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ABSTRACT 

In  th is  paper ,  we d iscuss  some  research  issues r d a t e d  to 

the  general  topic  of  op t imiz ing  a s tochas t ic  s y s t e m  via  s imu-  

lat ion.  In par t icu la r ,  we devote  ex tens ive  a t t en t i on  to finite- 

difference e s t im a t o r s  of  object ive  func t ion  grad ien ts  and  pre- 

sent  a n u m b e r  of new l imit  theorems .  We also discuss  a new 

family  of o r thogona l  func t ion  app rox i ma t i ons  to the  global 

behav io r  of  the  objec t ive  funct ion .  We show t ha t  if the  ob- 

ject ive func t ion  is sufficiently smoo t h ,  the  convergence ra te  

can  be  m a d e  arbi t rar i ly  close to n -1/2 in the  n u m b e r  of ob- 

servat ious  required.  T h e  pape r  concludes  wi th  a brief  discus- 

sion of how these  ideas can  be i n t eg ra t ed  into an  op t imiza t ion  

a lgor i thm.  

1. I N T R O D U C T I O N  

In recent  years ,  considerable  a t t en t i on  h a s  been  de- 

voted,  in the  s imula t ion  l i te ra ture ,  to the  deve lopment  of al- 

go r i t hms  for op t imiz ing  complex  s tochas t i c  sys t ems .  In  this  

paper ,  we shall  focus on descr ib ing some  of the  basic  issues 

t ha t  arise in the  s t u d y  of numer ica l  op t imiza t ion  rout ines  for 

f in i te -d imensional  con t inuous  p a r a m e t e r  op t imiza t ion  prob- 

lems.  

To precisely descr ibe the  class of  p rob lems  t ha t  we shall  

consider ,  let /gEA be  the  decision p a r a m e t e r  over which  the  

op t imiza t ion  is to occur;  the  set A C ff~d is the  admiss ib le  

set  of decision pa r ame t e r s .  For e ach / gcA ,  let ( ~ ,  .T', Pt~) be 

the  assoc ia ted  probabi l i ty  space.  T h e  probabi l i ty  m e a s u r e  

P0 descr ibes  how the  r a n d o m  env i ronmen t  is affected by the  

choice of/9. For each /9~A,  let Z ( / 9 )  be a real-valued r a n d o m  

variable co r respond ing  to t he  "cost" of  r u n n i n g  the  s y s t e m  

unde r /9 .  T h e n  

(1.1) = X( /9 ,w)P(dw)  

is the  expec ted  cost  of r u n n i n g  the  s y s t e m  u n d e r  pa rame-  

ter  /9. A s s u m i n g  A is some  open  subse t  of  ff~d, the  general  

f in i te -d imens iona l  con t inuous  p a r a m e t e r  s tochas t ic  opt imiza-  

t ion p rob lem involves f inding /9*EA to min imize  ol(/9), sub-  

ject  (possibly) to cons t r a in t s  of the  form 

fli(/9) g fnYi(/9,w)P/9(dw) _> O, 

1 < i < ra ,  where  {Y/(/9) : 1 < i < m }  is a collection of 

" r a n d o m  cons t ra in t s . "  

In  mos t  pract ical  appl ica t ions ,  the  objec t ive  func t ion  

ol(/9) and  the  cons t ra in t s  fli(/9) are  " smoo th"  func t ions  of 

the  decision p a r a m e t e r  /9 (even t h o u g h ,  typically,  Z ( / 9 ,  w)  

and  the  Y / ( / 9 ,w) ' s  are not  global ly s m o o t h  in  /9, for fixed 

w).  Given  t ha t  t he  func t ions  Ol(/9) and  f l i ( /9)(1  < i < m )  

can  be  cheaply eva lua ted  wi thou t  error,  de te rmin i s t i c  m a t h e -  

ma t i ca l  p r o g r a m m i n g  techniques  m a y  be  appl ied  to the  above 

op t imiza t ion  problem.  Such m e t h o d s  typical ly take  advan-  

tage  of der ivat ive in fo rmat ion  of some  k ind  (often eva lua ted  

t h r o u g h  numer ica l ly  s table  f inite-difference app rox ima t ions ) .  

Of  course,  in the  con tex t  of a complex  s tochas t ic  sys t em,  

the  object ive func t ion  Or(/9) a n d  the  cons t r a in t s  ~i( /9)  will 

typically be  eva lua ted  via  Monte  Carlo s imula t ion .  As a con- 

sequence,  there  will be  r a n d o m  error  a ssoc ia ted  wi th  the  cor- 

r e spond ing  func t ion  evaluat ions .  In  spi te  of t he  presence  of 

such  error, it is to be  expec ted  t h a t  der ivat ive  in fo rmat ion  

will cont inue  to play an  i m p o r t a n t  role in the  deve lopment  

of  successful  op t imiza t ion  a lgo r i thms  based  on  s imula t ion .  

A signif icant  por t ion  of th is  pape r  is therefore  devoted  to 

a d iscuss ion  of the  various approaches  t h a t  m a y  be  used  to 

calcula te  der ivat ives  (or, more  generally, gradients)  via  sim- 

ulat ion.  

Section 2 is devoted  to a d i scuss ion  of the  convergence 

character is t ics  of finite-difference es t imators ;  m u c h  of this  

ma te r i a l  appear s  here  for the  first t ime.  In  Sect ion 3, we de- 

scribe a class of  unb ia sed  grad ien t  e s t ima to r s  t ha t  are based  

on  likefihood rat io ideas. Section 4 focuses  on a class of  gra- 

d ient  e s t ima t ion  techniques  for d iscre te-event  s y s t e m s  known 

as p e r t u r b a t i o n  analys is  m e t h o d s .  T h e  e s t ima to r s  of  Sect ions 

3 and  4 b o t h  typical ly a t t a i n  a s o m e w h a t  fas te r  convergence 

ra te  t h a n  t ha t  available t h r o u g h  the  finite-difference m e th o d s '  

of Section 2. T h e  d iscuss ion  of Sect ions 2 t h r o u g h  4 e m p h a -  

sizes the  scalar  se t t ing  in which d ---- 1; Sect ion 5 is therefore 

devoted  to descr ibing the  ex tens ion  of these  ideas  to the  case 

in which  the  decision p a r a m e t e r  0 is vector-valued.  
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In  Sect ion 6, we discuss  some  new resu l t s  re la ted  to 

global a p p r o x i m a t i o n  of the  object ive func t ion  ( a n d / o r  con- 

s t ra in ts )  by or thogona l  func t ions  (specifically, t r igonomet r ic  

polynomia ls ) .  One  way to apply  such  "surface f i t t ing" tech- 

n iques  is to opt imize  t he  f i t ted surface (us ing  de te rmin is t ic  

m e t h o d s )  a n d  to use  the  resu l t ing  opt imizer  as an  approxi-  

m a t i o n  to the  op t imizer  of the  t rue  surface.  

Section 7 is devoted  to a d i scuss ion  of how the  resul ts  of 

Section 2 t h r o u g h  6 can  be  used  in an  op t imiza t ion  se t t ing.  

Specifically, we discuss  some  of the  convergence theory  for 

the  Robb ins -Monro  a n d  Kiefer-Wolfowitz a lgor i thms .  

2. F I N I T E - D I F F E R E N C E  E S T I M A T O R S  

In  this  section,  we describe some of the  finite-difference 

app rox ima t ions  t h a t  can  be  used  to numer ica l ly  calculate  the  

derivat ive of a func t ion  o~(0) of the  form (1.1), when  0 is 

scalar  (i.e., 0&ff~). In  Section 5, we discuss  the  special  con- 

s idera t ions  t ha t  arise in deal ing wi th  gradients  of func t ions  

in which  the  p a r a m e t e r  0 is vector-valued (i.e., O¢ff~d). 

2.1 F o r w a r d - D i f f e r e n c e  E s t i m a t o r s  

Suppose  t h a t  we wish to e s t i ma t e  oat (00) .  T h e  i d e a h e r e  

is to e s t ima te ,  via s imula t ion ,  the  func t ion  values o~(00 + 

h )  a n d  c~(00) a n d  to fo rm a cor respond ing  finite-difference 

a p p r o x i m a t i o n  to OJ(00) .  More specifically, let  X i ( 0 0  "+ 

h), X2(Oo+h),. . .  bei . i .d ,  repl icates  of the  r.v.  X ( O 0 + h ) ,  

s imu la t ed  unde r  c o m m o n  d i s t r ibu t ion  POo+h. Similarly, we 

let X I ( O 0 ) ,  X2(Oo),... be an  independen t  s t r e a m  of i.i.d. 

repl icates  of the  r.v. X(Oo), genera ted  u n d e r  c o m m o n  dis- 

t r ibu t ion  POo' Cons ider  t he  forward-difference e s t ima to r  

n i=1 h 

The  de t e rmi na t i on  of the  bes t  possible  difference incre- 

m e n t  h in t roduces  a t rade-off  be tween  the  variance of the  

e s t ima to r  and  i ts  bias.  If h is chosen too smal l  (relative to 

/1), the  var iance con t r ibu t ion  to the  m e a n  square  error will 

domina te ,  whereas  if h is chosen too large (relative to /l), 

the  bias  will govern the  convergence rate .  It t u rns  out  t ha t  

the  op t ima l  difference inc rement  h -- hn, in this  se t t ing ,  is 

typically of order  r / - 1 / 4 .  To r igorously s ta te  the  resul t ,  we 

a s s u m e  tha t :  

(2.1) 

i) Po{X(O)e'} =:*- Poo{X(Oo)¢'} as 0 ~ Oo (=~ de- 

no tes  convergence in d i s t r ibu t ion) ,  

ii) 0 < varoo X(Oo) ~ Eoo(X(Oo)-  o~(00)) 2 < oo  

(E8 ( ' )  denotes  t he  expec ta t ion  ope ra to r  cor respond ing  

to P0) ,  

iii) 0"2(0) A = pare X(O) is continuous in an open neigh- 
borhood of 00, 

iv) a ( 0 )  ---- EoX(O) is infini tely differentiable in a n  open  

ne ighborhood  of 00. 

T h e  following t h e o r e m  s t a t e s  t h a t  ff the  difference in- 

c rement  is chosen opt imally,  t hen  the  convergence ra te  of 

z~O~l(n , hn) to o / ( 0 0 )  is rt - 1 / 4 .  

(2.2) T H E O R E M .  Assume (2.1). If 0~"(00) ~ 0, then:  

a) if nl/4hn ~ oo with  hn ~ O, nl/41Aoq(n, hn) - 

a ' ( 0 0 ) l  ~ o o  as  n ~ ~ (we say  t h a t  Z ~  ~ 0 ¢  as 

n ~ o e  if, for every K > 0, P{Zn > K }  ~ 1 as 

n - - ~  oo) ,  
b)  if nl/4hn ~ O, nl/41Aal(n, hn) - a'(O0)l ~ oo 

a s h  -'-¢" 0 0 ,  

c) if nl/4hn ~ h > O, t h e n  nl /4(Aal (n ,  h n ) -  

- - ~ - ~ 2 ~ 2 N ( 0 ,  1) - ha"(Oo)/2 as n 
h 

0 0 .  

T h e  proof  of this  resul t  appea r s  in the  Append ix .  (A 

s imilar  theorem,  unde r  different hypo theses ,  appea r s  in FOX 

and  GLYNN (1989),) We note  t ha t  the  value of h which 

min imizes  the  second m o m e n t  of the  l imi t ing  r.v.  appea r ing  

in c) is 

h* ] 

T h u s ,  the  difference inc rement  t h a t  min imizes  a sym p to t i c  

m e a n  square  error  is hn = h*n -1/4. Thi s  resul t  was ob- 

t a ined  previous ly  by ZAZANIS and  SURI  (1986). It  is worth  

observ ing  t ha t  if one wishes to min imize  the  m e a n  absolu te  

error of the  es t ima tor ,  t h e n  the  op t ima l  difference inc rement  

takes the  fo rm h .  = h,n -1/4, where (typically) h .  ~ h * .  

(To see this ,  observe tha t  h .  would be  ob ta ined  by minimiz-  

ing the  first abso lu te  m o m e n t  of the  l imi t ing  no rma l  r.v. ap- 

pear ing  in c).) S t a t ed  more  abs t rac t ly ,  the  L 2 and  L 1 error 

cri teria do not  yield precisely the  s ame  sequence  of op t ima l  

difference increments .  

2 .2  C e n t r a l - D i f f e r e n c e  E s t i m a t o r s  

T h e o r e m  2.2 s t a tes  t ha t  the  forward-difference es t ima-  

tor converges (at bes t )  at  ra te  n - 1 / 4  to the  derivat ive 

a l ( 0 0 ) .  One  way to improve u p o n  this  poor  convergence 

rate  is to ins t ead  use  a central-difference app rox ima t ion  to 

the  derivative.  W h e n  func t ion  eva lua t ions  are m a d e  with- 

out  error, th is  is known  to be  a numer ica l ly  more  accura te  

app rox ima t ion  to the  derivative.  
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To precisely define the  es t imator ,  we let  X i ( 0  0 --~ h ) ,  

X2(Ùo "4- h ) ,  . . .  be  i.i.d, replicates of the r.v. X(Oo + h), 
s imulated under  common dis t r ibut ion Peo+h" Similarly, we 

let X1 (00 - h ) ,  X 2 ( 0 0  - h ) , . . ,  be  an independent  s t ream 

of i.i.d, replicates of the  r.v. X(Oo -- h), generated under  

POo-h. The  central-difference es t imator  is defined as 

n i=1  

The  following theorem summarizes  the  behavior  of 

A o t 2 ( n  , h ) ;  the  proof  is similar to tha t  of Theorem 2.2 and 

is omi t ted .  

(2.3) T H E O R E M .  Assume (2.1). If O~(3)(00) # 0, then:  

a) if nl/6hn -+ oo with hn ~ 0, nl/3]Aa2(n,hn) - 

- ' ( 0 0 ) 1  ~ o o  as  ~ - ~  ~ ,  
b) if nl/6hn ~ 0, nl/3Ia2(n,h,~ ) -o/(00)] :::v o o a s  

n -----~ oo ,  

c) if nl/6hn ~ h > 0, then  nl/3(Ao~2(n, h n ) -  
0 / ( 0 0 ) )  ~ X / 2 - 5 ~ N ( 0 ,  1) - -  b~-Ol(3)(00) as n - - - +  

0 0 .  

The  improved convergence ra te  (of order  n - 1 / 3 ,  as op- 

posed to n - 1 / 4  for forward differences) is obta ined here be- 

cause of the  fact tha t  central  differences are less biased than  

forward differences. This  permi t s  the difference increment  to 

be chosen larger (of order  n -1/6, as opposed to rt - 1 / 4  for 

forward differences) which, in turn,  reduces the variability of 

the es t imator .  

The  choice of h in c) tha t  minimizes the asymptot ic  

mean  square error of  the  central  difference es t imator  is (see 

also ZAZANIS and SURI (1986)) 

{ 9o.2(00) ~ 1/6 

h ,  = t , ~ /  . 

2 . 3  F i n i t e - D i f f e r e n c e  E s t i m a t o r s  U s i n g  C o m m o n  

R a n d o m  N u m b e r s  

The  central-difference es t imator  improves upon  the con- 

vergence ra te  of the forward-difference es t imator  by reducing 

i ts  bias (for fixed h).  The  m e t h o d  tha t  we shall describe here 

improves upon  the convergence rate  of the  forward-difference 

es t imator  by reducing its variabifity (for fixed h) .  The  idea 

is to generate  the replicates of X(O 0 + h) using the same 

s t r eam of r andom numbers  tha t  were used to obta in  the repli- 

cates of X(O0). This,  of course, is no th ing  more  than  the 

m e t h o d  of common random numbers ,  as appl ied to derivative 

est imation.  

Suppose tha t  the  r.v. Y ( 0 0  "4" h )  is p roduced  f rom the 

same s t ream of r andom numbers  as is X(Ùo) and  shares 

the  same dis t r ibut ion as does X(O0  "4- h )  under  POo+h. 
By convention,  we set Y(Oo) -- X(Oo). Let A Y ( h )  = 

Y ( Oo + h) - Y ( Oo ). We make the  following assumpt ions  

about  our common random number  scheme: 

(2.4) 

i) P{Y(h)¢.} = Peo+h{X(Oo + h)¢ .} ,  
ii) E A r ( h )  2 = ho'~ + o(h) as h I O, where o'1 ~ > 0, 

iii) there  exists C > 0 such tha t  EIAY(h) I  2+~ = hill + 
o ( h )  as h J. O, 

iv) or(O) = EoX(O) is two t imes cont inuously differen- 

t iable in an open ne ighborhood  of 00. 

Let AYi (h ) ,AY2(h ) , . . .  be  an i.i.d, sequence of 

repfieates of the  r.v. AY(h) .  The  forward-difference com- 

mon r andom numbers  es t imator  for o/(O0) is then  given by 

1 A Y i ( h )  
A a 3 ( n , h )  = - 

n i : 1  h 

Before proceeding to a s t a tement  of the  convergence rate  the- 

orem for a o ~ a ( n ,  h ) ,  we pause to discuss our  assumpt ions  

further .  Consider  the  typical  discrete-event  system. Let 

A(h) be the event tha t  Y(Oo + h) experiences a change 

in the order  of events from tha t  exper ienced by Y(Oo). On 

the event A(h), Y(Oo + h) - Y(Oo) is typically of uni t  

magni tude .  On the o ther  hand,  on the  complement  of A(h), 
Y(Oo -4- h) - Y(Oo) is typically of order  h in magni tude .  

Also, for most  discrete-event  sys tems P(A(h))  = Ah+o(h) 
for some A > 0. For p > 0, write 

E A Y ( h )  p _- EAY(h)PI (A(h) )+EAY(h)PI (A(h)C) .  

This decomposi t ion suggests tha t  for most  dlscrete-event  sys- 

tems,  g A Y ( h )  p = flph + o(h) for p _> 1. This  explains 

the form of (2.4) ii) and  iii). 

(2.5) T H E O R E M .  Assume (2.4). If OJt(O0) ~ 0 and 
nhn "~ oo, then: 

a) if n l / 3 h .  --+ oo with hn ~ O, nl/alAo~a(n,h,~) - 

~' (0o) I  ~ ~ as n --~ ~ ,  

as ' / /  ---'}" 00,  

c) ifnl/ahn -+ h > O, n l /a(Aaa(n,hn)-c / (Oo))  
~o~ (Co)  as n ~ oo .  ~ u ( o ,  i )  - h ,, 
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We note  tha t  the  convergence ra te  here is of order 

n - 1 / 3 ,  the  same as t ha t  ob ta ined  earlier for the central- 

difference es t imator .  Observe tha t  the opt imal  difference in- 

c rement  now is of order  n -113, which is much smaller than  

the  difference increment  of order  n - 1 / 6  derived for central  

differences. The  lower variability of the  common random 

numbers  es t imator  is wha t  permi t s  us to choose the smaller 

increment .  We fur ther  note  tha t  the  value of h appearing in 

c) which minimizes  the  asympto t i c  mean  square error of the  

es t imator  A a 3 ( n ,  hn) is 

h*=[ 2°~ ~1/3 
t " 

Of course, we can also combine central  differences and 

common random numbers .  Let A c Y ( h )  = Y(Oo + h) - 
Y(Oo - h). The  following assumpt ion  is the analogue of 

(2.4); 

(2.6) 

i) P { Y ( h ) ¢ . }  = Poo+h{X(Oo + h ) c . } ,  

ii) E A c Y ( h )  2 = ha~ + o(h) as h ~ 0, where o'22 > 0, 

iii) there  exists ¢ > 0 such tha t  EIAY~(h)[ 2+~ = hfl2 + 
o(h) as h I O, 

iv) Ol(0) ---- E o X ( O  ) is three times continuously dlfferen- 

t iable in an  open ne ighborhood  of 00. 

Let A c Y l ( h ) ,  A ¢ Y 2 ( h ) , . . .  be an  i.i.d, sequence of 

replicates of the  r.v. A c Y ( h ) .  The  central-difference com- 

mon r a ndom  numbers  es t imator  of o J (00 )  is given by 

1 A c Y i ( h )  
A ~ 4 ( n , h )  = - ~_~ 

n i=1 2h 

{ 9crg ~ 1/5 
h* 

= \ 4 a ( 3 ~ ( 0 0 )  2 ) 

2.4 F i n i t e - D i f f e r e n c e  E s t i m a t o r s  W i t h  A N e a r -  

O p t i m a l  C o n v e r g e n c e  R a t e  

In  the preceding three sections, we have discussed four 

different finite-difference est imators .  The  convergence rate 

was improved from order n - 1 / 4 ,  in the case of forward differ- 

ences with independent  s t reams of r a ndom numbers ,  to order 

n - 2 / 5 ,  which was achieved by a central difference est imator  

tha t  used a common s t ream of r andom numbers .  A natura l  

question tha t  arises here is whether  any fur ther  improvement 

is possible. In paxticular, can one obta in  finite-difference esti- 

mators  for thc derivative that  achieve a convergence rate that  

is arbitrari ly close to the best  possible rate  for a Monte Carlo 

procedure, namely r t - 1 / 2 7  We will now answer  this question 

in the affirmative by developing such a class of est imators.  

To produce  the type of es t imator  tha t  we have in mind,  

we need to obta in  a finite-difference approximat ion  to oct(00) 

tha t  is as unbiased as possible. Suppose,  for the  moment ,  

tha t  0L is an  analyt ic  funct ion in 0. T h e n  

(2.8) . (0  + h) = 
rt~0 

Let Thor be the  "shifted" funct ion defined by (ThOO(O) = 
c~(0 -+ h ) .  We fur ther  let Doe be  the derivative function 

specified by (Da)(O) = o~(1)(0). The  expansion (2.8) may 

then  be  wr i t ten  as 

The  proof  of the  following convergence rate  theorem for 

A a 4 ( n ,  h )  follows the  same fines as tha t  for a o ~ 3 ( n ,  h ) ;  

the proof  is therefore omit ted .  

(2.7) T H E O R E M .  Assume (2.6). If 0~(3)(00) ¢ 0 and 

nan --+ 00, then:  

a) if n l /Shn ~ c¢ with hn -+ O, n2/51Aa4(n,  hn ) - 

- ' ( 0 0 ) 1  ~ ~ as n --~ ~ ,  

b) if n l /Shn -.+ O, n2/5[Ao~4(n, hn) - 0~'(00)[ ~ oo  

as n ---+ O()~ 

c) ifnX/Shn ~ h > O, n ~ / 5 ( A a 4 ( n , h n ) - a ' ( O o ) )  ::~ 

~ h  N ( 0 ,  1) - ~-o~(3)(00) as n --~ oc .  

(2.9) 
h n 

Tha : ~ "~-Dn a. 
n:O 

Proceeding formally, we may rewri te  (2.9) in terms of the 

operators  Th and D as 

(2.10) Th = £ - ~ D n  = exp(hD) .  
nmO 

Thus,  combining common  random numbers  and central  

differences improves the  convergence ra te  of the derivative 
es t imator  to order  n -215 .  Fur thermore,  the difference in- 

crement  tha t  minimizes the  asympto t ic  mean  square error  of 

the es t imator  a 4 ( n ,  hn) is hn = h*n -1/5, where 

We now wish to express the  opera tor  D in terms of the  shift 

opera tor  Th : 

1 
D = ~ l o g ( T h ) .  
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E x p a n d i n g  the  l oga r i t hm in a fo rmal  power  series, we ob ta in  

(2.11) 
oo (__l)k+ 1 

1 Z(Th- i) k D = ~  k 
k = l  

n½- ~-~ (as(h,~, n) - c~'(00)) ::~ cr3N(0, 1) 

as n ~ OO, where o'~ = o'2(8o)Xm/h 2 and 

To ob t a in  a finite-difference app rox ima t ion  to 0/(80) = 
(Oo~)(8o), we t r u n c a t e  the  series (2.11) at  the  m ' t h  te rm:  

1 m [ l"tk+l 
D ~ ~ Z ( T h  - I ) k k ' - * ;  

k = l  

1 k k ( : )  (Th)l(--l)k-I (--l)k+l 
h k = l  l = 0  k 

Not ing  t h a t  (Th) g = Thg , we ob ta in  t he  following approxi-  

m a t i o n  to 0 / ( 8 0 ) :  

(2.12) ~'(80) ~ ~ k 
k = l  = 

To ob ta in  a finite-difference e s t i m a t o r  for o / ( 0 0 ) ,  we let 

X l ( 8 0  -~- h~), X 2 ( 8 0  -~- h ~ ) , . . ,  be  i.i.d, repl icates  of  the  

r.v. X(8o + hg), simulated under c o m m o n  d i s t r ibu t ion  

POo+hg(O ~ g ~_~ m).  We fu r the r  genera te  each of the  

m -4- 1 sequences  i ndependen t l y  of one a n o t h e r  (i.e., t he  se- 

quences  (Xi(Oo + hg) : i >_ 1) are mutually independent 
for 0 < g < m ) .  Set 

Z , ( h )  = k 
k = l  g=0 

T h e  expec t a t i on  of Zi (h) t hen  m a t c h e s  the  r i g h t - h a n d  side of 

(2.12). We t h e n  ob ta in  a finite-difference der ivat ive  e s t ima to r  

by se t t ing  

~t  

o 5(h,n) = _1 Z,(h) 
n 

i=1 

Our  nex t  t h e o r e m  descr ibes  the  convergence ra te  of 

Oth(hn ,  n ) ,  when  the  difference inc remen t  is chosen appro-  

priately.  

(2.13) T H E O R E M .  A s s u m e  (2.1). I f m  > 1 and  hnn 1/2m 
h > 0 a s  n - - +  ~ , t h e n  
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According to T h e o r e m  2.13, the  convergence  ra te  of 

ah(h,~,n) m a y  be m a d e  as close as we wish to rt - 1 / 2 ,  by 

choosing m sufficiently large.  To some  ex ten t ,  th is  conver- 

gence ra te  is deceptive.  Note,  in par t icu lar ,  t h a t  the  con s t an t  

Xrn is increas ing in rn .  Fu r the rmore ,  the  cons t ruc t ion  of each 

observat ion  Zi (h) t h a t  enters  ol5 ( h ,  n )  requires  m indepen-  

den t  s imula t ions .  As a consequence ,  the  c o m p u t a t i o n a l  effort 

required to genera te  o l h ( h n ,  rt) is sensi t ive to the  choice of 

m .  T h u s ,  a l t hough  the  convergence ra te  p romi sed  by The-  

o rem 2.13 is s ignif icantly be t t e r  t h a n  those  descr ibed  earlier 

in this  section,  the  run - l eng th s  requi red  to see such  a n  im- 

p rovement  m a y  be  qui te  large.  

3. L I K E L I H O O D  R A T I O  D E R I V A T I V E  

E S T I M A T O R S  

In  cer ta in  se t t ings ,  it is possible  to cons t ruc t  der ivat ive 

e s t ima to r s  t ha t  achieve the  bes t  possible  ra te  of  convergence 

for a Monte  Carlo es t imator ,  n a m e l y  n -112  in the  n u m b e r  

of  observa t ions  n t h a t  are genera ted .  

Suppose ,  for the  m o m e n t ,  t h a t  t he  d i s t r ibu t ion  def ining 

OC(8) is i ndependen t  of  8. T h e n ,  all the  8 -dependence  of oc 

si ts  in the  r .v.  Z ( 8 ) ,  so t h a t  ol(8)  = E X ( 8 ) .  A s s u m -  

ing t ha t  we can  in te rchange  the  der ivat ive  ope ra to r  an d  the  

expec ta t ion ,  we get 

a'(8o) = EW(8o), 

where  W ( 8 0 )  = X ' ( 8 0 ) .  T h e n ,  by gene ra t i ng  i.i.d, repli- 

ca tes  of W ( 8 0 ) ,  we ob t a in  an  e s t ima to r  which  (use t he  s tan-  

da rd  centra l  l imit  t heo rem)  possesses  t he  canonica l  conver- 

gence ra te  n - 1 / 2 .  T h e  idea  beh ind  the  l ikel ihood rat io  

m e t h o d  (and  the  p e r t u r b a t i o n  analys is  app roach  of the  n ex t  

section) is to s t r uc tu r e  the  r ep re sen ta t ion  of ol so t h a t  the  

dr iv ing d i s t r ibu t ion  is r endered  i ndependen t  of 8. 

Suppose  t h a t  the  d i s t r ibu t ion  Po def ining ol ha s  dens i ty  

L(8) with  respec t  to some  c o m m o n  d i s t r ibu t ion  P ,  so t h a t  



(3.1) Po(dw) = L(O,w)P(dw). 

The  r.v. L(8) is called the  l i k e l i h o o d  r a t i o  of P0 (with 

respect  to P ) .  Under  this assumpt ion ,  

= 

X(8,w)L(8,w)P(dw) 

= / a  Y(8,w)P(dw) 

= EY(8), 

where Y(8) = X(8)L(8). This is the desired represen- 

ta t ion of ~ .  Assuming  tha t  the der ivat ive-expectat ion in- 

terchange is valid (and it typically is), we obta in  0~:(00) = 

EW(8o) , where W(8o) = X'(8o)L(Oo) "4" X(8o)L:(8o). 
Hence, the key to obta in ing likelihood ratio derivative esti- 

mators  is f inding a d is t r ibut ion P and a r.v. L(8) such tha t  

(3.1) holds (at least for 8 in an open ne ighborhood  of 80). 

This  idea is easily i l lus t ra ted when the basic sample 

space ~ is the  real line. Suppose tha t  the dis t r ibut ion P0 

takes the  form Ps(dx) = f(8,  x)/l(dx). For example,  if 

#(dx) = dx, we are saying tha t  P8 has a (Lebesgue) densi ty 
for each 8. Choose g(x) > 0 so tha t  

/ g(x)~(dx) = 1. 

many sampling set t ings,  this choice of g leads to an es t imator  

W ( 8 0 )  tha t  has  desirable variance propert ies .  

As the  above discussion suggests,  an impor t an t  issue 

in the development  of likelihood rat io gradient  es t imators  is 

the const ruct ion of a l ikelihood rat io (for a given class of 

discrete-event simulations) tha t  has  desirable computa t iona l  

and variabihty characterist ics.  For example,  it tu rns  out tha t  

in a discrete-event  s imulat ion context ,  the  likelihood rat io 

typically exists only for t e rmina t ing  s imulat ion problems.  Of 

course, s teady-s ta te  character is t ics  can be analyzed as a limit 

of finite-horizon es t imat ion  problems.  Unfortunately,  the  as- 

sociated l ikehhood ratios become successively more  uns table  

as the t ime horizon gets large. However, this problem can 

be avoided if the discrete-event  sys tem has the right kind of 

s t ruc ture  (typically, regenerat ive s t ructure) .  RE1MAN and 

WEISS (1986) discuss some of the  relevant ideas. 

4. P E R T U R B A T I O N  A N A L Y S I S  D E R I V A T I V E  

E S T I M A T O R S  

In Section 3, we descr ibed the  likelihood ratio approach 

to derivative es t imat ion.  The  basic idea was to use the 

me t hod  of likelihood rat ios so as to obta in  a representa t ion 

of o~ in which the driving dis t r ibut ion is independent  of 8. 

In this section, we describe an al ternat ive technique for ob- 

taining such a representat ion.  The  idea is to re tu rn  to the 

c o m m o n  r a n d o m  n u m b e r s  technique descr ibed in Section 

2.3. Suppose tha t  we can find a probabi l i ty  space ( ~ ,  .~', ~ )  

and a family of r .v. 's  {Y(h) : Ih[ < ¢} such tha t :  

(This can always be done if p is er-finite.) Set P(dx) = 
g(x)#(dx) and observe that  (3.1) holds with L(8, x) : 
f(8, 

Suppose tha t  we are in teres ted in es t imat ing bo th  

o~(80) and Ol'(80). Assume tha t  the set A(8 )  : {x  : 

f ( 8 ,  x )  > 0} is independent  of 8 in a ne ighborhood of 

80. A part icularly convenient  choice of g(x), in this case, 

is g(x) : f(8o, x). Because A(8 )  is independent  of 8, the 

likelihood ratio L ( 8 ,  x )  = f ( 8 ,  x)/ f (8o,  x) is well-deft_ned 

in a ne ighborhood of 8. This choice of g has several advan- 

tages. Note tha t  to generate  W ( 8 0 )  , the simulation involves 

generat ing outcomes under  the dis t r ibut ion Ps0" The  dis- 

t r ibut ion P00 is typically the "natural" dis t r ibut ion for esti- 

ma t ing  0~(80). Hence, or(00) and o~'(80) can easily be esti- 

ma ted  from the  same set of sampl ing exper iments .  A second 

advantage is tha t  by choosing g in this way, L(8o) = 1 and 

the formula for W ( 8 0 )  simplifies. In fact, in most  applica- 

tions, the calculat ion of L'(8o) also simplifies considerably, 

when g is chosen so tha t  g(x) ---- f(80, x). Furthermore,  in 

(4.1) P{Y(h)¢.}  = Peo+h{X(Oo + h ) c . } .  

Under  this assumption,  it follows tha t  

o~(0o + h) = EY(h )  

for Ih] < c. Assuming tha t  we can interchange the derivative 

and expecta t ion  operators ,  we find tha t  0~'(00) ---- EW(Oo) , 
where W(Oo) = Yt(O). Hence, by genera t ing i.i.d, repli- 

cates of the  r.v. W(Oo), we obta in  an es t imator  tha t  achieves 

the n - I / 2  convergence ra te  tha t  is bes t  possible for a Monte  

Carlo procedure.  

As in the case of the likelihood rat io me thod ,  this tech- 

nique is bes t  i l lustrated when the basic sample  space is the 

uni t  interval. Let ~ = [0, 1], 5 r" = B o r e l  sets of [0, 1], and  

let P be uniform dis t r ibut ion on ~ .  Set U(w) = w and 

observe tha t  
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Y(h) = F~-I(U) 

satisfies (4.1) (where Fh(X) .= Peo+h {X(Oo -1- h) < x}). 
To calculate W(Oo) , we need  to de termine  ~hF~-l(x)lh=O . 
Assume, for the moment ,  tha t  Fh has a (Lebesgue) densi ty 

fh for each h.  By definition of the inverse dis t r ibut ion func- 

t ion Fh, we have 

= 

Differentiat ing bo th  sides of the  above expression with re- 

spect  to h ,  we get 

0 d 1 
~Fh(F~i(z)) + A ( F ~ - X ( z l l ~ F ~  - (z)  = 0, 

from which we ob ta in  

~ h  F ~ - l ( x )  = -o~Fh(F~'l(x))/fh(F~-l(F~-l(x)). 

Thus,  in this set t ing,  we find tha t  

common random numbers  technique can still be  applied, in 

spite of the non-exis tence of a density. For example,  suppose 

tha t  X(O) = g(O,Y) and Y has d is t r ibut ion F(y/O) un- 
der Re. If we set Y(h) = (0o +h)Y/Oo (00 > 0 ) , t h e n  

(4.1) is satisfied with P = Pe0, and we find tha t  

o,(Oo + h) = Eeoa(Oo + h,(Oo + h)Y/Oo).  

Ifg is smooth ,  it is clear tha t  the  derivative ofg (O0+h, (00+ 
h)Y/Oo) exists, regardless of the na tu re  of the  d is t r ibut ion 

F.  

The  representa t ion  (4.2) (for W(Oo)) can be  derived 

via an Mternative argument .  Recall tha t  0~(0) : EeX(O). 
As a consequence,  if X(O) is non-negat ive,  we find tha t  

(4.3) 

~0 C° a(Oo + h) = Eeo+h I(X(Oo + h) > x)dx 

= 

Hence, assuming tha t  the  derivative and  integral  operators  

can be interchanged,  we ob ta in  

W(Oo) 

One undesirable  feature of the approach tha t  we have just  

out l ined is tha t  since we have taken our basic probabi l i ty  

space as uni form dis t r ibut ion  on [0, 1], the  generat ion of 

W ( 0 0 )  appears  to require inversion (i.e., calculation of 

f h  1 ( . ) ) .  Recall, however, tha t  Fh-  1 ( U )  has the  same distri- 

but ion  as Y ( h ) (or, al ternatively,  X ( Oo + h) under  Peo+ h ). 
Hence, W(Oo) (under  P )  shares the same dis t r ibut ion as 

(4.2) O Fh(X(Oo))/fh(X(Oo))lh=O 

O 
(under  Poo). The  advantage  of the  representa t ion (4.2) is 

tha t  we can generate  the  derivative observat ions using pre- 

cisely the same a lgor i thm as tha t  used to es t imate  ~ ( 0 0 )  

i tseff (since 0~(00) is typically es t imated  by generat ing i.i.d. 

replicates of X(O0) under  Poo). See GLYNN (1987) for ad- 

di t ional  details .  

The  argument  tha t  led to (4.2) appears  to require exis- 

tence of a densi ty  fh. It  tu rns  out tha t  in many  sett ings,  the  
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(4.4) ~'(Oo)=-- fO°° ~Fh(x)dxlh=O. 

In order  to apply the  Monte  Carlo m e t h o d  to the numerical  

evaluation of the  integral  appear ing  in (4.4), we need  to rep- 

resent  it as an expecta t ion .  One way to do this is as follows 

(assuming Fh has a densi ty  fh): 

(4 .5 )  

a'(00)  = - --jl °° ° f h ( z )  • h(z)dz h=o 
A(x) 

0 
= -Eeo (X(Oo))/fh (X(Oo)) h=0' 

which is jus t  (4.2). It is interest ing to note  tha t  an al ternat ive 

representa t ion of the expecta t ion  Or(00 + h )  exists: 

(4.6) ~(0o + h) = xFh(dx). 

If Fh has a density, this becomes 



~0 °° a(Oo + h) = Xfh(x)dx. 

A s s u m i n g  t h a t  the  der iva t ive- in tegra l  in te rchange  is valid, we 

get  

fO ° O~fh( dx h=O" (4.7) OZ(O0) ---- X X) 

To represent  the  in tegral  in (4.7) as a n  expec ta t ion ,  we use 

the  s ame  idea  as in (4.5): 

= EooX(Oo) £A(X(Oo)) 
yh(X(Oo)) 

In par t icu lar ,  if X(O) ~ X (in which  case ol(0)  ---- BOX), 
we ob ta in  

(4.8) 
£fh(X) 

~'(Oo)= EooX h(X) h=0" 

It t u rns  out  t ha t  (4.8) is precisely the  l ikelihood rat io  deriva- 

tive e s t i m a t o r  of  Sect ion 3. Hence,  in this  s imple  se t t ing ,  

the  c o m m o n  r a n d o m  n u m b e r s  app roach  a n d  the  l ikelihood 

ra t io  m e t h o d  derive f rom the  two ana ly t ica l  r epresen ta t ions  

(4.3) and  (4.6) for the  m e a n  of a non-nega t ive  r.v. Since 

(4.3) and  (4.6) are usua l ly  ob ta ined  f rom one ano the r  by an  

in tegra t ion-by-par t s ,  it follows t h a t  the  l ikelihood rat io  and  

c o m m o n  r a n d o m  n u m b e r s  m e t h o d s  are re la ted t h r o u g h  an 

in t eg ra t ion -by-pa r t s  in this  s imple  context .  We note ,  paren-  

thetically,  t h a t  if X ( ~ )  is non-nega t ive ,  t h e n  

It t u rn s  out  t ha t  the  c o m m o n  r a n d o m  n u m b e r s  deriva- 

t ive e s t i m a t i o n  m e t h o d  descr ibed above  can  be  appl ied to cal- 

cula te  der ivat ives  of pe r fo rmance  m e a s u r e s  for d iscre te-event  

dynamica l  sys t ems .  T h e  sub jec t  of p e r t u r b a t i o n  a n a l y s i s  

is concerned  wi th  the  s t u d y  a n d  deve lopmen t  of  the  resu l t ing  

es t imators .  For example ,  cons ider  a d iscre te-event  s y s t e m  

in which the  m e a s u r e  PO charac ter izes  the  d i s t r ibu t ion  (over 

sample  t ra jector ies)  when  the  even t - schedul ing  d i s t r ibu t ions  

are indexed by a scale p a r a m e t e r  8. Now, because  ~ appea r s  

as a scale p a r a m e t e r  in the  even t - schedul ing  d i s t r ibu t ion ,  we 

can  view the  event -schedul ing  r .v . ' s  t ha t  are gene ra ted  as 

t ak ing  the  form OX1,  OX2, • .. for r .v . ' s  X 1 ,  X 2 ,  • • • hav ing  

d i s t r ibu t ion  i ndependen t  of 0. For d iscre te-event  sy s t em s  

in which the  probabi l i ty  of two events  occurr ing  s imul tane-  

ously is zero, a smal l  p e r t u r b a t i o n  of the  event  t imes  will 

have  no effect on the  order  of  the  s t a t e  t r ans i t ions  experi-  

enced by the  discrete-event  sys t em.  T h e  effect of the  p a r a m -  

eter  ~ will reflect i tself  only in the  t i m i n g  of the  sequence 

of s t a te  t rans i t ions .  Fu r the rmore ,  as HO a n d  CAO (1983) 

poin t  out ,  the  m a n n e r  in which  the  p e r t u r b a t i o n  p ropaga tes  

i tseff  t h r o u g h  the  sequence  of event  t imings  is su i tab le  to a 

h ighly  efficient recursive c o m p u t a t i o n  (i.e., t he  p e r t u r b a t i o n  

of the  n ' t h  s t a t e  t rans i t ion  epoch is easily ca lcu la ted  f rom 

tha t  of the  ( n  - -  1 ) ' s t ) .  These  ideas  lead to an  easily cal- 

cu la ted  sample  p a t h  derivat ive for discrete-event  s y s t e m s  in 

which the  event - schedul ing  d i s t r ibu t ions  are parameter ized ;  

see SURI  (1987) for addi t iona l  detai ls  on t he  n a t u r e  of the  

inf ini tes imal  p e r t u r b a t i o n  analys is  (IPA) der ivat ive  compu-  

ta t ion .  

As descr ibed above, the  IPA approach  to derivat ive esti- 

m a t i o n  focuses  on derivat ive e s t ima t i on  rela t ive to pe r tu rba -  

t ions in the  event - schedul ing  d is t r ibu t ions .  In  m a n y  queue ing  

se t t ings ,  one wishes to opt imize  over rou t ing  probabil i t ies ,  

however.  Likelihood ra t io  m e t h o d s  are  h igh ly  flexible an d  

can  be  appl ied in a s t r a igh t fo rward  m a n n e r  to such  prob- 

lems.  Recent  ex tens ions  of IPA to such  rou t ing  probabi l i ty  

derivat ive e s t ima t ion  p rob lems  hold  significant  promise ,  how- 

ever (see HO and  CAO (1985)). 

~0 °° EoX(O) = p tv-lPo{X(O) > tV}dt 

for p ~ O, f rom which it follows t ha t  

(X(eo)p) 
(4"9) °Z(O°):-PEe°X(~°)P-1 f h ( X ( O 0 ) )  h=O" 

Formula  (4.9) general izes  (4.5). In  principle,  one could opti- 

mize  over p in order  to de t e rmine  t ha t  p -va lue  which yields 

a der ivat ive  e s t i m a t o r  wi th  the  m i n i m u m  variance.  

Empir ica l  evidence,  ga the r ed  to date ,  appea r s  to sug- 

gest  t ha t  when  b o t h  IPA and  l ikelihood rat io  m e t h o d s  apply  

to a given problem,  the  IPA e s t i m a t o r  will typically be  more  

efficient (in the  sense  of hav ing  lower variabil i ty).  Th i s  con- 

clusion s t ems ,  in par t ,  f rom the  fact t h a t  l ikelihood rat io  

e s t ima to r s  axe known to have  a variabil i ty t ha t  increases in 

a roughly  l inear fash ion  wi th  the  t ime  horizon of the  s imula-  

tion; see R E I M A N  and  WEISS (1986). 

Some care m u s t  be t aken  in app ly ing  IPA techniques  

to a given problem,  however.  T h e  difficulty is t ha t  the  inter-  

change of derivat ive and  expec ta t ion  opera tors  tha t  is needed  

to r igorously  jus t i fy  the  IPA e s t ima to r  (see (4.1)) m a y  some- 

t imes  be  invalid.  In  such  se t t ings ,  the  IPA e s t i m a t o r  can  
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converge to the  wrong  quant i ty .  To get  some sense  of the  

problem,  we no te  t ha t  if Y(h) has a well-behaved derivative 

Y'(0)  at  h = 0, t h e n  we would expect  t ha t  

o the r  hand ,  the  l ikelihood ra t io  and  p e r t u r b a t i o n  analys is  

techniques  t ha t  were descr ibed in Sect ions 3 a n d  4 a t t a ined  

the  canonical  convergence ra te  of  r t - 1 / 2 .  

(4.10) h-2var[V(h) - V ( 0 ) ]  ~ v a r Y ' ( 0 )  

as h ~ 0. (In fact,  (4.1o) is a sufficient condi t ion  for pe rmi t -  

t ing  the  in te rchange  of der ivat ive a n d  expecta t ion . )  Hence,  

(4.11) EzXY(h)  ~ = h2EY'(O) 2 + o(h 2) 

as h I 0. Recall ,  however,  t h a t  in Sect ion 2.3, we a rgued  

t ha t  the  typical  behav io r  of  a discrete-event  s y s t e m  was gov- 

e rned  by  (2.4) li), which con t rad ic t s  (4.11). T h e  difficulty is 

t h a t  while the  effect of t he  p e r t u r b a t i o n s  on the  s t a t e  t ran-  

s i t ion sequence  m a y  be  ignored in ca lcula t ing  Wt(Oo), it 

c anno t  be  typical ly  ignored in ca lcu la t ing  ott(O0). In HEI- 

D E L B E R G E R  et al. (1988), this  point  is ana lyzed  fur ther .  

It  is shown  t h a t  convent iona l  IPA can  be  incons i s ten t  (in 

the  sense  of convergence  to an  incorrect  answer)  for mul-  

tiple c u s t o m e r - t y p e  queue i ng  networks.  However,  conven- 

t ional  IPA tu rn s  out  to be  cons is ten t  for a large n u m b e r  of 

pe r fo rmance  m e a s u r e s  assoc ia ted  wi th  single c u s t o m e r  type  

networks .  

Fu r the rmore ,  a n u m b e r  of ex tens ions  in the basic  IPA 

a lgo r i t hm hold  s ignif icant  p romise  for overcoming  the  diffi- 

cnlt ies t ha t  arise in the  mul t ip le  c u s t o m e r  context .  In part ic-  

ular,  a new vers ion of IPA, known as s m o o t h e d  p e r t u r b a t i o n  

analys is  (SPA),  is now u n d e r  deve lopment .  T he  idea is tha t ,  

r a the r  t h a n  work wi th  the  "raw" sample  p a t h  Y ( h )  itself, 

one considers  i n s t ead  the  condi t ional  expec ta t ion  of Y(h) 
with  respect  to some  appropr ia te ly  chosen condi t ion ing  vari- 

able Z (appropr ia te  in the  sense  t ha t  E(Y(h)IZ ) is easily 

calcula ted) .  Since a condi t iona l  expec t a t i on  involves an  inte- 

g ra t ion  opera t ion ,  the  condi t ion ing  ough t  to yield a process  

E ( Y ( h ) [ Z )  which  is s m o o t h e r  in h t h a n  is Y ( h )  itself. 

As  a consequence ,  SPA has  the  po ten t i a l  to deal  wi th  esti- 

m a t i o n  p rob lems  for which classical  IPA does no t  work; see 

G L A S S E R M A N  a n d  G O N G  (1989) for fu r the r  details .  

5. GRADIENT ESTIMATION 

In  the  previous  th ree  sect ions,  we have  descr ibed deriva- 

tive e s t i m a t i o n  t echn iques  t h a t  are applicable to p rob lems  in 

which  the  decision p a r a m e t e r  0 is scalar-valued.  T h e  me th -  

ods  of Section 2 gave rise to e s t ima to r s  for which thei r  re- 

spect ive  convergence  ra tes  were slower t h a n  71. -1/2 in the  

n u m b e r  rt of observa t ions  n t h a t  were genera ted .  On  the 

T h e  genera l iza t ion  of these  ideas to the  s e t t i ng  in which 

0 is vector-valued is s t ra igh t forward .  T h e  par t i a l  der ivat ives  

wi th  respect  to each of the  co-ordina tes  Oi is easily ca lcu la ted  

in the  s ame  way as the  scalar  der ivat ives  were e s t i m a t e d  ear- 

lier. However,  t he  c o m p u t a t i o n a l  complex i ty  of ca lcu la t ing  a 

d -d imens iona l  g rad ien t  is h ighly  sensi t ive to d a n d  is a n  issue 

which is specific to the  se t t ing  in which 0 is vec tor-valued (as 

opposed  to scalar  valued) .  For example ,  no te  t ha t  a forward 

difference e s t i m a t o r  for the  d -d imens iona l  g rad ien t  V e t ( 0 0 )  

involves pe r fo rming  s imula t ions  a t  the  d'4-1 p a r a m e t e r  po in t s  

0 0 , 0 0 - 4 - h i  e l , . . .  ,00  "4-hded,  where ei is the  i ' t h  un i t  vec- 

tor. O n  the  o the r  h a n d ,  a cent ra l  difference app rox im a t io n  

requires  s imula t ing  a t  the  2d poin t s  00 A- hde d. T h u s ,  a cen- 

t ra l  difference e s t i m a t o r  for a d -d imens iona l  g rad ien t  requires  

roughly  twice as m u c h  c o m p u t a t i o n a l  effort as a forward  dif- 

ference e s t ima to r  to ob ta in  the  s a m e  n u m b e r  of observat ions .  

This ,  however,  is ba lanced  by the  fact  t ha t  the  convergence 

ra te  of  a centra l  difference e s t i m a t o r  is more  rap id  t h a n  t h a t  

of  a forward difference es t imator .  As a consequence ,  we see 

t ha t  if d is large, a forward difference e s t i m a t o r  m a y  be  more  

efficient for smal l  n .  If n is large enough ,  however,  the  cen- 

tral  difference e s t ima to r  a lways wins.  T h i s  d imens iona l i ty  

effect becomes  even more  p ronounced  for the  "near  opt imal"  

difference e s t ima to r s  of  Sect ion 2.4. Note  t h a t  to e s t i m a t e  

a d -d imens iona l  gradient ,  s imula t ions  at  the  md qt_ 1 po in t s  

0o, Oo+h:ge:,..., O0+hdged (1 < g < m )  a r e n e e d e d .  

Hence,  the  d imens iona l i l ty  deg rada t ion  t h a t  occurs  wi th  this  

e s t i m a t o r  is even more  ser ious t h a n  t h a t  exper ienced  by the  

centra l  difference e s t ima to r s  d iscussed  earlier.  An  addi t iona l  

d i sadvan tage  of this  class of e s t i m a t o r s  is t h a t  t hey  can  be 

qui te  sensi t ive  to numer ica l  round-of f  error  when  rn  is large. 

(The  presence of the  a l t e rna t ing  s ign  ( - - 1 )  1 - g  can  lead to 

numer ica l  instabil i ty.)  

Tu rn ing  now to the  l ikelihood rat io  and  p e r t u r b a t i o n  

analys is  es t imators ,  we no te  t ha t  b o t h  of these  es t imators ,  

when  appl ied to e s t i m a t i o n  of the  gradient ,  require  only a 

single s imula t ion  at  the  p a r a m e t e r  poin t  00. Of  course ,  the  

addi t iona l  c o m p u t e r  t ime  requi red  to ca lcula te  the  d par t ia l  

der ivat ives  f rom the  single s imula t ion  imply  t h a t  the  com- 

p u t a t i o n a l  effort to c o m p u t e  a d -d imens lona l  g rad ien t  is still 

increas ing  in d. However,  one would expect  t ha t  these  esti- 

m a t i o n  a lgo r i thms  would be less sensi t ive  to d t h a n  are the  

finite-difference e s t ima to r s  of  Sect ion 2. T h u s ,  the  l ikelihood 

rat io  and  p e r t u r b a t i o n  analys is  e s t ima to r s  improve  u p o n  fi- 

ni te  difference e s t ima to r s  in two ways: c o m p u t a t i o n  t ime  is 

less sensi t ive to the  d imens ion  d, a n d  the  convergence  ra te  is 
n-l /2" 
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6. O R T H O G O N A L  F U N C T I O N  

A P P R O X I M A T I O N S  

One  of the  reasons  t h a t  g rad ien t  e s t i ma t i on  plays  a key 

role in op t imiza t ion  is t ha t  the  gradient  gives in format ion  

abou t  the  shape  of t he  object ive funct ion.  W h e n  such  shape  

in fo rma t ion  is a d d e d  to t h a t  suppl ied  by a func t ion  evalua-  

t ion, we are  essent ial ly  be ing  given an  affine app rox ima t ion  

to the  func t ion  in  a ne ighborhood  of the  po in t  a t  which the  

eva lua t ions  occurred.  More generally, if all t he  par t ia l  deriva- 

t ives of  an  ana ly t ic  func t ion  are given at  a single (fixed) point ,  

the  ent ire  global  behav ior  of  the  func t ion  is t h e n  de te rmined .  

T h e  abil i ty to ob ta in  global  in fo rmat ion  a b o u t  the  behavior  

of  the  object ive func t ion  is clearly useful  in a n  op t imiza t ion  

context .  

As ind ica ted  above,  one way to cheaply infer global be- 

havior  is via a Taylor  series expans ion  t ha t  is de t e rmined  by 

the  par t ia l  der ivat ives  of  the  funct ion .  A n o t h e r  approach  in- 

volves a t t e m p t i n g  to e x p a n d  the  func t ion  in an  or thogonal  

expans ion  of some  kind.  We shall  now i l lus t ra te  this  idea in 

the  case t ha t  the  decision p a r a m e t e r  0 is scalar  valued and  

the  o r thogona l  func t ions  are the  t r igonometr ic  funct ions .  In 

this  case, we will t hen  ob ta in  a Fourier-like expans ion  of the  

object ive  funct ion .  

(The  Fourier  series for o~ is a cosine series because  of the  

fact t ha t  o~ is an  even funct ion. )  T h e  func t ions  e o ~ e l , . . .  

are o r thogona l  wi th  respect  to the  inne r  p roduc t  (6.2) t h a t  

we have  defined, in the  sense  t h a t  @k, e l )  = 0 for k # ~. 

(In fact,  t hey  are o r t h o n o r m a l  since (ek, ek) = 1 for k __> 

0.) Hence,  (6.1) expresses  o~ as  a l inear  combina t ion  of the  

o r t hono rma l  "vectors" e 0 ~ e i : e2 ,  . . . .  T h u s ,  we can  e s t im a t e  
& 

o~ by e s t ima t i ng  each of the  inner  p roduc t s  ak----(oG ek) for 

k > 0. In  con t ras t  to e x p a n d i n g  a func t ion  in a Taylor  series, 

each of the  coefficients ak is defined by a n  integral ,  n a m e l y  

ak = 
. ( o ) d o ,  k = o 

2 7r ~77 f0 a(0) coskOdO, k _> 1. 

Monte  Carlo m e t h o d s  are well su i t ed  to e s t ima t i ng  integrals .  

In  par t icular ,  suppose  we genera te  U as a un i fo rmly  dis- 

t r ibu ted  r.v.  on  the  interval  [0, 71"] and  t h e n  s imula te  X ( U )  
under  the  d i s t r ibu t ion  Pu. Then ,  ak can  he, represen ted  as 

{ V EX(U), k= o 
ak = 2~/~EX(u)  coskU, k'_> 1. 

Suppose  t h a t  we are in teres ted  in s t u d y i n g  the  behav-  

ior of the  object ive func t ion  over the  interval  [0, 71"]. (By 

t r an s fo rming  the  interval  if necessary,  this  is equivalent  to 

s t u d y i n g  O~ over an  a rb i t r a ry  compac t  interval  of  the  fo rm 

[a, b].) We can  t h e n  make  o~ 27r-periodic by ex tend ing  o~ 

to [--Tr, 0)  via  the  even ex tens ion  or(0) = 0~(--0)  and  t hen  

le t t ing  Oe(0 + 271") = or(0).  A s s u m i n g  o~ is cont inuous ly  

differentiable on [0, 7r], it is well known  (see F U L K S  (1969), 

p. 547) t ha t  for each 0g[--7r ,  7r], 

(6.1) 4(0) 
k=0 

where  the  ek's are the  normal ized  cosine func t ions  defined 

by 

1 k = 0  
 k(0)g ,,qT, 

~ cos k0 , k_>l 

and  

Hence,  the  r.v.  

(m ) 
^(m, 0) = X(U)  1 + 2 ~ cos(kU) • cos kO 

k = l  

has  expec ta t ion  

m 

E ^ (m, 0) : 
k=0 

Thus ,  A ( m ,  0)  is an  unb iased  e s t i m a t o r  for t he  first rn  + 1 

t e rms  in the  Fourier  series of  ol. Note  t h a t  only one s imula-  

t ion is required to e s t ima te  the  first m-4-1  Fourier  coefficients 

of  4 .  

Suppose  t ha t  we genera te  n i.i.d, copies A l ( m , 0 ) ,  

. . . ,  A n ( m , 0 )  of  the  r.v. A ( m ,  0).  We can  t hen  form the  

e s t ima to r  

4 . (0 )  = _x 0); 
n i=1 

(6.2) (x, v x(O)v(O)dO. 
7r 

we pe rmi t  r~  = rn  n to be  a func t ion  of the  s ample  size n 

(since m will have  to grow wi th  n in order to a sympto t i ca l ly  

remove the  bias  of  the  es t imator ) .  
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In order  to measure  the  dis tance of the  es t imator  a n ( ' )  

f rom the  funct ion a ( ' ) ,  we use the  no rm 

IIXII~((X~X))I/2 = ( / ~  x2(O)dO) 1[2. 

Our goal is to describe the  magni tude  of the  dis tance Ila. - 

all. Let 

rt  , / ~ . - '  E,z 1 x,(u,), 
ak(.) = i 2v '~r~-~ E~=~ x,(u,) ~os(kU~), 

and note  tha t  

k = 0  
k > l  

m n  

a.(o) =~a~(n)~(O) 
k=0 

Ifo~ is continuously ditTerentiable on [0, 7r], then  (6.1)is v a l i d  I 

so tha t  

m n  

a n ( O ) - - a ( O ) = E ( a k ( n ) - - a k ) e k ( O ) - -  E akek(O) 
k=0 k>rn. 

where a k = (0 6 ek). Then,  the orthogonali ty of the  ek's 
guarantees  tha t  

m n  

I l a n - ~ l l 2 - - - - E ( ~ k ( n ) - a k ) 2 +  E a~. 
k=0 k > rn~ 

Hence, 

(6.3) 
m n  

E l l a .  - -II 2 = ~ v a r a k ( n )  + ~ a~ 
k = 0  k > rnn 

( - ) 
k=À 

m ~  

+ E 
k = 0  k > m n  

the form Xo( Uo ) + 2 ~km=l Xk(  Uk ) c o s ( k U k )  c o s ( k 0 ) ) ,  

this would have no effect on (6.3). In  o ther  words, E l l a .  - 

a l l  2 is unaffected by whether  the  coefficients are es t imated  

independent ly  or not.  

We are now ready to s ta te  a limit theorem for Ella n - 

all  2 

(6.4) T H E O R E M .  Let b(0) = EoX2(O). Suppose tha t  

b(0)  is continuous on [0, 7r] and  ol(0) has a continuous p ' t h  

derivative on [0, 7r](p > 1). If mn = n 112p, then:  

2 '~ a) EX2(U)  + Ek=l  EX2(U)  c°s2(kU)  

f[  b(0)~0/ , ~ m  rr as rn ---÷ ex~, 
b) rtl-T EI lan-al l  2 ~ Oasn ----+ c:x~ for any 7 > 1/2p, 
c) nl/2-7/211an - all ~ 0 as n ~ oo for any 7 > 

1/2p, 
d) for ~ > 0, m { 0 4 0 , ~ ]  : I n . ( 0 ) -  a(0) l  _> 

an 7/2-1/2} ~ 0 as n --~ cx3, for 7 > 1/2p. (m 
is Lebesgue measure.)  

Thus,  ff a is sufficiently smooth ,  we can obta in  a g l o b a l  

c o n v e r g e n c e  r a t e  arbi t rar i ly  close to n - 1 / 2  in the num- 

ber  of observations n tha t  are s imulated.  (We note  tha t  

because ot is 271"-periodic and  is an  even funct ion,  a ' s  first 

p derivatives must  vanish at 0 and  7r in order  to satisfy the 

smoothness  hypothes is  of Theorem 6.4. If a does not  sat- 

isfy the  condit ion,  one can shr ink a ' s  domain  of definit ion to 

[C, 71" - -  C] and then  smooth ly  extend a to [0, 71"] in order  to 

satisfy the smoothness  hypothesis . )  

7. S T O C H A S T I C  APPROXIMATION 

A L G O R I T H M S  

In this section, we briefly describe how the  results  of 

the previous sections can be in tegra ted  into an opt imiza t ion  

algorithim. 

Consider  the  uncons t ra ined  problem in which the  goal 

is to minimize the  object ive funct ion a ( 0 )  over O&Qg d. The  

idea is to develop a recursive procedure  in which the ( n  '4- 

1 ) ' s t  i tera te  is likely to be closer to the minimizer  0* than  

is the r t ' th  i terate.  Specifically, suppose tha t  it  is possible 

to generate  r .v. 's  W(O) such tha t  EW(O) ,~ ~ a ( 0 ) ;  as 

discussed in Sections 2-5,  this cao be done ei ther  th rough  a 

finite-difference approximat ion  or th rough  the  likelihood ra- 

tio and pe r tu rba t ion  analysis gradient  es t imators  (in which 

case EW(O) is typically equal to ~ a ( 0 ) ) .  Assuming  exis- 

tence of such r .v. 's  W ( 0 ) ,  consider  the  recursion 

It is worth observing tha t  if each of the  Fourier coefficients 

were to be es t imated  independent ly  (so tha t  A ( m ,  0) takes ( 7 . 1 )  
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where  r is a given d x d m a t r i x  and  P { V , ~ + l e A I O o  , Vo, 
• . . ,On, Vn} = P{W(On)gA} .  In  o the r  words, t he  r.v. 

Vn+l is genera ted  by s imu la t i ng  a copy of W(On). 

In  t he  case t h a t  E{V,+aIOo, Vo,...,O,,V,J = 
VoW(On) (as would  occur  if t he  m e t h o d s  of Sect ions 3 and  4 

were used) ,  a lgo r i t hm (7.1) is known as the  R o b b i n s - M o n r o  

a l g o r i t h m .  A s s u m i n g  t h a t  ol is twice con t inuous ly  differen- 

tiable, the  op t ima l  choice of t he  m a t r i x  F t h e n  t u rn s  ou t  to 

be  

r = H(O*) -1, 

where H is the  Hess ian  of second  derivatives;  see P O L Y A K  

a n d  T S Y P K I N  (1980) for detai ls .  

It  is pa r t i cu la r ly  i l lumina t ing  to consider  (7.1) in the  

case t ha t  0 is scalar-valued.  In  this  case, (7.1) takes  t he  fo rm 

(7.2) On+ 1 = O n - -  n-lcVn+l" 

Note t h a t  if c > 0, On+ 1 has  a t endency  to be  smal ler  

t h a n  On when  OJ(On) > 0, a n d  has  a t endency  to increase 

when  oJ(On) < 0. As a consequence ,  the  sequence  (On : 
n _> 1) h a s  a t endency  to move  towards  a poin t  0* for 

which  ~ t ( 0 * )  ---- 0 a n d  OJ(0)  > 0 (Ol'(O) < 0) for 0 in 

a ne ighbo rhood  to the  r ight  (left) of  0" .  Any  such  0* m u s t  

necessar i ly  be  a local m i n i mi ze r  of  el. T hus ,  the  a lgor i thm 

(7.1) appea r s  in tu i t ive ly  reasonable .  

In  fact ,  (7.1) h a s  good  convergence character is t ics .  If 

E{Vn+ilO0, V o , . . . ,  On, Vn} = o/(On) and  d = 1, RUP-  

P E R T  (1982) ha s  shown  t ha t  unde r  su i tab le  regular i ty  con- 

di t ions,  

(7.3) nl/2tl/2(O[ntj -- 0") ~ a t -D-½ B( t  2D+1) 

as n ~ ~ (in t he  Skorohod space  D[e, oc), c > 0),  where 

B ( . )  is s t a n d a r d  Brownlan  m o t i o n  and  a a n d  d are  cer ta in  

p rob l em-dependen t  cons t an t s .  Se t t ing  t ---- 1 in (7.3), we 

conclude  t h a t  On converges  to 0* a t  ra te  n -1]2 when  unbi-  

ased  e s t ima to r s  of the  gradient  are available. 

On  the  o ther  h a n d ,  in cer ta in  appl ica t ions ,  only finite- 

difference app rox i ma t i ons  to the  grad ien t  m a y  be  present .  

For example ,  suppose  d - -  I and  t ha t  P{V~+leAIOo, Vo, 
• . . ,  On, Vn) = P{[X(On + c n  1 /6)  - X(O n - c n - 1 / 6 ) ]  

/ 2 e n -  l / 6 e A } , where  X ( O,~ + cn -1/6) is s imula ted  (un-  

der  PO. +e,~-'/~ ) i ndependen t l y  of  X ( On -- crt-1/6) (under  

Po_en- l l6) .  Here a cent ra l  difference a p p r o x i m a t i o n  to 

the  derivat ive is be ing  u sed  (recall t ha t  n -1/6 is the  opti- 

ma l  difference inc remen t  as specif ied by  T h e o r e m  2.3). T h e  

resu l t ing  min imiza t i on  a lgo r i t hm is known  as the  K i e f e r -  

W o l f o w l t z  p r o c e d u r e .  As  one migh t  expect ,  some  degra- 

da t ion  in the  convergence ra te  occurs  as a consequence  of 

the  finite-difference approx ima t ion .  Specifically, R U P P E R T  

(1982) shows t h a t  u n d e r  su i tab le  regular i ty  hypo theses ,  

(7.4) nl/3tl/a(OLntj - 0") ~ bl + b2t-a-½ B( t  2A+1) 

as n ~ ~ (in D[E,  c~ ) ) ,  where  b l ,  b2, and  A are problem-  

dependen t  cons tan t s .  T h u s ,  the  convergence ra te  of  the  

Kiefer-Wolfowitz p rocedures  in which  a centra l  difference ap- 

p rox ima t ion  is u sed  to e s t ima t e  the  gradient ,  is n - 1 / 3  in 

the  n u m b e r  of observa t ions  genera ted .  Note  t ha t  this  con- 

vergence ra te  is identical  to t ha t  discovered in T h e o r e m  2.3. 

The  fact t ha t  the  convergence ra tes  for the  op t imiza t ion  al- 

gore i thms  (7.3) and  (7.4) m a t c h  t he  convergence ra tes  of the  

cor responding  gradient  e s t ima to r s  indica tes  the  pivotal  role 

t ha t  g rad ien t  e s t ima t ion  plays  in the  op t imiza t ion  se t t ing.  

Whi le  the  above d iscuss ion  ha s  focused on uncon-  

s t ra ined  opt imiza t ion ,  cons t ra ined  var ian ts  of (7.1)-(7.2) are 

also available.  A m o n g  the  approaches  t ha t  have  been  s tud-  

ied are pena l ty  func t ion  m e t h o d s  and  Lagrange  mul t ip l ier  

techniques;  see R U B I N S T E I N  (1986) for a more  extensive  

descr ipt ion.  

A s o m e w h a t  different ph i losophy for op t imiz ing  sto- 

chast ic  s y s t e m s  via s imu la t i on  involves the  idea of us ing  s im- 

u la t ion  to develop a descr ip t ion  of t he  global behavior  of 

the  object ive func t ion  and  cons t ra in t s .  T h e  or thogona l  func- 

t ion app rox ima t ions  of Sect ion 6 would represent  one way to 

ob ta in  such  global descr ipt ions.  Hav ing  f i t ted  func t iona l  ap- 

p rox ima t ions  to the  object ive  func t ion  a n d  cons t ra in t s ,  one 

can  t hen  use  de te rmin is t ic  t echn iques  to opt imize  the  f i t ted 

surface.  One  t hen  uses  the  op t imizer  of  the  f i t ted surface  as 

an  app rox ima t ion  to the  op t imizer  of  the  original s tochas t ic  

sys tem.  
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A P P E N D I X  

Proof  of T h e o r e m  2.2. Let  .~i(O) = Xi(O ) - o l (0)  be  

the  centered vers ion of Xi(O). We first wish to show th a t  

when  hn -+ O, 



(A.1) 
n -112 i(Oo + ha) - f(i(Oo 

\ i = I  

V~(r(Oo)N(O, 1) 

as rt ~ OO. This follows from the central  limit theorem 

for tr iangular arrays (see, for example, CHUNG (1974), pp. 

205-209). In particular,  to verify Lindeberg's condition, we 

observe tha t  (2.1) ii) and iii) together imply that  /~7i(00 -'F 
ha) ::~ Xi(Oo) and EXi (O 0 -Jr- ha) 2 ~ EXi(Oo) 2, from 

which it follows tha t  { X  i (0 0 -~ ha) 2 : r$ _> n O } is uniformly 

integrable (see Theorem 4.5.4, p. 97, CHUNG (1974)). The 

uniform integrability of { /~ i (00  :q- hn) 2 : rt _~ no}  im- 

plies tha t  of {() ( i (O0 "4- ha) - Xi(Oo)) 2 : n > no} ,  from 

which Lindeberg's condition is an  easy consequence. This 

establishes (A.1). 

We now note tha t  

(A.2) 

rill4 (,l~Oll(n, hn) -- 0/(00) ) 

= ha/a h Xi(Oo + ha) - Xi(Oo) 
i = 1  

+ nt /4b(hn)  

where b(h) : (ot(Oo + h) - Ol(Oo))lh -- o~t(Oo). It is 

evident tha t  by (2.1) iv), ol(00 4- h )  --  ol(00) 4- hoJ(Oo) "F 
h2c~"(0o)/2 + o(h2) ,  so tha t  b(h) = hcJ'(Oo)/2 + o(h). 
The theorem then follows immediately from (A.1) and (A.2). 

Proof of Theorem 2.5. ']?he proof proceeds along the 

same basic lines as in Theorem 2.2. We first note tha t  (2.4) 

ii) and iv) together imply tha t  ~r ,~varAY(hn)  = hna ~ + 

o(hn)  - (o/(Oo)hn "-}- o(hn))  2 : hn 0"2 + o(hn).  Let 

A Y i ( h )  = A N ( h )  - E A Y i ( h ) .  We wish to show that  if 

hn ~ 0 with nhn ~ oc, then 

(A.3) 

n 

1 Z A ~ ( h , )  ~ o ' N ( 0 ,  1) 
V f ~ n "  i =  1 

as n ---+ oo. To obtain (A.3), we need to verify Lindeberg's 

condition for the t r iangular  array { ~ Y i ( h n ) / ~ n :  1 
i _~ n ,  rt ~ 1}. But  the Lindeberg condition reduces here 

to verifying tha t  for K > 0, 

(,.4) E{~?,(h.)~/~,~; ~? , (h . )  ~ > K~,~ . , }  ~ 0 

as n ~ oo. The left-hand side of (A.4) can be bounded by 

< E[A~'l(hn)]2+~/(cr2+eI£~/~n e/2) 

"~ ~2+~£~l f f (nhn)  -~12 

as n ~ oo; this yields Lindeberg's condition (since nhn 
oo). The proof is completed by writing 

nl/3(~c.~3(n, hn) - -  0/(00) ) 

+ nl /3b(hn) ,  

where b(h) = E A Y i ( h ) / h  - o / ( 0 0 ) .  (To obtain the d e  

sired l imit theorem, use (A.3) and b( h n ) : ottt ( O 0 ) h n / 2  "q- 
o (h , ) . )  

Proof of Theorem 2.13. We first observe that  there 

exists C > 0 such that  {hZ i (h )  : 0 < h < ~} is uniformly 

integrable. (Use the same argument  as tha t  employed in the 

proof of Theorem 2.2). Hence, Lindeberg's condition may be 

verified, to obtain the central limit theorem 

(A.5) n -'/2 ~ h,~Zi(hn) ~ cr3N(0 ,  1) 

i = 1  

as n ~ cx~. The next step is to study the bias term f l(h) = 
E Z i ( h )  - cd(00) .  We start  by observing tha t  since ol is W/ 

times continuously differentiable, it follows tha t  

(A.6) 
1 £  

E Z i ( h )  = 
l k = l  

h 
k = l  

t = 0  

= k = l  l = 0  

(-O'-______~er + o(h m-~) 
k 

1 '~ = ~ ~ ~(r)(Oo)h~ + o(hm-X), 
r ~ 0  
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where 

~ ( k g )  (-1)l-e U 
7r = kr[ " 

k = l  £=0 

To get a handle on the '7r 's, we note that 

N = N(¢) such that Ib(0) - bN(O)l < ¢, where bN(') is 
the piecewise constant function defined by 

Since  c o s 2 ( k 0 )  < 1, it fo l lows  th a t  

x = l o g ( 1  + e = - 1 )  

( - -1)  k+l  = ~  ~ ( ~ ' - i )  k+o(~ m+') 
k----1 
m k 

= ( - 1 )  ~ " I -  O(x re+l) 
k = l  l=O 

m k ( ]¢)  (__1)1_, ~ , ~ r x  r 

k = l  g=O r=O 

__ ~ xr  ~ (kl¢) ( - - l ) l - / ' r  mr- o ( ' m + l )  
- -  r=O ~" ,~=I t=o k 

FY~ 

= ~ r ~ r  + O(~m+~). 
r=D 

Comparing coefficents in x, we conclude that ~r = 0 for 

r ¢ 1 and 71 = 1. Substituting in (A.6), we conclude 

that EZi(h) = aO)(O0) + o(hm-1). Hence, f l (h)  = 
o(hm-1). To obtain the desired central limit theorem, we 

write 

rn--1 
n ~m (~(hn, n) - ~'(00)) 

?t 

1 .n_ll2EhnZi(hn) 
= nl/2mh~-"~ i=1 

m--1 
+ n-~- • ~(h.), 

and use (a.5) and the estimate fl(hn) = o(hnm-1). 

Proof of Theorem 6.4. To prove a), we will show that 
EX2(U) c o s 2 ( k V )  ~ 2 - 1  f :  b(O)dO/Tr as ]c --+ OO. We 

s ta r t  by observ ing  t ha t  

~0 7t (h.7) EX2(U) cos~(kU)  = b(O) cos2(kO)dO/Tr. 

Since b(.) is continuous, it is evident that b(.) is uniformly 
continuous on [0, 7rJ. Hence, for every £ > O, there exists 

(A.8) 

~oo'~bN(O) cos2(kO)dO- ~o~b(O)cos2(kO)dOl < e, 

Choose ]c so large that 27rN/k < ¢. Then, setting g = 

[k/2UJ, we have 

f bN(e) cos2(ke)de 

N--1 tTr ( j + I ) / N  

= j+~O / , j /N bN(O) c°s2(kO)dO 

N-1 f~'(j+l)/g 
= E bN(~'j/N) Y.j/N c°s2(kO)dO 

j=O 
~ t  1 fTrkj/NTTrk/Y 

= bN(~-j/g)~ J.k~/N c°~(~)du 
j=O 

N-1 1 r frrkj/N+21rt 
= E bN(Trj/N)~[ J,~kj/N c°s2(u)du 

j=o 

+io cos 2 v + ~ + 2 ~ t  

N-a 7rg 1 /~(k/N-2l) 
= ~ b~(.j/N) [ ~  + ~ J0 

j=0 

21rj 27rg) dr] cos 2 (v  + - - ~  + 

N-1 ~/.~O+U/N 
= E bN(Trj/g) dr~2 

j = 0  JTrkj/N 
N-1 )~ /.(k/N-2l) 

+ E bN(Trj/N 
j=0  dO 

1 0 3  



(A.1O) 

l f0" = - bN(O)dO 
2 

N -  1 ~r(k/N- 2t) 

j=O dO 

[cos  (v + _  ]dv. 

(We've used the fact tha t  f :+27re  cos2(u)d u = f:+2.l 

sin2(u)du, so tha t  f:--F2~l 

¢ o s ~ ( ~ ) ~  = 2 -1 f:+~"~[cos~(~) + si .~(~)]d~ = ~./ 
But Ik/N - 2~1 < 2, so 

21r < - -  
- k 

and thus 

.(A.11) 

N-1 1 f~(k/N-2~) 

j=O 

w h e r e  M = m a x { I B ( 0 ) l  : 0 c [ 0 ,  7r]}. Combining (A.8)- 
(A.11), we obtain 

f ~  j f  b(O)dO < (M + 2)c. 
i" 

b(O) cosU( kO)dO 2-1 

Since C is arbitrary, we obtain our desired conclusion. Turn- 

ing now to b), we note tha t  the smoothness of ot implies tha t  

(see FULKS (1969), p. 551) 

sup 4(0) - ~ a k e k ( a )  
O<O<Tr k=O 

so tha t  

: o ( ~ - ~ )  

m 

I1~ - ~ ak~kll = = O(/nl-2p) 
k=0 
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i.e., 
O 0  

a~ = O ( m l - 2 P ) .  

k=rn+ l  

1 
Hence, if m n = n ~  p, it follows tha t  ~ k > r n ,  a~ 

= 0 ( n 5 ~ - 1 ) .  Furthermore, par t  a ) impl ies  tha t  

m. m. I) 
n -I  EX2(u) + 2 Z E X 2 ( u )  cos2(ku)- ~ a  

k=l  k=0 

= o ( . ~ - 1 ) ;  

b) then follows immediately from these estimates. Result c) 

is a well-known consequence of b). For d), we note tha t  

n1-~l l~ .  -- ~II 2 
Tr 

= nl--'Y (O~n(O) -- ol(O))2dO 
J - ~ r  

_> ~m {04-~-, ~-]: I -n(O)--(O)I _> ~.~-~ }. 
P a r t  b) imphes t h a t  Em{O¢[--~r,Tr] : Io6~(0) - o~(0)1 

3' 1 
_> Cn ~ -  ~ } ~ 0 as n ~ cx3, yielding d). 
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