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ABSTRACT

This paper discusses likelihood ratio derivative estima-
tion techniques for stochastic systems. After a brief review
of the basic concepts, likelihood ratio derivative estimators
are presented for the following classes of stochastic processes:
time homogeneous discrete-time Markov chains, non-time ho-
mogeneous discrete-time Markov chains, time homogeneous
continuous-time Markov chains, semi-Markov processes, non-
time homogeneous continuous-time Markov chains, and gen-

eralized semi-Markov processes.

1. INTRODUCTION

In recent years, an extensive literature has begun to
develop within the simulation community on efficient esti-
mation of derivatives of performance measures with respect
to decision parameters. In this paper, we shall focus on de-
scribing the basic ideas that underlie a recently introduced
derivative estimation method known as likelihood ratio
derivative estimation (also known as the efficient score
method). This technique has been previously described in
GLYNN (1986, 1987), REIMAN and WEISS (1986), and RU-
BINSTEIN (1986).

In Section 2, we describe the basic likelihood ratio
derivative estimator in a general setting in which the essential
idea is most transparent. Section 3 specializes the estimator
We derive likelihood

ratio derivative estimators for both time homogeneous and

to discrete-time stochastic processes.

non-time homogeneous discrete-time Markov chains. In Sec-
tion 4, we conclude the paper with a discussion of likelihood
ratio derivative estimation in continuous time. We present,
as examples of our analysis, the derivative estimators for:
time homogeneous continuous-time Markov chains, non-time
homogeneous continuous-time Markov chains, semi-Markov
processes, and generalized semi-Markov processes. In all our
examples, we require that the performance measure corre-

spond to a terminating simulation.

As mentioned earlier, the likelihood ratio derivative es-
timation technique has been previously investigated in a

number of different papers. Our main contribution here is
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to specialize the general idea underlying this family of deriva-
tive estimators to the various classes of stochastic processes

described above.

2. LIKELTHOOD RATIO DERIVATIVE
ESTIMATION

In this section, we provide a brief introduction to the
basic ideas that underlie likelihood ratio derivative estima-
tion. To set the stage, consider a family of stochastic sys-
tems that is indexed by a scalar decision parameter §. For
example in a queueing context, # might correspond to the
service rate at a particular station. Given the sample space
Q,let X (0 s w) be the sample performance measure observed
at sample outcome w and decision parameter &; we permit
X (0 , w) to depend explicitly on @ in order to encompass sit-
uations in which the “cost” of running the stochastic system
(as measured through X (0)) depends on the parameter 8.
(However, in many estimation settings, X (0) is independent
of § and therefore depends only onw.) In addition, the prob-
ability distribution Py on {2 typically depends on #; Py then
reflects the manner in which the random environment is af-
fected by the decision parameter. The performance measure
a(0) associated with parameter value ) is then defined as

the expectation

a(6) = /n X(6,w) Ps(dw).

QOur goal is to describe an estimation methodology for calcu-
lating a’(00).

The likelihood ratio method for derivative estimation
is based on the following idea. Suppose that there exists a
measure [t (not necessarily a probability measure) such that
Pg(dw) = f(ﬂ,w)u(dw) ie. f(g, ) is the density of Py
with respect to fi. Then,

a(@):/ﬂX(G,w)f(ﬂ,w)u(dw).

Assuming that the derivative and integral can be inter-
changed, we obtain



o (60) = / X" (89, w) f (8o, w)p(dw)
f (2.1)

+ /n X (80,0) (60, 0)p(dw).

We note that the first term on the right-hand side of (2.1) is
just EgDX '(00) (where Eg() denotes the expectation oper-
ator associated with Pp). Since this term can be represented
as the expectation of a r.v., standard Monte Carlo methods
may be applied to estimate it. Specifically, suppose that one
simulates i.i.d. replicates of X’(Go) under distribution Pgo;
the sample mean of these observations then converges (at rate

n~1/2 in the number n of observations) to the first term.

To handle the second term using Monte Carlo methods,
we need to represent it as the expectation of a r.v. To ac-
complish this, suppose that g(w) is a non-negative function
such that

/ g(w)p(dw) = 1. (2.2)
Q

Then, the measure P(dw) = g(w)p(dw) is a probability
distribution on £2. If ¢ has the additional property that

IX(HO)w)fI(HO,UJ)l > 0 implies )3
that g(w) > 0’ (2.3)

then we can represent the second term as

f-'%;)flg(w)u(dw) — EX(00)H (00)

/ X (09, 0)
N

(2.4)
where H(()O,w) = f’(ﬂo,w)/g(w) and E() denotes ex-
pectation relative to the probability P. (Note that (2.3) is
required to avoid dividing by zero in (2.4).) Given the repre-
sentation (2.4) of the second term as an expectation, we can
now easily apply Monte Carlo methods to estimate it (in the
same way as for the first term).

We now turn to the question of selecting the sampling
density g. The theory of importance sampling asserts that
the choice of ¢ which minimizes the variance of the observa-

tions of X(QO)H(BO) is

g*(w) - ‘X(go,w)fl(eo,(&))l

= fﬂ IX(oo’w)f'(go,w)lp(dw)’ (2.5)
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see GLYNN and IGLEHART (1989) for further details. Un-
fortunately, the optimal sampling density ¢* basically re-
quires knowledge of the integral (appearing in the second
term in (2.1)) that we are trying to estimate. Therefore, the
choice of ¢* as defined by (2.5) is typically impractical to
implement.

We now describe a popular alternative to §*. Suppose
that the densities f(ﬁ,w) are such that for § in an open
neighborhood of g,

A(9) = {w: f(6,w) >0} is (25)

independent of @. .
Then, f(eo,w) = 0 implies that f(O,w) vanishes in a
neighborhood of #, from which it follows that f’(00, w) =0,
so that fl(ﬂo,w)X(ao,w) 0. Thus, g(w)
J (8o, w)p(dw) satisfies both (2.2) and (2.3). In this case,

_ f’(eo,W)

H00:w) = T5(gy,w)

(= d%log f(ﬂo,W)) ;o (27)

the right-hand side of (2.7) is known as the likelihood ratio

. . _ d few) . .
derivative (because H (6g,w) = 36 F(oey is the deriva-
tive of the quantity know in the statistics literature as the
likelihood ratio of Py with respect to Py, ).

This choice of ¢ has an important advantage. Note that
if we sample outcomes W according to f(00,w)u(dw), we
can use the c.v.’s X(Ho), X'(Bo), and X(go)H(Oo) to esti-
mate a(ﬂo) and both the terms appearing on the right-hand
side of (2.1) simultaneously. Thus, with this choice of g, we
may estimate 0(00) and a/(ﬁg) using the original sampling
distribution associated with parameter . At the same time,
it should be noted that there are important problem classes
(e.g. rare event simulations) in which much better choices of

g can be made (better in the sense of smaller variance).

We close this section by recalling that to derive (2.1),
an interchange of the differentiation and expectation oper-
ators was required. In virtually all practical examples, the
interchange is valid under mild additional regularity assump-
tions on the problem. As a consequence, we shall ignore this

interchange issue throughout the remainder of this paper.

3. LIKELIHOOD RATIO DERIVATIVE
ESTIMATION IN DISCRETE TIME

In this section, we specialize the discussion of Section 2

to the case where X (9 , w) is a sample performance measure



associated with a discrete-time sequence ¥ = (Yn n2> 0)
taking values in a discrete state space 5. Specifically, we
suppose that {2 = 5 XS X. .. and that Y}, is the coordinate
r.v. Yn(w) = Wy forw = (wo,wl, .. ) € ). We assume
that X(@) takes the form

X(6) = h(8,Y,,Y1,...),

for some real-valued function h. Since S is discrete, there

exist joint probability mass functions pg, p1, ... such that

Py{Yo =yo,...,Yp = yn}:pn(ayyn) (3.1)
where :_Jn = (yo, R ,yn). Letting
Pn(g, yn-—l;yn)
= PG{Yn = ynlYO = Yo, -- ')Yﬂ—l = yn—l}v
we can write (3.1) as the product
Po{Yo =yo,...,Yn = yn}
n-1
— (3.2)
= po(8,y0) [ ] px(8, Vs a41)
k=0

Suppose now that X(0) is a function of Y up to some finite
(deterministic) time horizon 1M, so that X(()) = h(8, Ym)
where Y, = (Yo, .. ,Ym). To apply the idea of Section 2,
we need to obtain a representation Pg( dw)

f(ﬁ,w)u(dw) for some measure fi. But observe that for
w € Qm,

n—1

Py(dw) = po(8;w0) [ pe(8, @r;wht1) pim (dw)
k=0

Wr = (wo, . ,wk) and i, is counting measure on §2,,, =
SxSx--- xS (m+1 times). Hence, we may take

m—1

£(0,w) = p(8,wo) [] P8, @k;wis1),
k=0
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so that
m-1
f'(80,w) = p'(80,wo) [] pe(Bo, wr;wis1)
k=0
m-—1
+ p(80,w0) > _Pi(80, wk;wi41)] [ (B0, W 5w 41)-
k=0 i#k

(3.3)

We can simplify the above formula somewhat. We claim that
if pr(fo,wr,wrt1) # 0, it that
pk(oo, Wg, wk+1) > 0. For suppose that pk(‘Bo,wk ;wk+1)
= 0. Then it follows that

must follow

pr(B0 + b, wi;wig1) = ph(00, Wi;wi 1)k + o(h)

ash 1 0, from which it is evident that pk(go-i-h, zk;wk+1)
< 0 for some h. But pk(g, ;k;wk+1) is a mass function
and hence must be non-negative. This contradiction guaran-
tees that pk(eo, L_Jk ; wk+1) > 0. A similar argument shows
that po(ao,wo) > 0 whenever pg(go,wo) # 0. Hence, we

may write (3.3) as

f'(Bo,w) =
-1 —
F(00,w) | Pell0w0) | S~ ph(0o, & wki1)
Po(fo,w0) * £ pr(Bo, @k;wrp1)
Suppose that we <choose a ¢ such that

fﬂm g(w)ptm(dw) = 1 and f(fp,w) > O implies that
g(w) > 0; then (2.3) is automatically in force. (In particu-
lar, setting g(w) = f(fo,w) works.) Hence, we find that

a’(t‘)o) = E,%X’(Ho) + EgX(eo)H(ao) (3.4)

where E_q() denotes the expectation operator associated
with the probability Pg(dw) = g(w)p,,(dw), Eo() de-

notes expectation relative to Py, and

H(6o) =
f(B0,Ym) [Ph(60,Y0) | R (8o, Y3 Yiean
9(Ym) Po(6o, Yo) k=0 Px(00,Yk; Yig1

The same argument can be extended to a certain class

of random time horizons. In particular, suppose that T is



a stopping time with respect to Y i.e. for each m >
0, I(T = m) = k‘m()_;m) for some function k,,. We
assume that the performance measure X (9 ) is a function of
the path of Y up to the random time horizon T i.e. there
exists a family of functions hg, Ry, ... such that

X(0) = i b (0, Y ) [(T = m)
m=0 (3'5)

= hp(8, Y 1)I(T < ).

As in the derivation of (3.4), we need to represent Py as

Py(dw) = f(8,w)p(dw). Let Qp = UZ_o{Wm € U :

km(U,,,) = 1} and note that forw = (wo,wl, . ,wT) €
Qiy
Py(dw) =
T-1
- (3.6)
po(6,w0) T pe(8, W ks wrs1)ur(dw)
k=0

where {7 is counting measure on Q7. Suppose that g is
chosen as a non-negative function on {0 having the property
that [y 9(w)pr(dw) = 1 and po(fo,wo)[Tioo
pk(eo, Uk;wk+1) > 0 implies that g(w) > 0 forw € Q7.
By combining (3.5) and (3.6) and proceeding as in the deriva-
tion of (3.4), we obtain the following stopping time general-
ization of (3.4):

a'(60) = Eg,X'(00) + Eg X (80)H(6o)  (3.7)

where

T-1 =
H(o) = Po(fo, Yo) Hk:ofk(go,yk,yk+l)
9(YT)
T-1 , —
(00, Yk; Yet1)
k=0 Pr(Bo, Yi; Yit1)

PB(GO’YO)
po(fo, Yo)

As in the case of (3.4), one possible choice of ¢ is f(fp), in
which event (3.7) simplifies to:

o' (00) = Ego[X'(60) + X(60)H(6o)]  (38)

where
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H(6o) =

(60, Yo) +T‘1p;(oo,x7k;n+1)
Po(6o, Yo) k=0 Pk(00, Y x; Yi41)

We now give a couple of examples to illustrate (3.7) and
(3.8).

(3.9) EXAMPLE. Suppose that under distribution. P, Y is
a Markov chain with initial distribution /1(0) and transition
matrix P(o). Assume that X(0) = hT(YT)I(T < OO)

(with T" a stopping time), so that a(f) = Ee{hT({;T);
T < 00}. Then, (3.8) yields

o'(80) = Eo {hr(Y1)H(00);T < o0},  (3.10)

where H(ao) = ;4'(00, Yo)/p(go, Yo)+

Z__-__ol P'(9o, Y:, Yk+1)/P(90, Y, Yk+1). In certain set-
tings, the estimator suggested by (3.10) may have a large
variance (e.g. rare event simulation). For such problems,
suppose that we select ¢ to satisfy the positivity conditions
stated earlier. Then

o (o) = Eg{hr(Yr)H(80);T < oo},  (311)

where H(00) = [1(00, Yo)l_[’{;ol P(go, Yk y Yk+1)
T-1

/9(YT) - [#' (80, Yo)/11(80, Yo) + Z P'(60,Yk, Yi+1)
k=0

/ P(go,Yk,Yk.H)]. In a “rare event” setting, one would
typically choose ¢ so as to bias the system to force the oc-

currence of more rare events.

(3.12) EXAMPLE. In this example, we assume that under
Py, Y is a Markov chain with non-stationary transition
probabilities, so that Pp{Yr+1 = we41|Ye = ¥} =

Pk(g, Yk, yk+1). Then, if a(0) = Eg{hT(?T);T<m},
(3.8) yields

o/(60) = Ea,{hr(YT)H(60); T < 00}

where H(OQ) = /J'(oo, Yo)//.t(ao, Yo)-—l—
ZZ‘;OI P,:(oo, Yk,Yk_H)/P(eo, Yk, Yk+1) ; the obvious
analog of (3.11) can also be written down.



4. LIKELIHOOD RATIO DERIVATIVE
ESTIMATION IN CONTINUOUS TIME

This section is devoted to generalizing the ideas of Sec-
tion 3 to continuous-time discrete-event dynamical systems.
We view X (e,w) as a sample performance measure asso-
ciated with a continuous-time process (Y =Y (¢) : ¢t > 0)
taking values in a discrete state space S. The process Y is as-
sumed to be piece-wise constant with jump times
51,82,... (Sp — 00 asn — 00). Hence, if So = 0 and
Y, = Y(Sn), we may write

Y(t) = YaI(Sa <t < Spy1):

n=0

Let A, = n+1 — Sy and put Z, = (Yn,An). We
suppose that 2 = S' X S X ... whereg =S x [0,00)
and that Z,, is the co-ordinate r.v. Z, (w) = wy, forw =
(wo,wl, .. ) e Q.

In order to proceed in parallel with the development of
Section 3, we shall require that the distributions Py on €2
have the property that there exist measures fig, f41, ... such
that

Py{Zy € dzp} = po(8, z0)po(dzo)
Po{Zn+1 € dzn-{-ll}n = ?n}

= Pn(gy -;n, zn+1)ﬂn(?n, dzn+1)

where En = (Zo,...,Zn) and 2,; = (z0,...,2n) €

Sx...x8= Q,, ((n+ 1) times). Then, analogously to
(3.2), we may write

Po{Zn €dzn} =

ﬂ—'l -— — (4‘1)
po(8,20) [T Pr(6, 7 &5 2k41)n (d7 )

k=0

n—1

where f1(d7 ) = po(dzo) [ [ m(Z &, dzk41).
k=1

Suppose now that we consider a performance measure
X (0) that is a function of the path up to horizon T'; this
obviously includes any performance measure that depends on
Y up to time ST+1 . As in Section 3, we require that 7" be
a stopping time with respect to Z = (Zn n 2> 0) i.e. for
eachm > 0,I(T" = m) = km(zm) for some function
km. Then, the performance measure X (9) may be written

in the form
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X(0) = S 6,701 = )
k=0

= he(Z7)I(T < o).

Let Qr = U2_o{Zm € Qn @ kp(@m) = 1} and
note that for ?T = (zo, ..
(4.1) to

.y ZT) € Qr, we may extend

PO{ET €dzp} =
T-1

po(6, z0) T] pr(6, % ks 2k ur(dz 1)
k=0

T-1

where ;LT(dZT) = ;Ao(dZo) H ﬂk(zk;dzk+1)- By ar-
k=0
guing identically as in Section 3, we obtain the following

continuous-time generalization of (3.7). Suppose ¢ is chosen
as a non-negative function on Q7 having the property that
o 9GZT)ur(dzT) 1 and po(fo, 20) [Tico
pk(go, ?k, zk+1) > 0 implies that g(?T) > 0 for ?T c
Qr. Then, if E_q() is the expectation operator associated
with P(d?T) = g(?T)ﬂ(d?T), we obtain the derivative
representation

o'(60) = Egy X'(60) + Eg X (60) H(6o)
for a(0) = Eg{h(@, ET);T < OO}, where

T-1
H(6o) = po(fo, Zo) H pe(90, Zk; Zr41)/9(ZT)
k=0
/ T-1 , ..
| P60, Zo) P80, Zx; Zx+1)
Po(00, 20) * {=3 pi(8, Zk; Zesr)
(4.2)
As in Section 3, one possible choice for ¢ is g(;T)

T-1 g . . .
= po(eo,Zo) Hk=0 pk(eo, 2k, 2k+1), in which case P is
identical to Pﬂov yielding

o' (60) = Ego[X'(60) + X(60)H(f0)]  (4.3)

where



Po(0o, Zo)
pO(GO) ZO)

pk(001 Zkka+1)
=5 (6o, Z; Zirn)

H(6y) =

We shall now illustrate these formulae with some examples.

(4.4) EXAMPLE. Suppose that under Py, Y is a continuous-
time Markov chain with initial distribution y(6) and gener-
ator Q(0). Assume that X(8) = h(Y(s) : 0 < s < t).
Then, X (9) can be
X(6) = il(Zo, Zi,y..., ZT) where T is the stopping time
T =inf{n > 0: Y7 _oAr > t}. Set 2n = (Yn,tn)
(recall that 2, € S=8x [0,00)). Then,

represented as

Py{Zo € dzo} = po(9, z0) po(d20)

where po(6, y0,0) = (8, ¥0)a(8, yo) exp(—q(f, yo)to),
q(0,y) = —Q(0,y, y), and ,uo(dZo) is the product of

counting measure and Lebesgue measure. Furthermore,

PO{Zn+1 € dzn-i-llzn = ?n} =

pn(o; ?n; Zn+1)/~ln(?m dzn+1)

where pn(o: ?1“ zn+1) Q(B) Yn, yn-_i»__l)‘I(a, yn‘l'l)
eXp(—Q(aa yn+1)tn+l)/Q(9; yn) and Pn( Zn, dzn+1) is

again the product of counting measure and Lebesque mea-

sure . Formula (4.3) now becomes

a'(80) = Eg,[h(Y () : 0 < s < t)H(by)]

where
(60, Yo) Ql(goyyksYk+1)
H(6 —_—
(80) = #(9 Yo) Z Q(00, Yk, Yiy1)
g'(60, Y1) )
—_— 6o, Yi)A.
q(OO;YT) QQ( 0 k) k

(4.5) EXAMPLE. Suppose that under Pj,Y is a semi-
Markov process with initial distribution /,t(g), jump matrix
R(6), and holding time distributions (F(6,=, dty:z € 95).
Suppose that for each z, F{(#,z,dt) = f(8,z,t)u(z, dt)
for some measure ft. Assuming that X (6) = h(Y(S) 0L
s < 1), we again put T' = inf{n > 0: Z:=0 Ar > t}.
Formula (4.3) becomes
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o (60) = Ego[R(Y (5) : 0 < 5 < 1)H(60)]

where

1/ (60, Yo)
”‘(0 ) YO

J (60, Y, Dk)
+Z F(0o, Ye, Br)

'(60, Yi, Yit1)

H(o) = Z R(00, Yk, Yi41)

(4.6) EXAMPLE. In this example, we show that (4.3) easily
handles the case where the process is non-time homogeneous.
In particular,, suppose that under Pj,Y is a non-time ho-
mogeneous continuous-time Markov chain with initial distri-
bution ,u(H) and time-dependent generator Q(a, t). Then,

Po{Ynt1 = 4, Any1 € dt|Z,)

= Q(ga Sﬂ+1 ) Ym y)
q(07 Sn+1)Yn)

t
exp(—/ ¢(6, Sp+1 + u, y)du)dt
0

q(60,Sn41+t,y)

where ¢(0,1,y) =
h(Y(s) :0<s<t) Bweput T =
E:__:O Ay > t}, then (4.3) takes the form

—Q(0,t,y,y). Suppose that X (0) =
inf{n >0:

a'(0o) = Ego[n(Y (5) : 0 < s < t)H(o)]

where

H (00; YO
(60, Yo) Yo)

q(60, ST+1,YT)

Z 2 Q'(80, Sk41, Ve, Y1)
Q(00, Sk+1, Y, Yes1)

Skt1
Z/ q' (60,1, Y3 )dt.
S

H(6o) =

(4.7) EXAMPLE. We now suppose that Y is a generalized
semi-Markov process (GSMP) under Fy; see GLYNN (1983)
for further details on GSMP’s. Let E be the event set of the
GSMP. The initial state of the GSMP is chosen according
to the distribution /1(9), whereas the initial clock readings
are chosen from the distributions F(g, e,dt). fore € E.



When clock € initiates a transition from state Y, the next
state is chosen from the mass function p(0 Y, e). Typ-
ically, when the GSMP enters a new state, certain clocks
need to be stochastically resei. We assume that the distri-
bution used to reset clock €’ in state §’ when a transition
just occurred from state § with clock € as triggering event
is given by F'(8,¢’, ¢/, e,y, dt). We require that there exist
measures (e, dt), u(e’,y', e, y, dt) such that

F(0,¢,y e, y,dt)

= f6,€,y,e,y,t),u(e, e, y, dt) (45)

F(0,e,dt) = f(8,e,t)p(e,dt).

In a strict sense, the analysis of this section does not ap-
ply to GSMP’s, since the appropriate state descriptor for a
GSMP includes the value of all the clock readings. Such a
state descriptor can not typically be encoded as an element
of ,§' =S x [0,00). However, a close examination of the
analysis given earlier shows that the essential feature was that
( Ya, An) be representable as a simple function of the process
Zpn; Zy need have no structure beyond (4.1). In particular,
Zy, need not be an element of S. In the GSMP setting, the
natural candidate for Z is the tuple Z, = (Yn, Cn), where
Ch, is the vector that describe the residual amount of time
left on each of the clocks that are active in state Y,,. Clearly,
A,, is a simple function of Z,, (in a GSMP with unit speeds,

A, is just the minimal element in Cn); furthermore, under

(4.8), the distribution Py for Z,, can be written in the form
(4.1).

Let N(y’;y, e) be the set of clocks active in ¥ that
need to be stochastically re-set when a transition from y
We further de-
fine e* (c) to be the index of the triggering event associated

just occurred with event € as the trigger.
with clock vector ¢; we assume €* is uniquely defined for
each ¢. Suppose X(6) = h(Y(5) : 0 < s < t). If we put

T=inf{n>0: Z;::O A > t}, it is easily verified that
(4.3) takes the form

o' (8o) = Ego[(Y(s) : 0 < 5 < T)H(6o)]

where
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H(6o)

i (60, Yo) Tz‘:‘ (80, Yis1; i, €* (Ci))
(6o, Yy) P(00, Yiq1; Yi, €*(Ck))
f (00,6 CUC)

* 2 Fdore, Coo) +E

f (HO’CaYk 3 et(Ck—l)vyk-l aCke)

*Cr-1),Yi—1,Cre)
eeN(Yk;Yk—1#'(Ck-1))f(00,e,Yk’e(Ck 1)’ k-1 ke)

f(goy €, COe)

The above examples serve to illustrate the great variety
of stochastic processes to which likelihood ratio derivative

estimation may be applied.
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