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Abstract 

This paper gives an overview of those aspects of simulation methodology that are (to some 
extent) peculiar to the simulation of queueing systems. A generalized semi-Markov process 
framework for describing queueing systems is used through much of the paper. The main 
topics covered are: output analysis for simulation of transient and steady-state quantities, 
variance reduction methods that exploit queueing structure, and gradient estimation methods 
for performance parameters associated with queueing networks. 
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1. Introduction 

This paper is intended to give the reader an overview of those aspects of 
simulation methodology that exploit (to some degree) the stochastic structure of 
queueing systems. As a consequence, certain more broadly based methodologies 
are not discussed here; see chapters 2, 3, and 8 of Bratley, Fox and Schrage [6] for 
a more complete picture of the current state of simulation methodology. 

In section 2, we argue that simulation is an important numerical tool for the 
study of complex queueing systems. Section 3 develops the generalized semi- 
Markov process view of queueing systems, which runs as a unifying thread 
through much of this paper. In section 4, we describe the basic methodology for 
the analysis of simulation output associated with estimation of transient quanti- 
fies. Section 5 describes the analogues of these methods for the steady-state 
estimation problem. The key role of general state space Markov chain theory in 
the analysis of steady-state output is also described there. 

Section 6 describes some recent work on exploiting diffusion approximations 
for queues in heavy traffic to develop insight into the question of how the 
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simulation run-length required to estimate steady-state quantities increases as the 
traffic intensity converges to unity. In section 7, the ideas of variance reduction 
and efficiency improvement are introduced. These methods permit the simulator 
to improve upon conventional estimation methods by incorporating knowledge of 
the stochastic system under consideration into the estimator. Sections 8 through 
14 describe seven such techniques that exploit queueing-related stochastic struc- 
ture. Finally, in section 15 two powerful new methods (based on perturbation 
analysis and likelihood ratios) for estimating gradients of queueing performance 
parameters are discussed. 

2. Simulation as a numerical tool  

Simulation is a powerful tool for studying complex queueing systems. Its 
popularity derives from the following factors: 
1) The basic idea underlying simulation is conceptually simple to understand. As 

a result, it is a tool that is accessible to a wide range of users, including those 
without a strong background in the theory of stochastic processes. 

2) By using simulation in conjunction with sophisticated graphics, one can 
observe the evolution of sample trajectories of the system. This can provide an 
insight into the system that is unavailable from a purely numerical study, in 
which the focus would be on computation of expectations of various perfor- 
mance measures. 

3) Conventional numerical approaches often rely on solving specifically struc- 
tured systems of equations. The appropriate system of equations differs from 
one type of expectation to another. For example, the method used to solve for 
the steady-state of a Markov chain is quite different from that used to 
calculate the transient probabilities. On the other hand, simulation offers a 
methodology which can calculate expectations of arbitrary functionals of the 
system, without any major change in the basic approach. 

4) Conventional numerical techniques are generally oriented to the solution of 
stochastic systems having rather special probabilistic structure (e.g. discrete- 
time and continuous-time Markov chains). By contrast, simulation is a gen- 
eral-purpose tool for which the study of a general discrete-event system 
requires a programming effort comparable to its Markovian counterpart (in 
which, for example, all inter-arrival and service time distributions are assumed 
exponential). 

As the above points indicate, a principal advantage of Monte Carlo simulation 
is that implementation of such algorithms by practitioners is relatively straight- 
forward, thereby saving time and (possibly) money. In addition, there are often 
sound computational reasons for choosing a simulation algorithm over competing 
numerical approaches. We will illustrate this point with an example. 
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Suppose that one is interested in the transient behavior of an irreducible closed 
Jackson network, containing n customers, with s; servers at the i ' th  station, 
1 ~< i ~< d. The state space S of the corresponding continuous-time Markov chain 
X =  (X(t):  t >/0) is the set of d-tuples ( ( k l , . . . ,  ka): k i ~ Z +, k 1 + ... + k a= n }, 
where Z + is the set of non-negative integers. Note that 

ISI =(n+d-n 1) 
so that the size of the state space S grows rapidly with n. 

If one is interested in calculating a = E J ( X ( t ) )  for f :  R a ~  R (En(.)  denotes 
the expectation operator conditional on X(0) having distribution ~/), a conven- 
tional numerical approach would typically rely on the fact that 

a = ~  t e x p ( A t ) f  (2.1) 

where A is the generator of X. (We assume throughout this paper that all vectors 
are encoded as column vectors.) It is clear that the complexity of a conventional 
numerical algorithm for calculating (2.1) will increase (rapidly) with n, since such 
algorithms are highly sensitive to I S[.  

For example, it is well known that the right-hand side of (2.1) can be expressed 
as 

~1 t exp( At  ) f = 77 t ~--a --m--(. t Am mr. 
m=O " 

One can recursively compute the products g,, = A ' t m f / m ?  via gm = Agm-a " t /m;  
each of these matrix-vector multiplications takes on the order of 1512 oper- 
ations. This analysis suggests that the complexity of this matrix-vector multipli- 
cation algorithm increases rapidly with n. 

To be more precise, assume II f II ~ 1 where II f II - m a x ( I f ( x )  I: x ~ S}. If 
#a,. .-,/~d are the service rates at the d stations, note that 

IIAII =-max( ~ [ A x y l ' x ~ S  } 
y ~ S  

d 

<, 2 E Ixjsj 
j= l  

is independent of n. Thus, for a given error tolerance c, one can select M(c) 
(independently of n) such that 

~_~ T l t A m t m f / m !  < C. 
m>M(e) 

Hence, the complexity to calculate E J ( X ( t ) )  to precision c, via the above 
algorithm, for f ' s  satisfying II f II ~< 1, is the number  of operations required to 
calculate 

71' Y', Amtmf /m! ,  
m<~l(~) 
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which is, of course, of order n 2a-2. (Recall that IS[ is of order na-1.) Thus, for a 
system having a large number of customers n (or stations d),  this approach 
becomes infeasible. 

On the other hand, Monte Carlo simulation is relatively insensitive to the size 
of the state space. Let X1, X2,. . .  be i.i.d, copies of the process X and consider 
the estimator 

m 

a m =  - E l I ( X ' ( t ) ) ' m  .= 

If [[ f ][ ~< 1, Chebyshev's inequality implies that 

1 

e 2 m  �9 

Thus, the sample size m required to obtain e-precision with probability 1 - 8 is 
independent  of [S [. Furthermore,  we claim that the number  of observations 
needed to generate a m is insensitive to [S[.  To see this, note that X can be 
uniformized via a Poisson process N( . )  having rate El~jSj ( [Axx [ ~ Elzjsj for all 
x ~ S). Since the transition epochs of X form a subsequence of the jump times of 
N, it follows that the number  of jumps of X up to t is dominated by N(t) .  But 
EN( t )  d = Ej=ltt jsj .  t, which is independent  of n. We conclude that Monte  Carlo 
simulation's efficiency is relatively insensitive to the magnitude of n. 

The above analysis suggests the following rule of thumb. As the state space of 
a queueing system gets larger and larger, simulation becomes increasingly more 
competitive as a computational tool. 

An additional attractive feature of Monte Carlo simulation, which is important  
computationally, is that the error analysis for Monte Carlo algorithms is generally 
straightforward. For example, the typical Monte Carlo approach to calculating a 
parameter  a which can be expressed as the mean of a r.v. X (i.e., a = E X )  is to 
generate i.i.d, replicates X 1, X 2, ._. of the r.v. X and to use X(n)  = n-lEi=lXin as 
an estimator of a. The error in X(n)  is usually assessed via a confidence interval. 
In this setting, if E X  2 < 00, a simulator can simply use the interval 

as a 1 0 0 ( 1 -  8)% confidence interval for a. (In (2.2), z(8)  is the root  of the 
equation P{N(0,  1)~< z(8)} = 1 -  8 /2  and s(n)  is the sample standard devia- 
tion.) Since the central limit theorem justifies the asymptotic validity of (2.2) as a 
1 0 0 ( 1 -  8)% confidence interval for a, we see that (2.2) provides an easily 
calculated and asymptotically precise error assessment for the estimator X(n) .  
Error assessments (even in the form of upper bounds on the error) are typically 
quite hard to calculate for conventional numerical schemes. 
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3. The role of GSMP's in queueing simulations 

In order to describe the simulation of queueing systems, we shall find it 
convenient to use the formalism of generalized semi-Markov processes (GSMP's). 
GSMP's form a class of stochastic processes that succinctly describe the essential 
probabilistic features of queueing systems. A GSMP is characterized by: 

S: a "physical"  state space which is finite or countable (typically, 
S will be the set of all possible queue-length vectors) 

E(s ) :  the set of events which can occur in s ~ S (E(s )  will usually 
correspond to the different arrival and departure events possible 
when the system is in state s) 

p(s ' ;  s, e): the probability of jumping from s to s ' ,  given that event e 
triggers the transition from s (e.g. e might correspond to station 
i completing service, in which case p(s ' ;  s, e) might represent 
the probability of sending a customer from station i to station 

j ;  here s '  = w - e~ + ej where e; is the i 'th unit vector 
rse: the rate at which the clock corresponding to event e runs down 

to zero in state s (e.g. in a queueing network, rse might be unity 
except for events e which are " in ter rupted"  in state s, in which 
case rse = 0; such " in ter rupted"  events occur in the modeling of 
pre-emptive resume queueing priorities) 

F( - ;  s ' ,  e ' ,  s, e ) the  probability distribution which schedules a new event e '  in 
state s ' ,  given that the previous state was s and the transition 
was triggered by e (e.g. these would typically be service and 
interarrival time distributions in a queueing network). (3.1) 

We will now illustrate the GSMP modeling formalism by describing a general 
service t ime/inter-arr ival  time version of an open Jackson network. We assume 
that the network has d stations, each station containing one server. Specifically, 
each server uses a first come/ f i r s t  serve queueing discipline; the service times for 
the consecutive customers served at the i ' th  station are i.i.d, with common 
continuous distribution G i. The external arrival stream to the i ' th  station is 
assumed to be a renewal process with continuous inter-arrival distribution F/. 
Furthermore,  customers are routed between stations according to a Markovian 
routing scheme with associated substochastic routing matrix P = (Pij: 1 ~< i, j ~< 
d).  Finally, the routing, inter-arrival, and service time sequences described above 
are all assumed independent  of one another. 

Given such a network, we obtain a GSMP by letting S = 7/+•  . . .  • 7/+ (d  
times); the vector s - - ( s l , . . . ,  s a ) ~  S will then represent the queue-lengths (in- 
cluding the customer at the server) at each of the d stations. A state transition 
occurs via either of the following possibilities: an external arrival event or a 
departure event. Thus E ( s ) = { ( i ,  1): l ~ < i ~ < d } U { ( i ,  2): l ~< i~<d ,  si>~l},  
where (i, 1) corresponds to an external arrival to station i and ( j ,  2) denotes a 
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departure from station j.  Note that the continuity of the F~'s and Gj's implies 
that simultaneous events can not occur, in the sense that simultaneous external 
arrivals and departures are impossible. As for the routing probabilities p(s'; s, e), 
observe that: 

1 if s '=  s + e i 
P ( S ' ; s ' ( i ' l ) ) =  0 if s '4=s+e i 

r d 

p(s ; s , ( i ,  2))= E P ,  j if s ' = s - e i ,  s,>~l 
j = l  

All "speeds" rse = 1 and F( . ;  s ' ,  (i, 1), s, e ) =  F/(.), whereas F(-;  s ' ,  (i, 2), s, 
e)  = c , ( . ) .  

To precisely define the dynamics of a GSMP, we use an associated GSSMC 
(general state space Markov chain). To simplify the remainder of our discussion 
of GSMP's, we henceforth assume that the distributions F ( . ;  s ' ,  e ' ,  s, e) are 
continuous with F(0; s ' ,  e ' ,  s, e) = 0; this permits us to ignore the possibility of 
simultaneous arrivals and departures. We also require that Ge > 0 for some 
e ~ E(s);  otherwise, the system gets "stuck" in that state s. The key to the 
dynamics of a GSMP is to identify a clock with each of the events e ~ E(s) that 
are "active" in state s ~ S. In a queueing context, the clock readings will typically 
correspond to the amounts of time remaining until the next arrival and departure 
events occur, for each of the arrival and service time processes active in s. A 
GSSMC is obtained by applying the method of supplementary variables to the 
GSMP; the idea is that the GSSMC describes not only the physical state of the 
system, but also the states of the clocks for each of the currently active events. 
Thus, the GSSMC X = (Xn: n >/0) will take the form Xn = (S,, C n), where S n is 
the physical state at the n ' th  transition of the GSMP, and C, is the associated 
vector of clock readings. 

To describe the state space of X, let R+ = [0, oo), E = Os~sE(s), and let 

C s = { c ~ R e + :  c e > 0 i f f e ~ E ( s ) ,  

Cerse 4= Ce,rse, for e q= e'  whenever 

cer, eCe,G~, > 0}. 

Then, Z = U ~ s ( { S }  x C~) is the state space for the chain X. For (s, c) E Z ,  let 

t * - t * ( s ,  c)=min(Ce/rse: e ~ E ( s ) } ,  

C*=C*e(S, C)=C~--t*rse, e ~ E ( s ) ,  

e* =e*(s ,  c ) = e  iff c* = 0  and e ~  E(s).  

Note that e* is the (unique) event triggering a transition from state, s, while t* 
is the interval between transitions of the GSMP, beginning in state s with clock 
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vector c. At  a transit ion f rom s to s '  triggered by event e, new clock values are 
independent ly  generated for each e '  ~ N(s ' ,  s, e) = E(s ' )  - (E(s )  - {e});  the 
clock values are generated f rom the distr ibutions F ( . ;  s ' ,  e ' ,  s, e). For  e ' ~  
O( s', s, e) = E( s')  A ( E( s ) - (e}),  the old clock reading is kept  after the transi- 
t ion so that  ce,=c*,(s, c). Finally, for e ' ~ ( E ( s ) - ( e } ) - E ( s ' ) ,  event e '  
ceases to be scheduled after the transit ion so that  c e, = 0; this occurs (for a 
departure  event clock) whenever a customer  departs  to leave the server idle, for 
example. 

We are now ready to define the transit ion funct ion of X. For  (s, c ) ~  Z, 
A = ( s ' }  • { c ' ~  C~,: Cfe<~ae, e ~ E ( s ' ) } ,  set 

P((s ,  c), A ) = p ( s ' ;  s, e) I-[ F(ae,; s ' ,  e', s, e*) 
e' ~N(s' ,  s, e*) 

x ]--I It0,ae] ( c* ) (3.2) 
e~O(s',  s, e*) 

Let X = (X,  = (S  n, C,): n >/0) be the co-ordinate process having transit ion func- 
t ion (3.2). Then, for n >i 1, 

n - - 1  

A ( n )  = Y'~ t*(Sk,  Ck) (3.3) 
k = 0  

is the t ime of the n ' th transit ion of the GSMP.  Thus,  the G S M P  Q = (Q( t ) :  t >~ 0) 
may  be formally defined as 

oo 

Q ( t ) =  Y'~ S n I ( A ( n ) < ~ t < A ( n +  1)) ,  (3.4) 
n = 0  

where A ( 0 ) = 0 .  If we assume that  A ( n ) - ~  ~ a.s. (i.e. that  the process is 
non-explosive), it follows that  (3.2) through (3.4) yield a well-defined process Q. 
The  process Q is said to be the canonical  G S M P  associated with " p r o b l e m  data"  
as specified by (3.1). (For more  detail, see Whit t  [28]). 

A key point  of the above analysis is that  a large class of queueing network 
simulations have Markov structure. The  G S M P  framework is a context  which 
allows us to precisely identify the nature of the associated Markov  structure. This, 
in turn, has p ro found  implications bo th  for the development  of improved 
simulation algorithms and for the analysis of existing methodologies.  

4. Output analysis for transient simulations 

Let X - - (Xn :  n >~ 0) be the GSSMC corresponding to a GSMP.  Let T be a 
finite-valued (possibly randomized) s topping t ime for X and let Y = f (Xn:  0 ~< n 

T)  be an R~-valued r.v. The  transient simulation output analysis problem 
concerns the est imation of quantit ies of the form 

a = g ( E Y )  (4.1) 

where g: R d ~  R. 
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EXAMPLE 1 
Let h be a real-valued function defined on the state space S of the G S M P  Q 

and consider the problem of estimating the parameter  a = Eh(Q(t)).  This is a 
special case of (4.1), in which g ( y ) = y ,  Y = f ( S n ,  C , : O < < . n ~ N ( t ) + I ) =  
h(SN(t)), and T -  1 = N(t)  = max(n  >~ 0: A(n)  <~ t).  

EXAMPLE 2 
Given a subset A of the state space of Q, define S(A) = in f ( t  >/0: Q(t) ~ A } .  

If we set Y = A ( T ( A ) ) ,  where T(A)=inf{n>~O: S n ~ A } ,  and g ( y ) = y ,  then 
(4.1) incorporates the problem of calculating a = ES(A).  

EXAMPLE 3 
For  two subsets A and B, consider the problem of estimating a =  

E ( S ( A )  IS(A ) <~ S(B) ) .  The estimation of such a conditional expectation is a 
special case of (4.1), in which d = 2, Y =  ( A ( T ( A ) ) I ( T ( A )  <~ T(B)), I (T (A)  <~ 
T(B))), and g(Yl, Y2) =Yl/Y2. (To define g on all of •d, set g(y,  O) = 0.) 

EXAMPLE 4 
Given a real-valued function h, suppose that we wish to estimate the variance 

a = var h(Q(t)). Here, Y= (hZ(gN(t)), h(SN(t))) , d =  2, and g(Yl, Y2) =Yl _ y 2 .  

EXAMPLE 5 
Let T be a stopping time for X, Y =  (f l(Xn: 0 ~ n ~< T),  fz(Xn: 0 ~< n ~< T)) 

( f  l, f2 are real-valued), and d = 2. The ratio estimation problem a = 
EY(1 ) /EY(2 ) (Y=  (Y(1), Y(2)) is the instance of (4.1) in which g(Yl, Y2) =Yl/Y2. 
(Define g( y, O) = 0.) 

A methodology for solving (4.1) is straight-forward and readily obtained. Let 
_ . n ~i= 1Y/ with X1, X2, .. be i.i.d, copies of the process X, and set Y ( n ) =  -1 , 
Y(0) = 0 where Yi =f(Xg,:  0 <~ n <~ T~). An estimator a(n) for a is then given by  

~ ( n / =  g ( Y ( n ) ) .  

The following theorem summarizes the behavior of a(n) (see Settling [26], p. 
118, for a proof  which can be easily modified to cover the current circumstances.) 

THEOREM 1 
(i) If EI[ Y [] < oo and if g is continuous in a neighbourhood of  EY, then 

a(n) ~ a a.s. as n ~ oo. 
(ii) If E [[ Y I[ z < oo and if g is differentiable at EY, then nl/E(a(n) - a) =* 

oN(0, 1) as n ~ oo, where o :  = V g ( E Y ) t C V g ( E Y ) ,  C = E Y Y  t - E Y .  E Y  t, and 
V'g(EY) is the gradient of g evaluated at EY. 

Thus, under suitable regularity hypotheses, a(n) is strongly consistent for a 
(i.e. converges to a a.s.) and satisfies a central limit theorem (CLT). The CLT 
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asserts that the rate of convergence of a ( n )  to a is roughly of order n -1/2. Thus, 
in order to add an additional significant figure of accuracy (i.e. increase accuracy 
by a factor of 10), one has to increase the number  of observations by a factor of 
100. This suggests that simulation is a relatively inefficient tool for obtaining 
high-accuracy solutions. Of course, in many  applications, two or three significant 
figures of accuracy is quite acceptable and, as indicated in section 2, simulation 
can then be a competitive technique. 

Because of the slow convergence rate of Monte Carlo simulation, error analysis 
is particularly important.  Typically simulators assess error by producing confi- 
dence intervals for the parameter  to be estimated. The CLT provided by theorem 
1 is the key to obtaining such confidence intervals in the transient setting. Set 

n 

1 ~., y~y.t_ ~(n)~t(n)  C ( n ) =  n 
i = 1  

s(n) = (IP'g(Y(n))tC(n)Wg('Y(n)) 1/2, 

and let I(n) = [~(n)  - z(8)s(n)/n 1/2, ~n + z(8)s(n)/nil2] where z(8)  solves 
P{N(0,  1)~< z(8))  = 1 -  8/2 .  The following result states that I(n) is an asymp- 
totic 100(1 - 8)% confidence interval for ~. (The proof is easy.) 

PROPOSITION 1 
If E II Y II 2 < oo, g is continuously differentiable in a neighborhood of EY, and 

o 2 = Vg( Ey ) rc~g (EY)  > 0, then P{ a ~ I(n)} --* 1 - 8 as n --* oo. 

Proposition 1 describes the basic output  analysis algorithm for transient 
simulations. It indicates what data needs to be collected from the simulation, and 
how the data  must be manipulated in order to produce confidence intervals that 
are asymptotically valid. 

Several important  refinements of proposition 1 are worth mentioning, however. 
First, it may  be inconvenient to set the run length in terms of the number  of 
observations generated, since the amount  of computer  time required to generate a 
fixed number  of observations will in general be random (e.g. time to simulate a 
Jackson network to time t corresponds to a random number  of state transitions). 
It is often more natural to specify run length in terms of a computer  budget t, 
and to produce confidence intervals based on the data generated within that 
budget constraint. 

Let ill, f12,--- be the amounts of computer  time required to generate Y1, Y2 . . . .  
respectively; we make the natural assumption that the random vectors 
(Y1, ill), (II2, f12),..- are i.i.d. Note  that the number  of observations x ( t ) =  
m a x ( n  >1 0: E~=lfl / ,~ t} generated by time t is a renewal process. The natural  
point estimate for a is a t = a(x(t)) and the natural  confidence interval to use is 
I t = I ( x ( t ) ) .  
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THEOREM 2 
(i) If E II Y II < oo, 131 < co a.s., and if g is continuous in a neighborhood of 

EY, then a t ~ a a.s. 
(ii) If E II Y tl 2<  oo, E/31 < oo, and if g is continuously differentiable in a 

neighborhood of EY, then ta/2(at- ~ ) ~  oN(O, 1) as t -o  oo where 0 2 =  Eft1. 
Vg(EY) tCVg(EY) ,  and C = E Y Y t - E Y . E Y  t. Furthermore,  if 0 2 > 0 ,  then 
P ( a ~ l , }  ~ l - ~  as t ~ m .  

We refer to Glynn and Whitt [11] for a proof of theorem 2. 

A second refinement concerns running the simulation according to a sequential 
stopping rule, in which the run length is not set in advance. Instead, the 
simulation is allowed to run until either an absolute or relative error precision c is 
met. Note that the confidence interval I(n) has half-with z(~)s(n) /n  1/2. Thus, 

T(e) = min{n >~ 1" z(3)s(n)n  -1/2 -t-n -1 < f}  (4.2) 

is a sequential stopping rule designed to stop the simulation when the interval 
half-width drops below e (the additional n -1 term is included to prevent the 
simulation from stopping too early); this is an absolute precision stopping rule. 
(In a relative precision rule, e would be scaled to the magnitude of a). Set 
[(c) = I(T(e)). 

THEOREM 3 
If E 11Y 1[ 2 < oo, g is continuously differentiable in a neighborhood of EY, and 

o: = Vg(Ey)tC~Tg(EY) > 0, then P{ a ~ / ( e ) }  -o 1 - 8 as c $0. 
See Glynn and Whitt [12] for a proof. 

A major concern in all of the confidence interval methodologies described 
above is that they are based on asymptotic limit theory. For small to moderate  
run lengths, the limit theory may be misleading. F rom a practical standpoint,  this 
manifests itself by producing confidence intervals with incorrect coverage levels 
(e.g. a confidence interval with a stated coverage level of 90% may  only cover a 
80% of the time). Several factors typically lead to confidence interval degradation. 
Firstly, the r.v.'s Y1, Y2,-.- may be highly skewed and asymmetric so that the 
multivariate CLT for Y(n) exhibits a slow rate of convergence. Secondly, non-lin- 
earities in g may exacerbate the situation. For example, Y(n) is unbiased for EY, 
but g(Y(n)) is generally biased for g(EY)  when g is non-linear. These factors 
lead to slow convergence in the CLT for a(n) which, in turn, leads to poor 
coverage in l(n). Development of small-sample corrections to the confidence 
intervals described above is an active area of current research. 
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5. Output analysis for steady-state simulations 

In this section, we describe the output analysis problem for estimation of 
steady-state parameters. For f: Z ~ R d, let Yn = f(Xn) where X = (Xn: n >~ 0) is 
the GSSMC associated with the queueing system. Suppose the sequence (Y,: n >~ 
0) is ergodic in the sense that there exists a finite-valued (deterministic) vector/x 
such that 

Y(n) =/~ (5.1) 

as n ~ oo. The steady-state simulation output analysis problem concerns estimating 
a = g(/z), where g: R d ~ R is given. 

In many applications, the simulator's interest centers on steady-state character- 
istics of the process Q, as opposed to X. Specifically, for h: S ~ R d, interest 
frequently is concentrated on the long-run behavior of 

1 foth(Q(s))  ds 

and, more generally, 

�9 1 fo th(a(s))ds)  (5 .2)  a = k(tl~n~ T 

(if the limit exists) for k: R d ~ R. 

EXAMPLE 6 

If Q is the queue-length process for an open queueing network, h(q)  = q, and 
k ( x )  = x a + . . .  + x  d, then a (as defined by (5.2)) corresponds to the steady-state 
expected total number of customers in the system. 

EXAMPLE 7 

To calculate the steady-state variance of the total number of customers in the 
system, let h(q) = ((Elaqi) 2, Eaaqi) and set k ( y  1, Y2) =Yl -Y~. 

EXAMPLE 8 

To measure the steady-state ratio of customers at two stations i and j in a 
queueing network, let Q be the corresponding vector queue-length process, 
h(q)  = (qt, qj) and set k(ya, Y2) =Yl/Y2.  

The next result shows that the estimation problem (5.2) is but a special case of 
the steady-state simulation problem for the chain X. (For the proof, see the 
appendix.) 
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PROPOSITION 2 
For  h: S -~ R e, suppose that  

n - 1  
1 y ,  h ( S k ) t , ( S k  Cg) a ' s ' )~ l  
n k=0 

n - 1  

% E t*(Sk, Ck) a's')/x2 n k=O 
n-1 

1 y ,  ilh(Sk) l l t , (Sk  ' Ck ) a.s.)/~ 3 
n k=0 

where/~1, /~a,/~3 are finite (deterministic) constants  and ~2 > 0. Then,  

1 
--[ foth(Q(s)) ds a's')~Zl//Z 2 

as t ~ oe and (5.2) is a special case of the steady-state simulat ion problem, in 
which f ( s ,  c )= (h(s) t*(s ,  c), t*(s, c)) and g: N d + l ~  N is defined by 
g(Xl , . . . ,  Xd, Xd+l) = k(Xl/Xd+I, . . .  , Xd/Xd+I). 

Before proceeding to the discussion of s imulat ion methodology  for the steady- 
state simulation problem, we will detour  (for a moment )  to discussing condit ions 
guaranteeing the validity of (5.1). Such condit ions show that  the steady-state 
simulation problem is well-posed. A key to the analysis is the Markov  chain X. 
An extensive body  of theory has been developed to s tudy the recurrence structure 
of GSSMC's.  One particularly powerful approach  involves proving that  the chain 
X is recurrent in the sense of Harris. Specifically, the chain X is said to be Harris 
recurrent if there exists a set A _ ~,  a positive number  X, an integer n >~ 1, and a 
probabil i ty distr ibution q, on 2; such that  

(i) P ( X n ~ A infinitely often ] X 0 = (s,  c) ) = 1 for all (s,  c) ~ Z 

(ii) e ( x , ~ . l X o = ( S , C ) } > ~ X ~ ( . ) f o r a l l ( s , c ) ~ A .  (5.3) 

In most  applications, A is typically a compact  subset of N and condi t ion (ii) 
translates into a requirement that  the measures P{ Xn ~ �9 IX0 = (s, c)} have a 
c o m m o n  density componen t  which is uniformly bounded  (in (s, c ) c A )  away 
f rom zero; if the density componen t  is cont inuous  in (s, c), the compactness  of A 
often suffices to obtain a uni form lower bound  on the densities. This discussion 
suggests that  we can reasonably expect many  GSMP's  to be Harris recurrent,  
particularly when considering those GSMP's  for which the distributions 
F ( . ;  s', e', s, e) have cont inuous positive (Lebesgue) density components .  

An  impor tant  observation in the study of Harris chains is that  condi t ion (5.3) 
permits  one to "spl i t"  the transition funct ion P (  X n ~ �9 [ X 0 = (s, c)} over the set 
A: 

e{x n E~.. IX0 = (s, c))  = ~k~(.) + ( 1 -  ~k)Q((s, c ) , . )  (5.4) 
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for (s, c) c A ,  where Q((s, c), .) is a probability distribution on 2~. Condition 
(5.4) states that if X,, ~ A, the distribution of X,,+n is determined by a "coin 
flip" in which the probability of success is ~. If the coin flip is successful, X,,+, 
is distributed according to 'h(') (independently of the position of X at time ~-'), 
whereas, if the coin flip is unsuccessful, X,,+n is distributed according to 
Q(X,,, .). 

Note that condition (5.3) (i) guarantees that A is hit infinitely often by X. 
Since the probability of a successful coin flip is ~ at each visit to A, a "geometric 
trials" argument shows that eventually a successful coin flip must occur; let "r be 
the associated time at which X is distributed according to q~. It is evident that X, 
has a distribution independent of X0, . . . ,  X~_,. This regenerative-type character- 
istic of the random time ~- can be shown to imply that Harris chains possess a 
non-trivial o-finite measure rr (unique up to a multiplicative constant) which is 
stationary in the sense that 

~(.) = fzP( X 1 ~ .IXo = x}~r(dx).  

Furthermore, if ~r(.) is finite, it can be expressed as 

�9 -1 1} = 

where Eq,(.) denotes the expectation conditional on the initial distribution of X 
equalling q,. (See Athreya and Ney [3] for details.) Finally, if E,'r < ~ and if 
E,(Ek=0 II f(X~) II) < ~ ,  the strong law (5.1) holds: 

n - - 1  

I ~-'~ f(X~,) ~ ~ a.s. 
n k = 0  

as n ~ oo (regardless of the initial distribution of X); see Revuz [24], p. 139. 
Thus, the Markov chain theory described here suggests that the limit theorem 
(5.1) will frequently be in force when dealing with steady-state queueing simula- 
tions. Developing precise conditions on the basic building blocks of the GSMP 
(i.e. S, E(s), Ge, p(s'; s, e), F(. ;  s ' ,  e ' ,  s, e)) that guarantee Harris recurrence 
of X is an active area of current research. 

An additional benefit of this approach is that if E,'r < ~ and if 
" r -1  E~Ek=O II f(S~)II < oo,  the regenerative-type structure of X permits us to re-ex- 

press the steady-state limit ~ in terms of the ratio 
"r--1 

Iz= E, E f (  X~)/E,~'. (5.5) 
k = 0  

(see Glynn [9]). As we shall see, (5.5) will permit us to reduce the steady-state 
simulation problem to a special case of the transient simulation problem studied 
in section 4. This idea lies at the core of the regeneratioe method of steady-state 
simulation output analysis. 
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Specifically, no te  that  if ~- 1 . E~,Ek=o [1 h(Sk)  11 t (Sk, Ck) < oo and 
E V'~-l,*(Sk, CK) < oo, then proposition 2, (5.1) and (5.5) may be combined to Oz-.,k=0~ 
prove that 

'r--I 

* S  E~, Y'~ h(Sk)t  ( k, Ck) 
1 f ' h ( Q ( s ) )  ds a.s.) k=0 
t J0 ~'-1 

G E t*(sk, ck) 
k=0 

as t ~ ~ .  Then, estimating a as defined by (5.2) is equivalent to estimating the 
parameter a = g( E~,Y) where 

~,-1 r  ) 
, * S Y= E h(Sk) t*(Sk ,  Ck) Y'. t ( k, Ck) (5.6) 

k=0 k=0 

and g(Yl, . . . ,  Ya, Yd+I) = k(yl/Yd+I, . . . ,  Yd/Yd+I)" Observing that Y depends on 
X only up to the randomized stopping time ~-, we see that a is expressed precisely 
in the form (4.1), which is the transient simulation problem. Thus, all the 
transient simulation methodology described in section 4 can be readily applied to 
the estimation of the steady-state parameter a. 

The regenerative method is particularly straightforward to carry out in the case 
that the process Q = (Q(t):  t >10) is an S-valued continuous-time Markov chain 
(CTMC). This typically occurs when all the distributions F(x; s', e', s, e) are 
exponential (i.e. of the form 1 -  e x p ( - M s ' ,  e', s, e)x) for x >/0). If Q is an 
irreducible positive recurrent CTMC, it is well known that the process Q 
"regenerates" at those instants at which Q enters a fixed state, say y ~ S. 

Thus, the regenerative structure is available to the simulator without having to 
explicitly "sprit" the transition function of X as in (5.4). In particular, if 
T(y) = inf{n >t 1: S. = y }  and w S'I"(Y)--I/ X"y/"~k=O i, [] h( Sk) [I + l ) t * (  Sk, Ck) < cx~ ( Ey( . )  is 
the expectation operator for the CTMC conditional on Q ( 0 ) = y ) ,  then a ( as 
defined by (5.2)) takes the form a= g( EyY(y)) where g(Yl , . . . ,  Yd, Ya+I) = 
k(yl/Yd+I, . . . ,  Ya/Ya+l) and Y(y) is given as in (5.6), with "r(y) playing the role 
of ~-. In applying the transient methodology of section 4 to the regenerative 
steady-state analysis of CTMC's, we recall that the algorithm involves simulating 
i.i.d, copies of the chain Q from time 0 to time A(,r(y)). An interesting feature of 
the algorithm is that because of the fact that the evolution of Q is independent  
over "cycles" formed by entrance times to y, the above approach is equivalent to 
simulating one copy of Q until time A(r where "rn(y ) in the time of the n 'th 
visit of (Sn: n >/0) to y. Thus, forming the transient estimate a(n) = g(Y(n)) is 
equivalent to simulating Q for A (%(y))  t ime units and comput ing 
k((h o Q)(A(T,(y)))), where (h o Q)(t) = t-lf~h(Q(s)) ds. 

Given that any state y ~ S may be chosen as the "regeneration" state, it is 
natural to ask whether the efficiency of the regenerative method for estimating 
a = k(limt__,oo(h o Q)(t)) is affected by the choice of the regeneration state. By 
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efficiency, we refer to the quality of the estimator available after t units of 
computer time have been expended. Theorem 2( toge ther  with the regenerative 
method, which permits us to estimate a via g(Yn(Y))) shows that the regenera- 
tion state x is more efficient than y if o2(x)<~a2(y), where 0 2 ( . ) =  
E#I( .)Vrg(EY(.)) tC(.)Vg(EY(.))  (clearly, /31, V'g(EY), and C all depend on 
the regeneration state). It seems reasonable to assume that the computational 
effort fla required to generate Q over the j ' t h  cycle takes the form 

#j = Y ' .x ( sk )  
k 

for some function X('), where the sum is over the states visited on the j ' th cycle. 

P R O P O S I T I O N  3 

Suppose Q is a positive recurrent irreducible CTMC, and that k( . )  is differen- 
tiable. If X(Y) >1 0 for all y and if Efl l (X ) < oo, E 11Y(x) 112 < oo for some x, 
then o2(y) = o2(x) for all y ~ S. 

For the proof, see the appendix. Thus, the efficiency of the regenerative 
method for CTMC's is independent of the choice of the regeneration state. (This 
result does not extend in general to the regenerative method as based on the 
"splitting" approach of (5.4).) 

A limitation of the regenerative technique described above for queueing 
systems (based on the "splitting" method) is that it takes significant effort (both 
analytically and in programming time) on the part of the simulator to adapt 
software so as to identify the regeneration times. An alternative approach to 
developing methodologies for the steady-state simulation problem requires 
strengthening (5.1) to a functional central limit theorem (FCLT) hypothesis on 
(Yn" n >t 0), where Yn = f(Xn):  There exists a matrix A such that 

(1  n#0 ) n 1/2 Yk--tl ,  J A B ( t )  (5.7) 

as n --+ oo in D[0, oo) (the Skorohod space of right continuous functions with left 
limits having domain [0, o0) and range Rd), where B( . )  is a standard Brownian 
motion on R d (so that EB(s)B(s)  t= s.  I). Maigret [19] proved FCLT's  of the 
form (5.7) for Harris chains, by exploiting the martingale central limit theorem. 
(Although her proof was stated for d = 1, the result is easily extended to our 
current setting.) Thus, (5.7) is a hypothesis which one can reasonably expect to 
hold for a great m_.any queueing systems. 

Let a(n)= g(Y(n)) be the point estimator for the steady-state limit a. The 
following result is easily established, and summarizes the behavior of a(n).  

P R O P O S I T I O N  4 

Suppose (5.7) holds and let C = A54. If g is continuous at #, then a(n) ~ a = 
g(/*) as n --+ oo. If, in addition, g is differentiable at /~, then nl/Z(a(n) - a) 
aN(O, 1) as n ~ oo, where a 2 = ~Tg(ix)tCVrg(l~ ). 
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Proposit ion 4 shows that  if one c a n  construct  an est imator s(n)=~ I ol as 
n ~ ~ ,  then P(a ~ [a (n)  - z(8)s(n)/n 1/2, a(n) + z(8)s(n)/nl/2]} ~ 1 - 8 as 
n ~ ~ whenever a 2 >  0. Thus,  a confidence interval methodology  is easily 
obtained, once one is given a consistent est imator for a 2. As a consequence,  the 
development  of consistent estimators for the parameter  o 2 appearing in proposi-  
t ion 4 is the central problem of steady-state simulat ion ou tpu t  analysis. 

To construct  a consistent est imator for a 2, observe that  if g is cont inuously  
differentiable at /z, then (5.7) implies that  Vg(Y(n)) =* ~Tg(Iz) as n --* oo. Thus, 
the hard part  of the est imation problem deals with est imating C. To estimate C, 
observe that if { n [1Y(n) - /x  112. n ~ 1} is uniformly integrable, then 

C =  lim n . E ( Y ( n ) - i ~ ) ( Y ( n ) - I x )  t (5.8) 

Suppose (Yn" n >~ 0) is strictly stationary with ~2n~176 II E ( Y o  - ~ ) ( Y .  - ~) '  II < oo. 
By comput ing  the r ight-hand side of (5.8), one easily shows that  

oO 

C= E(Yo-  II)(Yo- II) t-l- E E(Yo-  I~)(Yk- I~)t + g ( Y k -  I~)(Yo- l~) t" 
k=l 

(5.9) 

Several different methods  (e.g. spectral techniques, autoregressive methods)  for 
estimating C rely on the representation (5.9); see chapter  3 of Bratley, Fox and 
Schrage [6]. Recall that  (5.9) only holds exactly when  the sequence (Y,: n >/0) is 
strictly stationary. Typically, a simulation of the GSSMC X gives rise to a 
non-stat ionary process, since X 0 will usually have a non-s ta t ionary distribution. 
In order to justify the use of stationary process ideas in a queueing simulat ion 
context, it is of some comfort  to recognize that  if X is an aperiodic Harris chain 
with a finite invariant measure, then 

(X~+k: k>~O)~(X~'" k>~O) 
(weak convergence in the product  topology) as n ~ oo, where X* = (Xk*: k >t 0) 
is strictly stationary (see Revuz [24], p. 198). Thus,  one expects that  many  
queueing systems are at least asymptotically stationary. This suggests that, at 
least in a large-sample context, algorithms based on a stationarity assumpt ion  
should behave reasonably well. 

As in the transient simulation setting, it is often more  convenient  to define 
sample size in terms of a budget  constraint  t on  the compute r  time. As in the 
transient case, let ill, f12,.-, be the amounts  of computer  t ime required to 
generate ]11, Y2,... respectively. Then,  K(t) -- m a x ( n  >/0: Y"~=l~k ~ t) is the 
number  of observations generated in t t ime units. The  natural  po in t  estimate for 
a is at = a(~(t)). 

THEOREM 4 
n Ek=l~k--'~'y Suppose that  (5.7) holds and that  g is differentiable at /~. If - 1  . 

a.s. n -* oo (where 7 is a finite positive deterministic constant),  t h e n  t l / 2 ( a t  - a )  
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=, oN(0, 1) as t--> oo, where 0 2 =  yWg(l~) tCv'g( tx) .  If, in addition, o 2 > 0 and 
s t =*. o as t --> oo, then P ( a  ~ [a t - z ( ~ ) s t / t  1/2, a t + z ( 8 ) s t / t l / 2 ] }  ~ 1 - 6 as t --> 
00 .  

For a proof, see Glynn and Whitt [11]. 
An analogue of the sequential stopping rule methodology for transient simula- 

tions also extends to the steady-state setting. Let s ( n )  be an estimator for 
( V g ( # ) t C V g ( # ) )  1/2 based on the observations Y1 ..... , Y~ and let T(e) be defined 
as in (4.2). 

THEOREM 5 

Suppose that (5.7) holds a n d  that g is differentiable at /~. If s(n)---> 
(V 'g( tQtCv 'g( IQ)  a/2 > 0 a.s. as n ---> oo, then P { a  ~ [a(T(E)) -- ~, t~(T(e)) + c]} 
~ 1 - 8  as c$0.  

For a proof, see Glynn and Whitt [12]. 

6. Run-length determination for queueing simulations 

As indicated in sections 4 and  5, a major concern of simulators centers on the 
issue of the amount  of computer time t required to calculate a queueing 
parameter a to within a given Precision c. One approach to the problem involves 
using a sequential stopping rule of the form (4.2). Several difficulties with the 
method are apparent. Firstly, prior to initiating such a simulation, the simulator 
will typically have no idea as to how much computer  time the simulation will use 
in computing the T(c)observat ions determined by the stopping rule. Thus, the 
simulation may significantly exceed the desired computer time budget (or, alter- 
natively, the simulator may need to terminate the simulation early) when such a 
sequential algorithm is used. Secondly, the nature of the random sample size T(c) 
can introduce certain contaminating effects into the simulation output  analysis 
procedure that generally would not be present (or, at the least, would be present 
in smaller quantities) in a deterministic run-length simulation. For example, such 
sequential methods are prone, particularly for largish c, to early termination 
because of an overly optimistic variance estimate caused by the observations 
Y1, Y 2 , . . . ,  Yr~,) clustering closely together (due to random circumstance). How- 
ever, it turns out (fortunately) that such contaminating effects decrease to zero as 
c + 0. As a consequence, the sequential stopping rules of sections 4 and 5 continue 
to form an important class of simulation algorithms, particularly for E small. 

Nevertheless, the above discussion indicates that approximation of the simula- 
tion run-length required to compute a to within c can be a valuable tool to the 
simulator. The principal application is to determine whether a given (planned) 
simulation is feasible. For example, if the approximate run-length is prohibitively 
large for the precision c, the simulation would either need to be abandoned, be 
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made  more efficient, or the permissible error level e would need to be increased. 
Even if feasibility is guaranteed by the approximation,  the approximat ion  has 
further applications. The approximate  run-length could be used to assign a 
(deterministic) computer  budget  t to the simulation, thereby avoiding the con- 
taminat ion effects described earlier. 

As a first step to developing an approximation,  note  that  if o~ t is an est imator 
for a satisfying t l /2(at - a) =, oN(O, 1), the 100(1 - 8)% confidence interval has 
length approximately 210 I Z(~) / t  1/2. Assuming a :# 0, this suggests that  the 
run-length required to obtain a 100(1 - 3)% confidence interval for a of length 
E I a l is approximately 40222(C~)/C2a 2. Assuming that  ( t ( a  t - a)2: t >~ 0} is uni- 
formly integrable; a 2 can be evaluated as 

O 2 : t im t .  M S E ( a t ) .  
t'---> OO 

where M S E ( a t )  = E ( a  t - a)2. Thus, the key to developing appropria te  run-length 
approximations is an estimate of M S E ( a t )  for large t. 

Asmussen [2] and Whit t  [29] have studied the run-length approximat ion 
problem for queues in heavy traffic. Specifically, consider the problem of estimat- 
ing the steady-state waiting time E W  of a customer in the G I / G / 1 / o o  queue for 
a traffic intensity just  below unity. Assuming that E W is est imated by " -a v-,-1 . , ,  rt  Z . ' k  = 0 ~'Vk 

(W0, W1,... are the waiting times of successive customers) and that  the computer  
t ime required to generate W0, . . . ,  W,_ 1 is n, it is argued there that  

t .  M S E  (a t) = tE Y', W k - E W  
k = 0  

: c . ( 1 - 0 )  -2 

for some constant  c. Thus, in order to obtain estimates for E W  of high relative 
precision, it is necessary for t >> ( 1 -  p)-2 .  As pointed  out  by Asmussen  and 
Whitt,  a similar analysis can be formally carried out  for more  general networks of 
queues in which diffusion approximat ions  hold. 

An  impor tant  feature of this theory is that  it forcefully points  out the 
substantial amounts  of computer  t ime required ti3 obtain (relatively) accurate 
solutions to queues in heavy traffic. 

7. Variance reduction techniques (VRT's) 

The idea underlying variance reduction is to exploit the stochastic structure of 
the queueing model  under  consideration, in order to obtain improved computa-  
tional efficiency. The stochastic structure can often be used to construct  a variety 
of alternative estimators for the quanti ty a to be estimated. The  remainder  of this 
section will be devoted to a discussion of how to choose the most  "efficient" 
estimator in the class available to the simulator. 
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Consider two competing estimators a l (n  ) and a2(n  ). Suppose that ai(n ) is 
obtained by generating a sequence (Y~j: 1 <~j <~ n), and that the time required to 
generate Y~j is given by fl~j. Thus, the time required to generate a i ( n ) is given by 
fla + --- + fl;n- Conversely, given a computer budget t, the estimator available at 
time t is ai, =- a i (N/ ( t ) )  , where Ni(t ) = max( n > 0: E~=lflik <~ t}. 

Assume that the estimators ai(n ) (i = 1, 2) satisfy FCLT's:  There exists finite 
o i and c < 1 such that 

nl/2( tag([ nt ] ) - ta) =~ oiB ( t )  (7.1) 

as n ~ oo, in D[c, oo), where B( . )  is a standard real-valued Brownian motion. If 
we set t =  1 in (7.1) and assume that {n (a i (n  ) - a ) 2 :  n>~ 1) is uniformly 
integrable, we find that 

var a , ( n ) = o ~ / n  + o ( l / n ) .  

We shall therefore say that a2(n ) has lower variance than the estimator aa(n ) if 
o ~ <  Ol 2. Techniques which give rise to a new estimator a2(n ) having lower 
variance than the original estimator a l (n  ) are called variance reduction techniques 
(VRT's). 

To understand (7.1) better, suppose that ai(n ) =gi(Yi(n)) ,  where Y//(n)= 
- 1  n n Z,k=lY~k. This comprises a class of estimators extensively studied in both 

sections 4 and 5. If the FCLT (5.7) holds for Yi(n), and & is continuously 
differentiable in a neighborhood of ~i (/zi is the centering constant appearing in 
(5.7)), then (7.1) is valid with off = ~Tgi(~i)tAtiAit~Tgi(~i) (A  i is the scaling matrix 
appearing in (5.7)). 

It might, at first, seem reasonable to choose the estimator with the smallest 
possible variance. However, this choice neglects the fact that the simulation of the 
sequence (Yij: J >t 0) may be considerably cheaper for one estimator than the 
other. Thus, the computer time needed to generate observations should be 
factored into the decision as to which estimator to use. This can be considered 
mathematically by analyzing the estimators air (i = 1, 2) rather than the ai(n) 's.  
The following result generalizes theorems 2 and 4 (see Glynn and Whitt  [11]). 

T H E O R E M  6 

Suppose (7.1) holds and that n - a~= l /3 ik  ~ 3'i a.s. as n ~ ~ with Yi finite, 
deterministic, and positive. Then, tl/2(ait - a) =* ,tiN(O, 1) as t ~ oo where 7/2 = 
yi 02 . 

Thus, the appropriate figure of merit in comparing the computational effi- 
ciency of two competing estimators a l (n) ,  a2(n ) is the quanti ty e i - 1/yia~ 2. The 
parameter e i is called the efficiency of the estimator a i. Thus, the estimator az (n  ) 
is said to be more efficient than aa(n ) if e 2 >t e 1. Techniques which give rise to a 
new estimator az(n ) having greater efficiency than the original estimator a l (n  ) 
are called efficiency improvement techniques (EIT's). 
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In much  of the s imula t ion literature, the parameters  "[1, 3'z are ignored in the 
analysis o f  computat ional  efficiency. Thus, the class of EIT's  is then identical to 
the class of VRT's.  There are several reasons for ignoring the effect of Yl, "/2. 
First, in many  VRT's ,  the addit ional  computa t ion  required to form ag(n)  f rom 
a l (n  ) is believed to be small, so that  3'1 -- 3'2. Secondly, the exact size of the 3'i's is 
hard  to quantify f rom a mathematical  s tandpoint ,  since the 3'i's typically reflect 
the quality of the programming implementat ion,  as well as various machine  
dependent  cons idera t ions .  

8. VRT 1: control variates 

Suppose a (n )  is a real-valued est imator for a and that  (8(n) :  n >t 1) is an 
R a-valued sequence with mean  zero. A sequence (8(n) :  n >i 1) which is known to 
converge to zero asymptotically is called a control variate sequence. The  idea 
behind control  variates is that  the correlation structure between a(n) and 8(n)  
can be fruitfully used to obtain a variance reduction. 

Suppose that  a(n) and 8(n)  satisfy a jo in t  d +  1 dimensional  multivariate 
CLT: There exists a finite-valued matrix A such that  

nX/2(a(n)-a, 8(n))=AN(O, I) (8.1) 

as n--) oo. Note  that  (8.1) implies that  8 ( n ) ~  0 as n--) 0r To exploit the 
correlation between a (n )  and 8(n) ,  set a (n ,  h ) = a ( n ) - N S ( n )  for h ~  R a. 
Observe that  the cont inuous mapping  principle, as applied to (8.1), yields 

na/2(a(n, X ) - a ) =  o (X)N(0 ,  1) (8.2) 

as n ---> c~. The CLT (8.2) shows that  the new estimator a (n ,  X) is also consistent 
for a, in the sense that  a(n, X) =* a as n ~ ~ .  Since X is at our  disposal, we may  
choose it so as to minimize o2(X). To analyze o2(X), write C=A'A in the form 

\ b i D  
where D is d • d and b is d • 1. If the covariance matr ix D is positive definite, it 
is easily shown that  the quadratic form o2(7~) is minimized at 

X* = D-lb, 
and that o2(X *) = 0 2 -  btD-lb. Of course, in a typical s imulat ion context,  the 
value of h* will need to be est imated f rom data  (al though in certain applications, 
D may be computable  prior to initiating the simulation). Assuming (X,: n >/0) is 
consistent for X* in the sense that  X, ~ X* as n---) or a converging-together  
argument  proves that  

nl/2(a(n, )%)-a)  --o()t* )N(O, 1) 

as n ~ oo. Thus, the "control led" est imator a(n, X,) achieves a variance reduc- 
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tion as compared with the original estimator a(n). To determine whether a(n, An) 
achieves an efficiency improvement, we of course need to balance the additional 
cost of computing 3(n) and A n from the simulation against the variance 
reduction obtained. This trade-off is determined both by the estimation problem 
at hand and the choice of control variables used. 

A particularly convenient set of control variates is typically available for the 
steady-state simulation of queueing networks. For example, consider a queueing 
network with d stations and l customer types. Suppose that V,./= (V/j(k): k >~ 1) 
is the sequence of customer service times for customers of type j at station i. 
Assume that the sequence V~j is made up of i.i.d.r.v.'s with common m e a n  ~ij 
and finite variance o~. Let Nv(n ) be the number of service completions for type 
j customers at station i in the first n transitions of the GSSMC X =  (X n = 
(Sn, Cn): n >/0). Choose a set B ___ {(i, j ) :  1 < i <  d, 1 ~<j ~< l}; this will corre- 
spond to the set of control variates used. Specifically, let 

[(Ni~(n) Nu(n) ) ] 3(n)  = 1 k~=l V i j ( k ) - ~ i  j " (i, j ) ~ B  . (8.4) 

The following result is straightforward tO prove, and shows that 3(n) is a control 
variate. 

THEOREM 7 
Suppose that (V~/: (i, j )  ~ B) is a collection of independent sequences. Then, 

if N~y(n)/n ~ vii as n ---, o0 where vii is finite, positive, and deterministic (for all 
(i, j )  ~ B), it follows that 

n l / 2 ~ ( n )  =*' AcN(O, I) 

where D t =AcAc satisfies D = diag(o~.: (i, j )  ~ B). 

The matrix D appearing in theorem 7 is precisely the D of (8.3). Hence, the 
control variates defined by (8.4) have known variance structure; see Bauer, 
Venkataraman and Wilson [5] for further details on how to exploit this fact. 

Lavenberg, Moeller and Welch [17] examined control variate sequences based 
on (8.4) as well as several extensions which included information on the routing, 
structure of the network. A family of controls, called work variables, was found 
to be particularly effective. The ratio of variance reduction O2(~k*)/O 2 ranged 
form 0.2 to 0.95 for the models simulated. 

9. VRT 2: indirect estimation 

As the discussion of the previous six sections has suggested, discrete-event 
simulations for queueing systems are most naturally formulated in terms of the 
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queue-length process Q = (Q(t) :  t >/0). In many applications, the simulator may 
be more interested in estimating characteristics of certain waiting times in the 
system. An  important  identity which can be used here is Little's Law. 

Let QT = (QT(t): t >/0) be the total number  of customers in some subnetwork 
of the system. Let ((A n, Dn): n >i 1) be the sequence in which A, ,  /9, correspond 
to the arrival and departure times of the n 'th customer to the subnetwork. Then, 
W n = D n -  A n is the amount  of time a customer "waits"  in the subnetwork. The 
following result is Little's Law. 

THEOREM 8 
If A J n  ~ - 1  a.s. and -1 n n Ek=aWk ~ W a.s. (0 < ~, w < oo), then 

lfotQT(S ) ds ~ q a.s. 

as t ~  and q = X w .  

Thus, the steady-state mean waiting time w can be estimated as w = ~ - l q  = 

g ( ~ - l ,  q) where g(x, y) = xy. So, provided that we record both the queue-length 
process QT and the arrival times (A, :  n >/1) we can estimate w by techniques of 
the type described in section 4 (without having to observe the waiting times 
directly). 

In most queueing simulations, however, both the waiting time sequence W = 
(Wn: n >1 1) and queue-length process QT are directly observable. The question 
then arises as to whether to estimate the steady-state mean waiting time w 
directly or tO base the estimation on the identity w = ~- lq .  As discussed in 
section 7, the criterion for selection is efficiency. Glynn and Whitt  [13] analyze 
this situation by assuming a joint FCLT for the An's and Wn's: There exists a 
finite-valued matrix A t such that 

n 1/2 %A __t~k_l, 1 E Wk--tW =ALB( t )  (9.1) 
n [ntl n k = l  

as n ~ oo in D[0, oo), where B( . )  is a standard two-dimensional Brownian 
n Ek=aWk requires observing the motion. To compute the direct estimator -1 n 

queueing simulation up to the time D~' = max{ Dk: 1 ~< k ~< n }. Thus, the direct 
estimator for w can be compared with the product  estimator (n-~An). 
(fon;Qr(s) ds/D',). The following result can be found in Glynn and Whitt  [13]. 

THEOREM 9 
If (9.1) holds with 0 < ~, w < oo, then (n (1 )) 

n 1/2 1 Y'~ Wk- - (n  ,,)" -~ ds n k=l fon'Qr(s) ~ 0  

as n ~  oo. 
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F rom (9.1) and theorem 9, it follows that  bo th  estimators have the same 
2 the (2, 2) element  of AtiAL). Thus, asymptot ic  variance parameter  (namely, aw, 

there is no difference, in terms of (asymptotic) efficiency, between the direct 
est imator for w and the product  est imator based on w = )t-aq. 

However, in many  queueing simulations, there is addit ional  stochastic structure 
that  can be exploited. In particular, one can often calculate 2t prior  to running  
the simulation. This, in fact, is the typical si tuation where Qr  corresponds to the 
total number  of customers in an open queue; ~ is then just  the external arrival 
rate to the network. Thus, the direct estimator for w can be compared  with the 
indirect estimator ~k-l(f~;QT(S) ds/D'). To compare  efficiencies, suppose:  

(i) {n-a[(A,- n~-l)2+ (k=~ Wk- nw)2]" n >~ l) is uniformly integrable 

(ii) E ( Wj I U~ = u } is non-increasing in u for all i, j >~ 1, where U~ = A i - Ai_ a. 

(9.2) 

The  second condi t ion states that  the waiting times are (roughly speaking) non-in- 
creasing in the inter-arrival times. This is a condi t ion which we would expect to 
hold  in many  queueing systems. 

THEOREM 10 
If (9.1) and (9.2) hold, then 

n 1/2 --x7- d) d s -  w ~ aqN(O, 1) D; 
where 0 2 >~ aw 2. 

See Glyrm and Whit t  [13] for the proof.  We conclude that  the direct est imator 
for w is usually more  efficient than the indirect estimator. 

A similar analysis can be carried out  for the problem of est imating the 
steady-state queue-length parameter  q. Note  that  the identi ty q = 2tw suggests 
that  in the presence of known  )t, the est imation of q and w are equivalent 
problems. As a consequence, we can conclude f rom theorem 10 that  the est imator 
~kn-aE~=lWk, is usually more efficient for calculating q than  the more  obvious 
est imator f~;QT(d) ds/D'. For  numerical  illustrations, see Law [18]. 

10. VRT 3: discrete-time conversion 

Suppose that  Q=(Q(t): t>~O) is an S-valued non-explosive C T M C  and 
consider the problem of estimating a = g(v) via simulation, where 

~= E foAC~CY))r(Q(s)) ds 
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and r :  S ~ R d, g :  R d ~ R. F r o m  the discussion in section 5, it is evident that  the 
problem of estimating the steady-state parameter  ot = k(lim/__, oot-lf~h(Q(s)) ds)  
is a special case of the above. The  key idea is to let r(q)= (h(q), 1) and let 
g ( X l , . . . ,  Xd, Xd+l) = k ( x 1 / X d + l , . . .  , X d / X d + l ) .  

The obvious approach to est imating a = g(v)  is to recognize that  it is a special 
case of the transient simulation problem (4.1) and  to employ the methodology  
described there. Let a(n) be the est imator obtained by generating n i.i.d, copies 
(Qi" 1 <~ i <~ n) of the C T M C  up to the s topping t ime A(r It  turns out  that  a 
more  efficient est imator can be found by simulat ing only the embedded  discrete- 
t ime Markov chain (DTMC).  This is the basis of the principle of discrete-time 
conversion. 

Let Z = (Z , :  n >i 0) be the embedded  D T M C  associated with the C T M C  Q 
i.e. Z ,  is the n ' t h  distinct state visited by Q. (If p(s'; s, e) = 0 for all e ~ E(s), s 

S, then Z ,  = S,.) No te  that  if Efo A(r(y)) II r(Q(s)) II as < oo, then 
~(y)--I 

E( fa('~(Y))r(Q(s))dslZl= ~., r(Zn)/X(Z,,) (10.1) 
~JO ] n~O" 

where h (z )  is the exponential  holding t ime parameter  in z ~ S. As a consequence 
of (10.1), v can be re-expressed as 

r ( y ) -  1 

v = E  ~_, r(Z~)/X(Zk).  (10 .2)  
k=O 

Let aa (n )  be the transient est imator for a = g(v)  which exploits the discrete-time 
representat ion (10.2). To be more  precise, let Z ( 1 ) , . . . ,  Z(n) be i.i.d, copies of the 
sequence Z(Z(i)  = (Z~,: n >/0)) generated up to t ime "r(y). Then  

aa(n )=g(Y ' (n )  ) 

' - E , = 0  r(Z~,)/X(Z~,,). The following theorem compares  the vari- where I I s  ~(y)-i  
ances of a (n )  and aa(n ). 

THEOREM 11 
Suppose that  E(fo A(~(y)) [I r(Q(s))[[ ds)  2 < oo and g is differentiable at g. 

, Then 

nX/2(ol(n) -- . )  =oN(O, 1) 

nl/2( ota(n) - a) =~ aaN(O, 1) 

where ,2  = var[V,g(i.t)tfoA(.~(y))r(Q(s)) ds]  a n d  a S = var[E{ v'g(~)tf~(Y)r(Q(s)) 
d s l Z } ] .  

The  proof  is essentially that  of theorem 1. It is a well known  fact that  if 
E ~ 2 <  0% then var E{~ ~-} ~< var ~ for any sub a-field ~ defined on the same 
probabil i ty space as ~. Thus, a S ~< a 2, and so aa(n ) always delivers a guaranteed 
variance reduct ion as compared  with a (n) .  
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To compare efficiencies, note that simulating Z to time ~'(y) takes less effort 
than generating Q to A(~-(y)), because we can dispense with the need to generate 
exponential variates. Thus, ad(n ) is a double winner, in the sense that it improves 
upon a(n) both from a variance and computat ion standpoint. For more on the 
method of steady-state discrete-time conversion, see Hordijk, Iglehart and Schass- 
berger [16] and Fox and Glyrm [8]. 

11. VRT 4: extended conditional Monte Carlo 

The basic principle used in discrete-time conversion is that we can reduce the 
variance of an estimator via conditioning. This general idea is known, in the 
simulation literature, as the method of conditional Monte Carlo. In this section, 
we consider an extension of conditional Monte Carlo in which the different 
observations over which the estimator averages are conditioned on different r.v.'s. 
Following Bratley, Fox and Shrage [6], p. 71, we call this method extended 
conditional Monte Carlo. In general we can not always expect to obtain a variance 
reduction by using this method. Nevertheless, there is a general class of queueing 
simulations for which the technique does work. 

Given a real-valued Markov chain (MC) X =  (X~: n >~ 0) and f : R  ~ R, let 
Y, - f ( X , ) .  Suppose that (Y~: n >~ 0) is ergodic in the sense that there exists finite 
/~ such that 

Y(n)  =* l x 

as n ---, ~ ;  our goal here is to efficiently estimate the steady-state mean /~. An 
important  queueing example of such a real-valued MC is the waiting time 
sequence (W~: n >/0) for the G I / G / 1 / o ~  queue, which obeys the recursion 

Wn+I -~- [W n q- ~J,+l] +, (11.1) 

where the sequence (~/,: n >/1) is i.i.d, and independent  of W 0. 
Suppose that X is a stochastically increasing MC (SIMC); i.e., X can be 

represented in the form X,+ 1 = h(X , ,  ~/,+1), where h is non-decreasing in both 
arguments and 01,: n >~ 1) is an i.i.d, sequence independent  of X 0. Note  that 
(11.1) is a special case of a SIMC. Our next result shows that it is often sufficient 
to assume only monotonicity in the first co-ordinate of h (for the proof, see the 
appendix). 

PROPOSITION 5 
Suppose that X satisfies a recursion of the form Xn+ 1 = h(X , ,  */~+1) where h 

is non-decreasing in the first co-ordinate and (%: n >i 1) is an i.i.d, sequence 

independent of X 0. If ~ has a continuous distribution, then X = X '  ( = denotes 
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equality in distribution), where Xnt+l = h'(X,~, ~:+1) ,  h' is non-decreasing in 
both co-ordinates, and (~'n: n >t 1) is an i.i.d, sequence independent of X o with 

? 

The idea behind extended conditional Monte Carlo is to replace the estimator 
Y(n) by 

n 

~e(n) = I E E { f ( X k ) ] X k - 1 } .  
n k=l 

Note that Y~(n) is a sample mean of the r.v.'s f~(Xo), . . . ,  f~(Xn-1) where 

fe(x) = E{ f (  X1) l Xo= X ). 

We assume that both Y(n) and Ye(n) satisfy CLT's: There exists o, oe such that 

n l / 2 ( y ( n )  - / t )  ~ oN(O, 1) 

nl/2(Ye(n ) - it) ~ o~N(O, 1) (11.2) 

as n ~ ~ .  Furthermore, assume that 

{ n [ ( Y ( n ) -  , ) 2 +  (~e(n)_/t)2]. n >f 1) (11.3) 

is uniformly integrable. The following theorem shows that extended conditional 
Monte Carlo reduces variance if f is monotone and X is a SIMC. 

THEOREM 12 
Assume (11.2) and (11.3). If X is a SIMC and f is monotone, then o~ ~< 0 2. 

For the proof, see the appendix. Because of the stochastic monotonicity that 
holds in many queueing networks, we expect that extended conditional Monte 
Carlo should also prove useful in situations where Q is vector-valued. For a result 
closely related to theorem 12, see Ross [25]. The efficiency of the method depends 
on the amount of variance reduction and the ease of computing fe. 

12. VRT 5: common random numbers 

The idea underlying common random numbers (CRN's) is that to compare two 
queueing systems, it is "fairer" to drive the two systems using the same stream of 
random numbers. If CRN's are used and one system is treated "unfairly" by 
receiving a particularly unlucky string of random inputs, then both are. Of 
course, in making this statement, we are implicitly assuming that both systems 
respond in a similar manner to the driving inputs. This suggests that the method 
of CRN's depends on monotonicity. 
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Assume that  )/1, X 2 are real-valued SIMC's  (X~ = (X/,:  n >/0)) and  let f l ,  f2 
be non-decreasing functions. Let Y~, = f~(X~,) and  suppose that  (Y~,: n >~ 0) 
(i = 1, 2) is ergodic in the sense that  

as n---) o0. Assuming that  /t i represents the "pe r fo rmance"  of system i, the 
simulator is often interested in estimating the difference a = ~ 1 - / 2 2  in perfor- 
mance  between the two queueing systems. The naive est imation approach  would 
involve simulating X 1 and X 2 independent ly  and est imating a via Otz(n ) = Y l ( n )  

- Y2(n). Assuming that  there exists finite Ol, o 2 such that  

nl/2 ( Yii( n ) - I~i ) = oiN(O , 1), (12.1) 

it is easily seen that  

n l / Z ( a , ( n ) - a )  = o N ( 0 ,  1) 

where 0 2 = 02 + a22. 
Suppose now that the method  of CRN' s  is used. Specifically, suppose that  

XI,,+I = hi(X1,,, 7,+1) and X2,,+ 1 = hz(X2,,,  i,,+1) where (7 , :  n >/1) is i.i.d. 
independent  of )(1, 0 and (~,," n >~ 1) is i.i.d, independent  of X2, o. However, we 
now require that: 

(Xl,0, X2,0, ~7,, ~',: n>~ 1} (12.2) 

is an associated family of r.v.'s. A s tandard approach  to obtaining nontrivial  
association between the ~7,'s and ~,,'s is to generate bo th  77, and u, by inversion 
f rom the same r.v. U,: 

, .=F-I(un) 

~n= G-i(un), 

where F -1, G -1 are the inverse distr ibution functions for 7, 1' respectively. 
However, in many  settings, one can obtain the required association without  

explicit use of inversion. For  example, suppose that  P( 1,,, ~ dx } = F(dx/02)  and 
P( ~,, ~ dx} = F(dx/01)  , where 01, 02 are positive. Thus,  the distr ibutions of 7,  
and u, differ by a change of "scale". Suppose that  the sequence (~/,: n >~ 1) is 
generated arbitrarily (e.g. by acceptance-rejection). If the l,,'s are derived f rom 
the ~, 's  via 

= ( 0 2 / 0 1 )  n . ,  

then (12.2) follows. Thus, it is not necessary, in this change-of-scale setting, to use 
inversion in order to apply CRN's .  In a similar fashion, explicit inversion can be 
avoided when the distr ibution of ~,, differs f rom that  of 7/, by a change of 
" locat ion".  Changes of scale and location arise frequently when making compari-  
son of stochastic systems. 
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Let ac(n ) = Y l ( n ) -  Y2(n) be the C R N  estimator, in which the input  se- 
quences (~/,: n >/1) and (~,,: n >/1) are dependent  as in (12.2). Assume that  

nl /2(  Otc( n ) -- or) ~ o~N(O, 1) 

and  that  

)2 (n [(Yl(n) - btl + - . ) : ]  

(12.3) 

�9 n > /1}  (12.4)  

is a uniformly integrable family of r.v.'s. The  following theorem is easily proved 
by the methods  of Heidelberger and Iglehart [14]. 

THEOREM 13 
Suppose X1, X 2 are SIMC's with fl ,  f2 non-decreasing. If (12.1)-(12.4) are in 

force, then a 2 ~< o 2. 

Because of the stochastic monotonic i ty  present  in many  queueing systems, this 
suggests that  a variance reduct ion will often be achieved by using CRN' s  to 
compare  the performance of two queueing systems. An efficiency improvement  
will result if the variance is reduced and if the computa t iona l  effort required to 
associate the ~, 's  and p,'s is not  too large. Note  that  if inversion was used to 
generate the ,/, 's and t,.'s independently,  one can cont inue to use inversion in 
order to associate the ~/,'s and ~,~'s, provided that  the same stream of c o m m o n  
uniforms is used for both  families of r.v.'s. In  this case, the effort required to 
associate the sequences is no  greater than the effort required in the independent  
case. 

An  idea similar to CRN's  can be used to estimate ~ = ~1 (see (12.1)). Hence- 
forth, for the remainder  of this section, we drop the subscript  f rom the first 
SIMC. Note  that  now we are dealing with a single S IMC so that  no  compar ison is 
being made. Suppose that  the ~/~'s defining X are generated by inversion, so that  
*l, = F-I(U,) when U 1, U2,.. .  are i.i.d, uni form r.v.'s. Observing that  the anti- 
thetic r.v.'s 1 - U 1, 1 - U2,... are also i.i.d, uniforms,  we can define the antithetic 
chain X~' via Xd = X 0 and X~'+I = h(X~, F - l ( 1  - Un+a) ). Let ]1,' = f (X~ ' )  and 
consider the antithetic estimator 

eta(n ) = �89 + Y ' (n ) ) .  

To compare  the variance of this est imator with that  of Y(.), note  that  a~(n) 
corresponds to simulating the dynamics  of the SIMC for a total of 2n transitions. 
Thus, aa(n ) must  be compared to Y(2n). F r o m  (12.1), the relative variance 
quant i ty  is o 2/2. Suppose that  

na /2 (Ota (n ) - -~ )  =~ oaN(0  , 1) (12.5) 

as n ~ oo. The following result can be proved by the methods  of Heidelberger 
and Iglehart [14]. 
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THEOREM 14 

Suppose X is a SIMC and f is monotone.  If (12.1), (12.4), (12.5) are in force, 
then a 2 ~< a 2/2. 

Again, due to the stochastic monotonici ty present in many  networks, we expect 
that the method of antithetics will often provide a variance reduction in the 
queueing context. A disadvantage of antithetics, as opposed to CRN's,  is that it 
appears inversion must be used to generate the corresponding input streams of 
r.V.'S. 

13. VRT 6: simulating the error in heavy traffic 

As indicated in section 6, the amount  of computer  time t required to simulate 
the steady-state mean waiting time EW must satisfy t >> (1 - 0) -2 as p ,7 1, in 
order to estimate EW to a fixed degree of relative precision c. Thus, the problem 
of estimating the quantity EW gets harder, in a relative sense, as p/~ 1. Minh and 
Sorli [21] developed an elegant method for avoiding this difficulty when EW is 
the steady-state mean waiting time in the G I / G / 1 / ~  queue. 

Let V 0, Ux be the service time of the zero'th customer and the first interarrival 
time, respectively, in the G I / G / 1 / ~  queue. Then, Marshall [20] showed that if 
EVo < EU1, E(V02 + U 2) < oo, then 

EZ 2 E12 
EW= 

2EZ E1 

where Z = V 0 - U 1 and I is the length of the first idle period in a G I / G / 1 / o o  
queue in which the zero'th customer arrives at t = 0. Thus, estimating a = EW is 
equivalent to estimating a = g(EI 2, EI), where g(x, y ) =  - E Z 2 / 2 E Z -  x/y; 
the methods of section 4 can then be used to estimate a. This was the basic idea 
of Minh and Sorli [21]. 

Noting that E W -  - E Z 2 / 2 E Z  as p ,7 1 is the classical diffusion approxima- 
tion for EW, we recognize that the approach taken here is to use simulation only 
to estimate the error term in the diffusion approximation to EW. Extensions of 
this idea to the G I / G / s / ~  queue appear in Minh [22]. 

14. VRT 7: importance sampling 

Consider the problem of estimating the parameter  a = P(  W > w }, where W is 
the steady-state mean waiting time of a customer in a G I / G / 1  queue in which 
p < 1. If w is large, the event { W >  w} occurs rarely, so that conventional 
simulation is inefficient. The idea underlying importance sampling is to alter the 
dynamics of the queueing system via a "change of measure" so that the event, 
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under the altered dynamics, occurs more frequently (i.e. the " impor tant"  event 
occurs more often). Of course, in order to account for the new dynamics, the 
estimator must be suitably modified. 

To illustrate, suppose that P ( W >  w} is estimated by using the fact that 

W--  max(Sk: k >/0), where (Sn: n >~ 0) is the random walk with negative drift 

and S o = 0 associated with the G I / G / 1 / o o  queue. Then, a can be re-expressed 
as a = P(  T < oo} where T = inf( n >/0: S n > w }. Suppose the i.i.d, summands of 
the random walk have common distribution F, where F has a moment  generating 
function q, which converges in a neighborhood of the origin. Since (Sn: n >_- 0) has 
negative drift, it follows that q~'(0)< 0. Thus, if there exists a positive root to 
4(0)  = 1, it must be unique (by the convexity of oh). Suppose that such a unique 
root 0* exists. 

Rather than generating the summands of the random walk from the distribu- 
tion F, consider generating the summands from the distribution 

ff(dx)  = e~ 

Then, it is straightforward to verify that 

. =P(r<  oo} r < + } ,  

where/~( . )  corresponds to the expectation in which the summands have distribu- 
tion ft. Since T < oo a.s. under P (the random walk has positive drift under /5) ,  

a = /~  e x p ( -  0*St ) .  (14.1) 

Siegmund [27] and Asmussen [1] show that simulation based on (14.1) is much 
more efficient than simulation under F. The key is that ff turns the drift positive, 
so that the event ( T  < oo } becomes certain. The factor e x p ( -  0 *St) is introduced 
to compensate for the new measure ft. 

This area is currently active, from a research viewpoint. For an application of 
importance sampling to networks of queues, see Parekh and Walrand [23]. 

15. Gradient estimation for queueing systems 

Consider a queueing system in which the dynamics depend on a parameter 
0 ~ R m. Specifically, let Q = (Q(t):  t >~ O) be a GSMP in which the clock-setting 
distributions, and routing probabilities depend on O; i.e., under parameter O, the 
docks are driven by distributions F(O, .; s', e', s, e) and customers are routed 
via p(O, s'; s, e). Clearly, the queueing parameter a to be estimated by the 
simulation algorithm then depends on O, i.e. a = a(O). A current area of vigorous 
research concerns the efficient estimation of Va(O). The interest in the problem 



P. W. Glynn, D.L. lglehart / Simulation methods for queues 251 

derives from the fact that gradient evaluations form an important ingredient of 
most efficient optimization routines. 

Two basic methods have been suggested for attacking this problem. The first 
technique, called infinitesimal perturbation analysis (IPA), typically assumes that 
the routing probabilities are independent of 0, so that all 0-dependence is 
incorporated via the distributions F(O, .; s', e', s, e). Also, the parameter a = 
a(0) usually takes the form a(0) = g(EoY)(Eo(.) denotes expectation under the 
0-dynamics), where 

rA(N) 
EoY= EoJ ~ h(Q(s)) ds, (15.1) 

N is an integer-valued r.v., h : S ~ R d, g : R d ~ R. Suppose, for simplicity, that 
0 ~ R. The idea is to observe that if f(O, .; s', e', s, e) is a scale family in 0 (i.e. 
F( O, .; s', e', s, e)= F(./O; s', e', s, e)), the clock-setting variates associated 
with the 0-system can be generated as ORl(s', e', s, e), OR2(s', e', s, e),... 
where the sequence (Rn(s', e', s, e): n >~ 1) is that associated with 
F( . ;  s ' ,  e' ,  s, e). Let Q(O)= (Q(O, t): t >~ 0) be the GSMP in which the clock 
readings are set by the sequence (ORn(s', e', s, e): n >i 1). The key observation is 
that for Y of the form (15.1), EoY= EY(O) where 

N(O)-I 
Y(O) = fA(O'N(O))h(O(O, S)) d s =  E h(Sk(O))t*(Sk(O), Ck(O))" 

*'0 k = 0  

(15.2) 

Given 00, the r.v.'s (N(O), Sk(0): 1 ~< k < N(O)) are typically constant in some 
neighborhood of 00. Therefore, it follows from (15.2) that in computing the 
path-by-path derivative Y'(0) of Y(0), we need only to compute the derivative of 
t*(Sk(Oo), C~(O))with respect to 0. In many queueing systems, this calculation 
can easily be done. This allows us to calculate a'(O) as a'(O) = 
rrg(EY(O))~EY'(O) (note that a'(O) = g(EY(O)) is a transient parameter of the 
type described in section 4, where g(Yl, Y2)= V'g(Yl)tY2 and I7(0) = 
(Y(0), Y'(0))), provided that 

 oe (o) = eY'(o). (15.3) 

A similar method works for location families (i.e. F(O, .; s', e', s, e)= F ( . -  
0; s ' ,  e' ,  s, e)) and even more generally. 

While the above method works efficiently on certain classes of queueing 
systems, it is not valid universally. In particular, there is a large class of 
non-pathological queueing networks for which (15.3) is false; see Heidelberger et 
al. [15] for details. For further background on IPA, see Zazanis and Suri [30]. 

The second technique for evaluating gradients uses the method of likelihood 
ratios. Here, the 0-dependence may be reflected in both the clock-setting distribu- 
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tions F(O, ., s', e', s, e) and routing probabilities p(O, s'; s, e). However, the 
following density conditions need to be in force: 

(i) V(O, d x ; s ' , e ' , s , e ) = f ( O , x , s ' , e ' , s , e ) ' F ( O o ,  d x ; s ' , e ' , s , e )  

where f (  O, .; s', e', s, e) is positive and continuously 

differentiable in 0. 
(ii) p (0, s'; s, e) is either identically zero or identically positive 

as a function of 0, for each triplet (s ' ,  s, e). (15.4) 

Given a transient parameter of the form (4.1) (note that Y need not be of the 
form (15.1) here), the density assumption (15.4) permits us to estimate a(O)= 
g(EoY) by using the likelihood ratio identity 

e0r= eoorL(O), (15.5) 

where L(0) = d Po/dPoo is the Radon-Nikodym derivative of the distribution Po 
with respect to Poo (existence of dPo/dPo o is assured by (15.4)). Hence, if 0 is 
Scalar, this suggests that a ' (0 0) = Vg(EooY) tEooYL'(Oo), provided that 

d eoorL ( O ) = eoorL' ( Oo ). (15.6) 

The derivative interchange (15.6) is typically valid for queueing systems of 
arbitrary structure. As in the case of IPA, it is easily seen that 
Vg(EooY)tEooYL'(Oo) is itself a transient parameter of the form (4.1) so that the 
methodology of section 4 may be used to develop an efficient estimator for 
a'(Oo). For more details on this approach, including a formula for L'(Oo), see 
Glynn [10]. 

Appendix 

Proof of proposition 2 
Let N(t) = max{n >/0: A(n) <~ t}. Since n-aA(n) ~ ~2  a.s., it follows that 

N(t) / t  ~ 1//~2 a.s. Also, it is apparent that 

1 k~=oh(Sk)t.(Sk ' Ck) th(Q(s)) d s -  7 

< Ilh(Sg(t))tl t*(SN(t), CN(o)/t (A.1) 

N(t) 1 
Y'. t*(Sk, Ck)-- ~t*(Su(t), CN(t))/t. (A.2) 

k = 0  

Since N(t) -~ oo a.s., evidently N(t)-lE~(=t)o II h(Sg) II t*(Sk, Ck) ~ g3 a.s., which 
implies that II h(Slv(t)) I[ t*(SN(t), CN(t))/N(t) ~ 0 a.s. But N(t) / t  -~ 1//~ 2 a.s., 
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so the fight-hand side (RHS) of (A.1) converges to 0 a.s. Similarly, we see that the 
RHS of (A.2) goes to 0 a.s. Inequalities (A.1) and (A.2) then yields 

N(t) 
Y' h(Sk)t*(Sk, Ck)/N(t) 

1 f fh(Q(s))  d s -  k=O 7 "o N(,) -'* 0 a.s. (A.3) 

Y" t*(Sk, Ck)/W(t ) 
k=0 

The hypothesized strong laws then can be applied to the RHS of (A.3) to obtain 
the result. 

Proof of proposition 3 
By theorem 4, p. 84, of Chung [7], E II Y(Y) II 2 < O0 for all y if E II Y(x) II 2 < O0. 

It is well known that /~ = Eyfoa(*(Y))h(Q(s)) dS/EyA('r(y)) is independent  of y. 
Write Y(y)= (Y'(y), T(y)), where T(y)=A('r(y)). Then, an easy calculation 
shows that V'g(EY(y))tC(y) V'g(EY(y)) = VaryZ(y)/(EyT(y)) 2 where Z(y) = 
wk(tQt[Y'(y)-  (EyY'(y)/EyT(y))T(y)]. By theorem 1, p. 99, of Chung [7], 
VaryZ(y)/EyT(y) is independent of y. Thus, the proof is complete if we show 
that EyflX(y)/EyT(y) is i ndependen t  of y. But Efl~(y)/ET(y) = 

- EX(z) v(z)/EA~av(z), where v is the stationary distribution of the embedded 
chain of Q and A is the generator of Q; this latter ratio is independent  of y. 

Proof of proposition 5 
Put G(')=P{~I,<~. ") and F(x, . )=P{h(x ,  ,/~)~< .}. Let F-l(x, y) be the 

inverse function defined by F-l(x, y ) =  sup{z: F(x, z)<~y}. Set X~ = X 0 and 
define (X~: n>_.l) via the recursion X~+I=h'(X~, */~+1), where h'(x, y ) =  
F-l(x, G(y)). Note that X '  is a MC with transition distribution 

P{X~+a<~YIX~=x}=P(h'(x, ~n+l )  ~<y)  

=P{F-I (x ,U)<~y};  

G(~) = U is a uniform r.v. since G is continuous. But P(F-I(x,  U)<~y} = 
F(x, y) because F-l(x, .) is an inverse function. Thus, it follows that X = X'.  

Monotonicity of h '  in the second co-ordinate is easy. For the first co-ordinate, 
use the fact that F( . ,  y) is non-increasing to conclude that F - l (  �9 , y) is non-de- 
creasing. 

Proof of Theorem 12 
Because of the uniform integrability, it suffices to show that 

n n+ l  

var E fe(Xk) ~ var ~_, f (Xk) ; 
k = l  k=2 
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i.e. 
n 

y" var f e ( X k ) +  2 y" cov(fe(Xk+~), f(Xa+~)). 
k = l  k~=j 

n 

~< Y'. v a r f ( X ~ + l ) + 2 E  cov(f(X~+l), f(Xj+l)).  
k = l  h#=j 

N o t e  that  var fe(Xk) = var E{ f (Xk+l)  I Xk} <<- vat  f (Xk+l)  b y  the pr inc ip le  of  
condi t iona l  M o n t e  Carlo.  To  comple t e  the proof ,  we the re fore  need  to  show that  

Efe(Xk) fe (Xj )<~Ef(Xk+l) f (X j+l )  for  k < j .  By the M a r k o v  p r o p e r t y ,  
Ef( Xk+ 1)f (  Xj+ x) = ECj-k(Xk), where  cl(x) = E ( f (  X1)f( Xz+ 1) I X0 = x }. N o t i c e  
that  if X 0 = x, X n is a non-decreas ing  func t ion  of  the i n d e p e n d e n t  r.v. 's ~/1,- . . ,  ~/n" 
Since f is mono tone ,  it fol lows tha t  f (Xa) and  f ( X t + l )  are associa ted r.v.'s, 
condi t iona l  on  X 0 = x. Thus,  a s t anda rd  inequa l i ty  (see Bar low and  P roschan  [4], 
p. 31) yields 

c , ( x ) > ~ E { f ( X 1 ) l X o = x }  E { f ( X t + l )  l X o = x }  

=L(x )  . E{ L(  X,) l Xo= x }. 

If  we in tegra te  the above  inequal i ty  wi th  respect  to P{ X~ ~ d x } ,  we ob ta in  

Ef( Xk+l)f( Xj+l) >/Efe(Xk)fe(Xj). 
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