  (Note tha t  (2.3) is 

required to avoid dividing by zero in (2.4).) Given the  repre- 

senta t ion  (2.4) of the second te rm as an expecta t ion,  we can 

now easily apply Monte Carlo me thods  to es t imate  it (in the  

same way as for the  fix~t te rm) .  

We now tu rn  to the  quest ion of selecting the  sampl ing 

densi ty g.  The  theory of impor tance  sampl ing asserts  tha t  

the choice of  g which minimizes the  variance of the observa- 

tions of X(Oo)H(Oo) is 

the  r igh t -hand  side of (2.7) is known as the  l i k e l i h o o d  r a t i o  

d [(Otw ) is the deriva- d e r i v a t i v e  (because H(Oo, w) = a'-g l(Oo,~) 
t i re  of the quant i ty  know in the  s ta t is t ics  l i terature  as the 

likelihood ratio of Po with respect  to Poo)" 

This choice of g has an impor t an t  advantage.  Note  that  

if  we  sample  o u t c o m =  ~ ~ ¢ c o r ~ n g  to f(Oo,,.)u(a~), we 
can use the  c.v. 's  X(O0), Xt(Oo), and  X(Oo)H(Oo) to esti- 

ma te  o~(00) and b o t h  the  te rms  appear ing  on the  r ight -hand 

side of (2.1) simultaneously.  Thus,  wi th  this  choice of g ,  we 

may  es t imate  or(00) and  oct(00) using the  o r i g i n a l  sampling 

dis t r ibut ion associa ted wi th  pa rame te r  00. At the  same time, 

it  should be no ted  tha t  there  are impor t an t  problem classes 

(e.g. rare event simulations) in which much be t t e r  choices of 

g can be made  (be t te r  in the  sense of smaller  variance). 

We close this sect ion by recalling tha t  to derive (2.1), 

an interchange of the  differentiat ion and  expec ta t ion  oper- 

a tors  was required.  In virtually all pract ical  examples,  the 

interchange is valid under  mild addi t ional  regulari ty assump- 

t ions on the  problem.  As a consequence,  we shall ignore tiffs 

in terchange issue throughout  the remainder  of  tiffs paper .  

3. L I K E L I H O O D  R A T I O  D E R I V A T I V E  

E S T I M A T I O N  I N  D I S C R E T E  T I M E  

IX(Oo,co)f'(Oo,co)l 
g *(w) = fo ]X(Oo,w)f,(Oo,w)lp(dw), 

(2.5) 
In this section, we speciafize the  discussion of Section 2 

to the case where X (0, ~ )  is a sample pe r fo= . ance  measure  
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associated with a discrete- t ime sequence Y = (Yn : n _> O) 
taking values in a discrete s ta te  space ~ .  Specifically, we 

suppose tha t  ~ = ~ × ~ X . . .  and  tha t  Yn is the  coordinate  

r.v. Yn(co) = COn forco = (¢00,¢01, . . . )  E ~ .  We assume 

that X(O) takes the form 

x(o)  = h(O, Yo, Yi , . . . ) ,  

for some real-valued funct ion h .  Since S is discrete, there  

exist jo int  probabi l i ty  mass  funct ions POD P l ,  • • • such tha t  

Po{Yo =Yo, . . . ,Yn  =:Yn} =Pn(O, Yn) (3.1) 

where Y n  = ( Y 0 , . . . ,  Yn). Let t ing  

p . (O ,~ . -1 ;v . )  
= Po{Y, = Yo]Yo = Y0, . . .  ,Y , -1  = Y , - I} ,  

we can wri te  (3.1) as the p roduc t  

Po{Yo = Yo,.. . ,Yn = Yn} 
n - - 1  

= po(O,vo) I I  p,~(o, ~; w+~) 
k=0 

(3.2) 

Suppose now tha t  X ( 0 )  is a i imct ion of Y up  to some finite 

(determinis t ic)  t ime hor izon m ,  so tha t  X ( 0 )  = h ( 0 ,  g i n )  

where Ym = (Y0, • • • , Yrn). To apply the idea of  Section 2, 

we need to ob ta in  a represen ta t ion  P0(dzd)  = 

f ( 0 , c o ) / . / ( d w )  for some measu re / . / .  But  observe tha t  for 

co E Qm, 

so tha t  

r n - - 1  

f'(Oo,w) = p'(Oo,coo) H pk(Oo, ~k;cok+l)  
k=0 

m - - 1  

+ p(Oo, co0) p  (00, co +1 )IIP  (00, +1 ) 
k=O j#k 

(3.3) 

We can simplify the  above formula  somewhat .  We claim tha t  
t if pk(OO,~k,cok+l) ~ O, it mus t  follow tha t  

pk(O0, ~k, COk+I) > 0. For  suppose  thatpk(.O0,~ k ;0)k+l)  

= 0. T h e n  it follows tha t  

pk(Oo + h, ~k;cok+l)  = p£(Oo, ~k;co/c+l)h + o(h) 

as h I 0, f rom which it is evident  tha t  pk(Oo+h, ~k ; c  Ok+l) 

< 0 for some h .  But  pk(O, ~ k ; c o k + l )  is a mass  funct ion 

and hence mus t  be non-negat lve.  This  cont radic t ion  guaran-  

tees tha t  pk(O0, ~ k ; c o k + l )  > 0. i similar a rgument  shows 

tha t  p0(00 ,co0)  > 0 whenever  p~)(00,co0) ~ 0. Hence, we 

may wri te  (3.3) as 

f'(O0,co) : 

[v~,(Oo, coo/ 
s(e0,co) tp0--T0,co0) 

~ - 1  pk(Oo, 

= pk(Oo, cok;cok+l)J 

Suppose tha t  we choose a g such tha t  

film g(co)l'lrn(dc#) = 1 and  f ( 0 0 , c o  ) > 0 implies tha t  

g(co) > 0; then  (2.3) is au tomat ica l ly  in force. (In par t icu-  

lax, se t t ing  g(co) = f(O0, co) works.) Hence,  we find tha t  

cJ(Oo) = EooX'(Oo) + EaX(Oo)H(Oo ) (3.4) 

n - 1  

Po(dw) = po(O;wo) H pk(O, ~k;Wk+l)p,~(dw) 
k=0 

where Ea(. ) denotes  the  expec ta t ion  opera to r  associated 

wi th  the  probabi l i ty  Pg(dco) ---- g(w)pn(dw), Eo(') de- 

notes  expec ta t ion  relative to Po, and 

~ k  = (COO,. . . ,  Oak) and P m  is count ing  measure  on ~ m  = 

S x S x . . .  x S (m + 1 times). Hence, we may take 

m - 1  

f(O,co) = p(O,wo) H p(O, ~k;wk+l ) ,  
k=0 
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e(Oo) = 

f(Oo, Win) 
g(Vm) 

"p~(Oo, Yo) .,-1 p£(Oo, Yk; Yk+l 
po(Oo, ro) + ~ = k=o Pk(Oo,Yk; Yk+l 

The  same a rgument  can be  ex t ended  to a cer ta in  class 

of  r andom t ime horizons.  In par t icular ,  suppose  tha t  T is 



a s t o p p i n g  t i m e  with respect to Y i.e. for each m > 

O, I(T = m )  = k m ( Y m )  for some function km. We 

assume that the performance measure X(O) is a function of 

the path  of Y up to the random time horizon T i.e. there 

exists a family of functions h0, h i ,  • • • such that  

O0 

X(O) = E hm(O,~m)I(T = m) 
m = O  

= hT(O, YT)I (T  < cx~). 

(3.s) 

As in the derivation of (3.4), we need to represent Po as 
Po(dw) f(O,w)p(dw). L e t n  r co --* = = U . ~ = o { W ~  E ~,~ : 

kin(5 , , , )  = 1} andnote that for~ = ( ~ 0 , ~ , . . - , ~ r )  
~t, 

H(Oo) = 

po(Oo,Yo) + k=0 pk(Oo,Yk;Yk+l)" 

We now give a couple of examples to illustrate (3.7) and 

(3.8). 

(3.9) EXAMPLE. Suppose that  under distr ibution Po, Y is 

a Markov chain with initial distribution ~u(0) and transition 

matr ix  P(O). Assume tha t  X(O) = hT(YT)I(T < oo) 
(with T a stopping time), so that  ol(O) = Eo{hT(YT); 
T < co}. Then, (3.8) yields 

Po(d , , , )  = 
W-, 

v0 (0, ~0) I I  w (0, ~ ;~+x)~ (d~) 
k=0 

(3.6) 

where ~T is counting measure on ~ T .  Suppose that  g is 

chosen as a non-negative function on ~ T  having the property 
that  f~g(w)pT(d~.#) T-1 : 1 and p0(00,W0) YIk=0 

pk(O0, ~ k ; ~ k + l )  > 0 implies that  g ( ~ )  > 0 f o r ~  E ~ T .  

By combining (3.5) and (3.6) and proceeding as in the deriva- 

tion of (3.4), we obtain the following stopping time general- 

ization of (3.4): 

a'(O0) = EooX'(O0) + EaX(Oo)H(O0 ) (3.7) 

where 

Nk=0 pk(00, fk; Yk+l) H(Oo) = po(Oo,Yo) w-1 

g( f  T) 

[p~(00, Y0)~  p~(00,fk;r~+~)] 
po(Oo,Yo) + k=o Pk(Oo,Yk;Yk+x'---------------~J " 

As in the case of (3.4), one possible choice of g is f(Oo), in 

which event (3.7) simplifies to: 

a'(O0) = Eoo{hT(~T)H(Oo);T < oo},  (3.10) 

where H(Oo) = p'(Oo, Yo)/p(Oo, Y0)+  

EkT~o 1 Pt(Oo, Yk, Yk+l )/P(Oo, Yk, Yk+l ). In certain set- 

tings, the estimator suggested by (3.10) may have a large 

variance (e.g. rare event simulation). For such problems, 

suppose that  we select g to satisfy the positivity conditions 

stated earlier. Then 

0/(00) = Eg{hT(~T)H(Oo);T < do},  (3.11) 

where H(Oo) T-1 = p(O0, YO)Hk=O P(Oo, Yk, Y~+I) 
T-1 

/g(YT) " ~'(Oo,Yol/v(Oo,Yo) + ~ P'(Oo,Yk,Yk+i) 
k=0 

/P(Oo, gk, g k + l ) ] .  In a "rare event" setting, one would 

typically choose g so as to bias the system to force the oc- 

currence of more rare events. 

(3.12) EXAMPLE. In this example, we assume that  under 

Po, Y is a Markov chain with non-stationary transition 

probabilities, so that  Po{Yk+l = Yk+l[Yk = Y} = 
Pk(O, yk, Yk+l). Then, if a(0)  = Es{hT(~T); T < o o } ,  
(3.8) yields 

a'(O0) = Eoo{hT(YT)H(Oo);T < 00} 

where 

o/(0o) = Eoo[X'(Oo) + X(Oo)H(Oo)] (3.8) where H(eo) = p'(eo, Yo)/p(eo, Y0)+  
T - 1  

~ = 0  P~(Oo, Yk, Yk+l)/P(Oo, Yk, Yk+l)  ; the obvious 

analog of (3.11) can also be written down. 
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4. L I K E L I H O O D  R A T I O  D E R I V A T I V E  

E S T I M A T I O N  I N  C O N T I N U O U S  T I M E  

Th i s  sec t ion  is devoted  I;o genera l iz ing t he  ideas  of  Sec- 

t ion 3 to con t i nuous - t i me  discre te-event  d y n a m i c a l  sys t ems .  

We view X ( O, ~ ) as a s~p le  performance measure asso- 

ciated wi th  a con t inuous - t ime  process  ( Y  = Y ( t )  : $ _> 0)  

t ak ing  values  in a discrete  s t a t e  space  S .  T h e  process  Y is as- 

s u m e d  to be  piece-wise cons t an t  wi th  j u m p  t imes  

S1 ,  $ 2 , . .  • (Sn .....4. oo  as n ~ 00) .  Hence,  if So - -  0 and  

Yn = Y(S.) ,  we may write 

OO 

Y ( t )  = ~ Y . I ( S .  _< t < S.+1). 
n = 0  

Let  A n = S n + l  - -  ~ n  vztd p u t  Z n = (Yn, An). We 

suppose  t h a t  ~ = S × S × . . .  where  S = S x [0, cx~) 

a n d  t h a t  Zn is t he  co-ord ina te  r .v.  Z n  (w)  = Wn for ¢0 = 

(~00,~1,...) • ~ .  

In  order  to p roceed  in paral lel  wi th  t he  deve lopment  of  

Sect ion 3, we shal l  r equ i re  t h a t  t he  d i s t r ibu t ions  Po on 

have  the  p rope r ty  t h a t  the re  exis t  m e a s u r e s  t 0 ,  ~1 ~ • • • such  

t h a t  

Po{Zo • dzo} = po(O, Zo)Po(dzo) 

Ps{Z,~+x • dz ,+l lZ,  = 7 , }  

= p.(O, 7 . ,  z .+ l )# . (7 . ,  dz.+x) 

where 5 ,  = ( z 0 , . . . , z , ) ~ d  z ,  = ( z 0 , . . . , ~ , )  • 
x . . .  x S = ~ .  ((n + 1) times). T h e n ,  ana logous ly  to 

(3.2), we m a y  wri te  

{DO 

X(O) = Ehk(O,  Zk)I(T : k) 
k=0 

= hT(ZT)I(T < c¢). 

= urn=o{ z m • e~ : k~(5~) = I} and Let  ~ T  oo -" 

no te  t h a t  for "~T = ( Z 0 , . . . ,  ZT) • ~T, we m a y  ex tend  

(4a)  to 

P0{ST • azT} = 
T - 1  

po(O, zo) H pk(O, 7k; Zk+l)ItT(d-zt) 
k=0 

T - 1  

where pT(dTT)  = po(dzo) H pk(Tk, dZk+l). By ar- 

k=0 
gu ing  ident ical ly  as in Sect ion 3, we o b t a i n  the  following 

con t inuous - t ime  genera l iza t ion  of (3.7). Suppose  g is chosen 

as a non-nega t ive  func t ion  on  ~ T  h a v i n g  t he  p rope r ty  t h a t  

---- H k = O  f n T g ( T T ) P w ( d T T )  1 and po(Oo,zo) T-1 

pk(O0, ~k, Z k + l )  > 0 impl ies  t h a t  g('~T) > 0 for ~ T  6 

~ T .  T h e n ,  if  Eg(.) is t he  expec t a t i on  ope ra to r  a ssoc ia ted  

wi th  P(d~T) = g('~T)p(d'~w), we obtain the der ivat ive  

r ep re sen ta t ion  

cd(Oo) = EooX'(Oo) + EgX(Oo)H(Oo ) 

for or(0) = Eo{h(O, ZT);T < c~}, where 

P 0 { ~ .  e dT . }  = 
n--1 

po(O, zo) l'I vk(o, 7k; zk+~) . . (dT. )  
k=0 

(4.1) 

n - 1  

where U . ( ~ 7 . )  = .o(dz0) 1-I Uk(Tk,dz~+l). 
k = l  

Suppose  now t h a t  we cons ider  a pe r fo rmance  m e a s u r e  

X(O) t h a t  is a func t ion  of t he  p a t h  u p  to hor izon  T ;  th is  

obvious ly  inc ludes  any  pe r fo rmance  m e a s u r e  t h a t  d e p e n d s  on 

Y up  to t ime  ST+I. As in  Sect ion 3, we require  t h a t  T be  

a s t opp ing  t ime  wi th  r e spec t  to Z = (Zn : n _> 0)  i.e. for 

e~h m _> 0, I(T = m) = k ~ ( ~ )  for some function 
kin .  T h e n ,  the  pe r fo rmance  m e a s u r e  X(O) m a y  be wr i t t en  

in  the  fo rm 
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T - 1  

H(Oo) = po(Oo, Zo) 1-I p~(Oo, ~ . ;  z~+,)/g(5~) 
k=0 

[p~(00, Zo) ~ p'k(O0, ~k; Zk+l) ] 

• Lpo(Oo,Zo) + k=o pk(0o, Zk; Zk+l)J 
(4.2) 

As in  Sect ion 3, one poss ib le  choice for g is g(TT) 
rrT-I /O = po(Oo, zo) l h = o  Pk( o, 7~; zk+l), in which case P is 

identical  to Poo, yielding 

~'(00) = ZOo[X'(Oo) + X(Oo)U(Oo)] (4.3) 

where  



p~(Oo, Zo) r-~ , + ~ pk(Oo, k__~z~+~) 
g(Oo) - po(Oo,Zo) k=0 pk(Oo, Zk;Zk+~) 

We shall now illustrate these formulae with some examples. 

(4.4) EXAMPLE. Suppose that under P0, Y is a continuous- 
time Markov chain with initial distribution/~(0) and gener- 

ator Q(O).  Assume that X ( O )  = h ( Y ( s )  : 0 < s < t ) .  
Then, X (0) can be represented as 

X ( O) = h(  Zo,  Z i ,  . . . , Z T  ) where T is the stopping time 

T = inf{n > 0 : ~ k = 0  k > t}. Set Zn ---- (y,,tn) 
(recall that Zn 6 S ---- S x [0, oo)) .  Then, 

Po{Zo 6 dzo} = po(O, zo)Po(dzo) 

wherepo(O, YO, tO) = p(O, yo)q(O, YO) exp(--q(O, yo)to), 
q(O,y) = - Q ( O , y , y ) ,  and po(dzo) is the product of 
counting measure and Lebesgue measure. Furthermore, 

p.(O, 7.;  z .+l )v . (7 . ,  dz.+~) 

where pn(O, Ta;Zn+l) = Q(O, yn,yn+l)q(O, yn+l) 
~xp(-q(o, y.+~)t.+x)/q(O, y.) and ~. (7 . ,  dz.+~) is 
again the product of counting measure and Lebesque mea- 

sure . Formula (4.3) now becomes 

a'(Oo) = Eoo[h(Y(s): 0 < s < t)H(Oo)] 

where 

o/(00) = Eoo[h(Y(s) : 0 < s < t)H(Oo)] 

where 

H(Oo) - p'(Oo,Yo) ~ R/(Ùo,Yk,Yk+l) 
~(0o, Yo) + R(Oo,Yk,Yk+l) k=O 

f'(Oo, Yk, Ak)  

(4.6) EXAMPLE. In this example, we show that (4.3) easily 

handles the case where the process is non-time homogeneous. 

In particular,, suppose that under Po, Y is a non-tlme ho- 

mogeneous continuous-time Markov chain with initial distri- 

bution p (0)  and time-dependent generator Q(0 ,  f) .  Then, 

P0{Y.+x = y,A.+z e dtlZ.}  

Q(°'s"+i'~Y) q(O,s.+~ + t,y) 
q(O,S.+~ 

~xp(- q(O,S.+i + ~,v)d~)et 

where q(O, t, y) : -Q(O, t, y, y). Suppose that X(O) = 
h(Y(s) : 0 _< s < t). If we put T = inf{n _> 0 : 

t~ 
E k = O  Ak ~ t},  then (4.3) takes the form 

a'(Oo) = Eso[h(Y(s) : 0 < s < t)H(Oo)] 

where 

H(Ùo) - #'(Oo,Yo) ~ Q'(Oo,Y~,Yk+i) 
p(Oo, Yo) + Q(Oo,Yk,Yk+I) k=O 

T 
+ q'(Oo, rT) ~q'(Oo,Yk)Ak. 

q( Oo, gT ) k=O 

(4.5) EXAMPLE. Suppose that under P o , Y  is a semi- 

Markov process with initial distribution ~(0) ,  jump matrix 

.[~(0), and holding time distributions ( F( O , x, at) : x E S). 
Suppose that for each X, F ( O , x ,  d t )= f ( O , x, t )p( x , dr) 
for some measure p .  Assuming that X ( O ) = h ( Y (s) : 0 < 

n 
S < t ) ,  we again put T = inf{n > 0 : ~ k = 0  Ak > t} .  

Formula (4.3) becomes 
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n(Oo)- /(Oo,Yo) 
~(Oo, Yo) 

q'(00, ST+l, YT) 
+ 

q( Oo, ST+i ,  YT ) 

~ Q/(O0, S k + l ,  Yk,  Yk+l )  + 
k=0 Q(O0, Sk+l ,Yk ,Yk+l )  

- ~ [sk+l q'(Oo,t,yyk)dt. 
k=O J Sk 

(4.7) EXAMPLE. We now suppose that Y is a generalized 

semi-Markov process (GSMP) under P0; see GLYNN (1983) 

for further details on GSMP's. Let E be the event set of the 
GSMP. The initial state of the GSMP is chosen according 

to the distribution p (0 ) ,  whereas the initial clock readings 

chosen from the distributions F(O, e, dO, for e 6 E .  



When clock e initiates a transition from state y, the next 

state is chosen from the mass function p(0 ,  .; y, e) .  Typ- 

ically, when the GSMP enters a new state, certain docks 

need to be stochastically resell We assume that the distri- 

bution used to reset clock e I in state yl when a transition 

just occurred from state y with clock e as triggering event 

is given by F ( 0 ,  e t, y~, e, y, d~). We require that  there exist 

measures f t (e ,  dr), #(  e', y', e, y, dr) such that 

H(Oo) 
p'(Oo,Yo) ~ p~(Oo,Yk+l;Yk,e*(Ck)) 

- -  p(Oo,Yo) + p(Oo,Yk+l;Yk,e*(Ck)) 
k=0 

• 4- E f'(O0' e, Coe) T 
f(O0, e, Coe) + ~ 

• k=l  

f'(Oo,e,Yk, e*(Ck_l), Yk-1 ,Ck,) 
,), 

e6.N (Yk ;Yk- l ~e*( Ct¢- 

F(O, e',y; e, y, dt) 

= f (O,e ' ,y ' ,e ,y , t ) ,p(e ' ,y ' ,e ,y ,  dt) 

F(O, e, dt) = f(O, e, t)p(e, dt). 

(4.8) 

In a strict sense, the analysis of this section does not ap- 

ply to GSMP's,  since the appropriate state descriptor for a 

GSMP includes the value of all the clock readings. Such a 

state descriptor can not typically be encoded as an dement  

of S = S X [0, o0) .  However, a close examination of the 

analysis given earlier shows that  the essential feature was that  

(Yn, An) be representable as a simple function of the process 

Zn; Zn need have no structure beyond (4.1). In particular, 

Zn need not be an element of S .  In the GSMP setting, the 

natural candidate for Z is the tuple Zn : (Yn, Ca), where 

Cn is the vector that describe the residual amount of time 

]eft on each of the clocks that  are active in state Yn. Clearly, 

A n  is a simple function of Z n (in a GSMP with unit speeds, 

A n  is just the minimal dement  in Ca); furthermore, under 

(4.8), the distribution Po for Z n  can be written in the form 

(4.1). 

Let N(y'; y, e) be the set of docks active in yt that  

need to be stochastically re-set when a transition from y 

just occurred with event e as the trigger. We further de- 

fine e* (c) to be the index of the triggering event associated 

with clock vector C; we assmne e* is uniquely defined for 

each c. Suppose Z(O) = h(Y(s) : 0 < s < t). If we put 
_ n A _ T = i n f { n  > 0 : ~ k = 0  k > t} ,  it is easily verified that  

(4.3) takes the form 

c~'(00) = Eoo[h(Y(s) : 0 < s < T)H(Oo)] 

where 

The above examples serve to illustrate the great variety 

of stochastic processes to which likelihood ratio derivative 

estimation may be applied. 
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