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A b s t r a c t  

Let { V(k) : k t> 1 } be a sequence of independent, identically distributed 
random vectors in R d with mean vector ~. The mapping g is a twice differentiable 
mapping from R d to R 1. Set r = g(~). A bivariate central limit theorem is proved 
involving a point estimator for r and the asymptotic variance of this point estimate. 
This result can be applied immediately to the ratio estimation problem that arises 
in regenerative simulation. Numerical examples show that the variance of the 
regenerative variance estimator is not necessarily minimized by using the "return 
state" with the smallest expected cycle length. 
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Bivariate central limit theorem,j oint limit distribution, ratio estimation, regenerative 
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1. I n t r o d u c t i o n  

Let  X = {X(t)  : t I> 0 } be a (possibly) delayed regenerative process with 
regeneration times 0 = T ( -  1) ~< T(0)  < T(1)  < T(2)  < . . . .  To incorporate 
regenerative sequences {Xn: n I> 0 }, we pass to the continuous time process 
X = {X( t )  : t / >  0}, where X ( 0  = X[t ] and [t] is the greatest integer less than or 
equal to  t. Under quite general conditions (see Smith [7] ), 
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t 

r, = 7 f ( x ( s ) )  

0 

ds -> r, a.s. (1.1) 

as t ~ oo. The task of  estimating r via a simulation of the process X is known as the 
regenerative steady-state simulation problem. 

The relation (1.1) states that the sample mean r t is a strongly consistent 
estimator for r. It turns out that the regenerative structure of X can be fruitfuUy 
applied to obtain an estimator s t for measuring the variability of rt; the estimator s t 
lies at the heart of  the regenerative method of  steady-state simulation. 

It has been suggested, however, that correlation between r t and s t can lead to 
degradation in the performance of procedures based on the regenerative method; see, 
for example, Bratley et al. [1 ] ,  p. 113. A related problem concerns the fact that many 
processes are regenerative with respect to more than one sequence of regenerative 
epochs (for example, discrete state Markov chains). In such a setting, one would like 
some guidelines for how to choose a sequence which is optimal in the sense of sta- 
tistical efficiency. 

We begin in sect. 2 by discussing a more general estimation problem and 
associated central limit theorem (CLT). In sect. 3, we specialize this CLT to the case 
of  regenerative processes. This section contains a limit theorem which describes the 
asymptotic correlation structure of r t and s t. The result gives an explicit (computable) 
formula for the asymptotic covariance and variances of r t and s t. We conclude in sect. 4 
with a set of  examples which illustrate the application of the limit theorem. One of 
our examples shows that the statistical efficiency of the regenerative method is not 
necessarily increased by using shorter regenerative cycles, contrary to the folklore. 

2. A genera l  cen t ra l  l imi t  t h e o r e m  

Let { (V(k), a(k)) : k ~> 1} be a sequence of  independent and identically distri- 
buted (i.i.d.) random vectors (r.v.'s taking values in IRa + 1 ; we view V(k )  as a column 
vector with components V 1 ( k ) , . . . ,  Vd(k ). We assume that: 

0) e l a ( 1 )  > 0} = 1 

(ii) E(VI(1) 4 + . . .  + Va(1)4 + a2(1))  < co 
(2.1) 

Let p = EV(1); for a given function g" IR a ~ IR1, our goal is to estimate r = g(p). 
We interpret the quantity a(k)  as a random variable which measures the "effort" 
required to generate V(k) .  

A number of important estimation problems can be formulated as special 
cases of  the above. 
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(2.2) EXAMPLE 

If d = 1 and g(x) = x, the estimation problem is to find the mean of V(1); this 
is, of  course, the classical estimation problem. 

(2.3) EXAMPLE 

If d = 2 and g(x, y) = xy-1 ,  the goal is to estimate the ratio of  two means 
r = E ~  (1)/EF2(1); this is known as the ratio expectation problem. 

As is well known in the simulation literature, the regenerative steady-state 
simulation problem is a special case of  the ratio estimation problem. To be precise, 
we set 

T(k) 

Vl(k) = / f (X ( s ) )d s ,  

r ( k -  ,) 

= r ( k ) -  r ( k - 1 ) .  

If f is non-negative, then r t ~ EVI(1)/EV2(1) a.s. as t --> oo under (2.1), so 
that the steady-state parameter r can be estimated as the ratio of  two expectations. 
It is customary in the regenerative setting to assume that the effort of generating V(k) is 
equal to the length of  the k th  regenerative cycle, namely a(k) = r(k) = T (k) - T (k - 1). 

For further applications of ratio estimation in simulation, see section 8.10 in 
the book by Law and Kelton [6].  

(2.4) EXAMPLE 

Let f be a non-negative function defined on the state space of  a delayed 
regenerative process X, and for 7 > 0, set 

In Fox and Glynn [2], it is shown that r can be expressed as r = gO) ,  where 
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1:1(1 ) = 

T(O) 

l e -~ ' t f (x( t ) )  dt 

0 

V2(1 ) = e-~'T(O) 

V3(1 ) --- 

TO) 

e-"Zt f ( x ( t ) )  at 

T(O) 

1:4(1 ) = e x p [ - 7 ( T ( 1 )  - T(O))] 

g(Yl . . . . .  ):4) = Yl + (1-Y4)-1Y2Y3 " 

Throughout this paper, we assume that g is twice continuously differentiable 
in a neighborhood A of  ta. 

Let U ( -  1) = 0 ~< U(O) < U(1) < . . . ,  where U(k) = U ( k -  1) + a(k) for 
k~> 1;set 

N(t)  = max{k:U(k)  <<. t } .  

Then, N(t)  is the number of observations V(1), . . . , V(k) generated by t units of  
effort. 

In many applications, U(O) = U ( -  1) = O;however, in the case that the simula- 
tion involves a delayed regenerative process, it is convenient to let U(k) = T(k), so 
that U(O) - U ( - 1 )  represents the length of  the first cycle. 

For n i> 1, set 

n 
1 

V(n) = ~ Z V( ] ) ;  
]=i 

then, for t >1 O, we let 

/2(t) = 
V (N (t)) ; 

O; 

N(t)  >1 1 

N(t)  < 1 
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and put ~(t) = gO(t)).  To prepare for a CLT for/3(0, we need the following notation. 
Let C = EV(1)  g(1) r - E V ( 1 )  EV(1) r be the covariance matrix of V(1). (]3 r 
denotes the transpose of the matrix B.) The next two results, which are proved by 
Glynn and Iglehart [4], constitute the strong law and CLT for ~(t). 

(2.5) PROPOSITION 

Under (2.1),/~(t) ~ r a.s. as t -+ oo. 

(2.6) THEOREM 

Under (2.1), tU2(~.(t) - r) ~ N(O, E a ( 1 ) .  Vg(p)T CVg(#))as t ~ oo, where 
Vg(x) is the gradient of  g evaluated at x (written as a column vector in Na).  

To use the CLT (2.6) for confidence intervals, we need a method for con- 
sistently estimating a 2 = Ea(1)  • Vg(#) r CVg(la). Let/fir(n) be the moment estimator 

n 
x T. V(k) Vr(k) = 

k = l  

and set 

C ( t )  = M ( N ( t ) )  - l l ( t )  I~( t )  T , 

for N(t) /> 1 and C(t) = 0 otherwise. Finally, put 

v(t) = ~(t) .  Vg(la(t)) r C(t)Vg(p(t)),  

where 

~v(t) 

~(t) = ~_~ e(k)/N(t) .  
k = l  

The strong law of large numbers yields: 

(2.7) PROPOSITION 

Under (2.1), o(t) -* a 2 a.s. as t -* ~o. 

If z(cx) is selected so that P { - z ( a )  ~< N(0,  1) < z(a)} = 1 - a ,  theorem (2.6) 
and proposition (2.7) imply that under (2.1) 
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[/~(t) - z(a)s(t)  t -112, {J(t) + z(a)s(t)  t -112] 

is an asymptotic 100(1 - a ) %  confidence interval for r, where s(t) = v(O 112 . 
We turn now to the task of obtaining a joint central limit theorem for our 

point estimator for r, namely/~(t), and our estimator s(t) for the asymptotic standard 
deviation of tl12({3(t) - r). 

Recall that the function g is twice continuously differentiable in a neighbor- 
hood A of  p. Let H(x) be the Hessian of  second derivatives of g evaluated at x; i.e. 
H(x) is a d × d matrix with 

~2 
Hii(x) = Ox.Ox. g(x) .  

t I 

Set Vc(k ) = V ( k ) -  EV(1), % (k) = ot(k)- Ea(1), 

R l (k) = Vg(p) T IV c (k) Vc(k) T -  C] Vg(p)Eot(1), 

R2(k ) = Vg(p)TCH(p) Vc(k )Ea(1) ,  

R3(k ) = Vg(p)Tc Vg(p) ac(k ) , 

R(k) = R1(k ) + 2R2(k ) + R3(k ) ,  

and 

S(k) = Vg(p) T V(k ) .  

The following general CLT is proved by Glynn and Iglehart in [4]. 

(2.8) THEOREM 

Under (2.1), t 112 (f3(t) - r, s(t) - o) ~ N(O, D) as t -+ oo, where 

D =Ea(1 ) .  ( E S 2 ( 1 )  ER(1)S(1) /2(r)  

ER(1)S(1) /2o ER2(1)/4a 2 

While this expression is complicated, we can nevertheless compute it explicitly in the 
regenerative process case of discrete or continuous time Markov chains (see sect. 4). 
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3. T h e  regenera t ive  p rocess  case 

In this section, we specialize the set-up of  sect. 2 to the regenerative process 
case; see examples (2.3) and (2.4). For ease of exposition, we shall restrict our attention 
to non-delayed regenerative processes, that is T ( -  1) = T(0) = 0. As is the usual case, 
all limit theorems also hold for delayed regenerative processes. We treat only the ratio 
expectation problem, example (2.3). 

Using the standard regenerative notation, we set 

Y(k)  = 

r (k)  

f ( X ( s ) ) d s  = Vl(k) 

r ( k -  1) 

r (k)  = T(k) - T ( k - l )  = V2(k) ; 

assumption (2.1) translates as E(Y(1)  4 + r (1)4) < oo. The matrix C is given by 

/ Y(1) v a r  

C = | 
\ coy ( r ( 1 ) ,  r(1)) 

coy (Y(1), r(1)) 

/ o 

var r(1) / 

As indicated earlier, g(x l ,  x2) = x l / x  2 so Vg(x l, x2) = ( l /x2,  - x l / x ~ )  for x 2 ¢ 0, 
and it is easily calculated that 

Vg(EY(1),  Er(1) )TC Vg(EY(1),  Er(1))  

= (Er(1)) -2 E Z 2(1 ) ,  

where Z(k)  = Y(k)  - rr(k). Since a(k) = r(k), it follows from theorem (2.6) that 

t 112 (f3(t) - r) ~ N(O,EZ 2 (1)/Er(1))  (3.1) 

as t -~ oo. It also follows from (3.1), by a standard argument, that 

t l / 2 ( r t -  r) ~ N(O,EZ2(1)/Er(1))  

as t -~ o0 Thus, the CLT for regenerative processes is a special case of theorem (2.6) (see 
also corollary 9.1 in the paper by Smith [7]). Recall that the quantity EZ2(1)/Er(1) 
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is independent of the "return state" used to form the regenerative cycles; see, for 
example, Iglehart [5]. 

As for the variance estimator o(t), this reduces to 

1 N ( t )  
= ~_~ ( Y ( k )  - {J ( t )  r (k)) 2/T(N(t)) 

v(t) g ( t )  k = 1 

in the current setting; v(t) is the well-known regenerative variance estimator (see 
Iglehart [5] for details). 

We will specialize theorem (2.8) to the regenerative setting in order to obtain 
a joint limit distribution for/~(t) and the estimator s(t). 

Let Yc(k)= Y ( k ) - E Y ( 1 ) ,  %(k)= r(k) -Ez(1) .  Here, 

V e (k) V e (k) r = 

Y (k) 2 

Y (k) ~ (k) 

\ 
(k) r (k)~ 

/ 

r(k) ~ ] 

C = 
EY~(1) 

E Y ( 1 )  re( l )  

and Vg(p) r = (1, -r) /Er(1) .  Then, 

Rl (k )  = Vg(p) T [ ~ ( k )  Ve(k)T - C] Vg(p) Ea(1)  

1 
Er(1)  

(Z 2 (k) - EZ 2 (1)). 

(Recall that for the regenerative case we take a(k) = r(k).) Furthermore, the Hessian 
H(p)  is equal to 

H(p) _ (ET(|))-2/ 0 -1 / 
- I  2r/  

SO 
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- E Y e ( l )  re(l)  

CH(p) = (Er(1)) -2 -Erc2(1) 

and thus, 

R2(k ) = Vg(p)TCH(p)  Vc(k)Ea( l )  

Finally, 

so that 

- E Y ( 1 ) Z ( 1 )  + rEye(1) % (1)~  

1 
- E r e ( l )  Z(1 ) + rErc2(l ) / 

= (Er(1)) -2 ( - Z ( k ) .  (EZ(1) r(1)) - re(k ) .  (EZ2(1))).  

R3(k) = Vg(~)rc Vg(U) %(k) 

(7 2 

Er(1) %(k) = (EZ2(1))- (Er(1)) -2 re(k ) 

R(k)  = (Er(1)) -~ (Z2(k) - EZ2(1)) 

- 2 ( E r ( 1 ) )  -2 (Z(k) . (EZ(1)r (1) )  + r(k)EZa(1) - EI"(1)EZ2(1)) 

+ EZ2(1) (Er(1)) -2 (r(k)  - Er(1)) 
# 

= (Er(1)) -1 (Z2(k) - o2r(k) - 2Z(k)) .  (E(Z(1) r(1)) .  (Er(1)) -2 )  

(recall that a 2 = EZ 2 (1)/Er(1)), and S(k) = (Er(1)) -~ Z(k)). Setting 

A ( k )  = Z ~ ( k )  - a s r ( k )  

and 

k = 2EZ(1) r (1 ) /Er (1 ) ,  

we find from theorem (2.8) that 
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D = (Er(1)) - I  I 
EZ2(1) 

E A ( 1 ) Z ( 1 )  - XEZ  = (1) 

E A ( 1 ) Z ( 1 ) _ ? ~ E Z 2 ( 1 )  ' 

E A  2(1) - 2 X E A ( 1 ) Z ( 1 )  + ),2EZ 2 (1) 

2tr 4 o  2 
(3.2) 

The matrix D describes the dependence structure of the bivariate normal distribution 
characterizing the limit behavior of 3 (0  and s(t) .  

As indicated in sect. 2, the estimator 

t 

1 I 5 = 7 AX(s)) 
0 

ds 

is closely related to 3 (0  and a standard argument and theorem (2.8) imply that 

t l l 2 ( r  t - r, s ( t )  - o) =* N ( O , D )  (3.3) 

as t ~ ~ ,  where D is given by (3.2). 
With the limit theorem (3.3) at our disposal, we can now investigate the 

influence of the estimator 3 (0  (or equivalently, to small order, rt) on the standard 
deviation estimate s(O. Suppose, for example, that /a were known. In this case, 
r = g(/a) is also known. How much does this improve our estimate of o? 

The appropriate variance estimate o , ( t ) ,  with /a = (EY(1), Er(1))  known, is 
n o w  

N(t) 
1 E vu(t ) = Vg(#) N ( t )  k = l  V(k )  V (k )  T - lala T }Vg(/a) r .  Er(1)  

1 N(t)  

= ( E z ( 1 ) ) - *  N(t)  k= 1 

Reasoning analogous to that used above (but simpler in its execution) shows that 

t l /2(r ,  - r ,  s (t) - o) ~ N ( O , ~ ) ,  (3.4) 

at t -+ ,,~, where su(t  ) = vu( t )  II2 and 
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D = (Er(1)) -I 

D g 

EZ2 (1) EZ3(  1 ) 
2a  

EZ3(1) EZ 4 (1) - (EZ 2 (1)) 2 

2 a 4a  2 

(3 .5)  

The difference between D r and D is the "penalty" induced by having to estimate the 
mean vector/a in the regenerative case. We note that in the classical estimation prob- 
lem where r(k) = 1 a.s., D r = D and so, asymptotically, there is no "penalty" associ- 
ated with the estimation of p. 

The difference in the asymptotic variance of s (t) and s t (t) is given by 

A = (4o~) -1 ( - 2 o  2 EZ(1)r(1) + a 4 Er2(1)  - 2XEZ3(1)  

+ 2X a 2 EZ(1) r(1) + 3, 2 EZ2(1) + (EZ2(1))2) .  

Perhaps surprisingly, A can be either positive or negative, as will be shown 
below. In other words, it is possible that one can improve the standard deviation 
estimate s(t) by estimating p, even when p is known; in this case, p(t)  is basically 
being used as a control variate for s(t) (see [1], pp. 59-61) .  In spite of the counter- 
example below, in most practical examples we would expect that d(2, 2) > d r (22). 
This fact is borne out in the numerical examples of sect. 4. 

(3.6) EXAMPLE 

Suppose the conditional distribution function P{Z(1)  < x I r(1)} is a.s. a sym- 
metric distribution about zero. Then 

A = (402) -1 (a 4 Er2(1)  + (EZ2(1)) 2) ~ 0 .  

(3.7) EXAMPLE 

Suppose Y(k) takes the form Y(k) = (a(k) + r)r(k) -b (k ) ,  where a(k), b(k), 
r(k) are independent r.v.'s with E(a(k) 4 + b(k) 4 + r (k)  4) < ~ and Eb(k) 
= Ea(k). Er(k). Note that 

Z(k) = Y ( k ) -  rr(k) 

= a(k)  r (k)  - b (k) 
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and 

X = 2EZ(1)  r (1) /Er(1)  

= 2Ea(1) . varr (1 ) /Ez (1) .  

Choose the distributions of  a(k), r(k) so that a(k) > 0, var r(k) > 0; consequently, 
~. > 0. For the distribution of  b(k), let 0 < e < 1 and set 

P { b ( k )  = E ~ ( 1 ) . E ¢ ( 1 )  + ea lS (1 - e )  -x} = 1 - e ,  

P {b(k) = E ~ ( 1 ) - E r ( 1 )  - e -z/s} = e .  

Note that 

Eb(1)  = Eo~(1) .Er(1)  

E ( b ( 1 ) -  Eb(1))  2 = e 6 / S ( 1 - e )  -1 + e Us 

E(b(1)  - Eb(1))  3 = e g / S ( 1 - e )  -2 - e -Us  . 

Byletting e 4 0 , E ( b ( 1 ) - E b ( 1 ) )  2 -~ 0 and E ( b ( 1 ) - E b ( 1 ) )  3 ~ - o o .  Thus, choosing 
e sufficiently small yields a Z(1) for which EZ(1) 3 is so large that the term - 2 k E Z  3 (1) 
dominates everything else in the expression for A; this leads, of  course, to a negative A. 

4.  S o m e  numer i ca l  e x a m p l e s  

In this section, we present some preliminary numerical examples which are 
intended to illustrate several features of  the above results. All of  these examples are 
continuous time Markov chains, in fact birth~eath processes. The first example is the 
queue-length process { X(t)"  t />  0 }, for an M/M~5 queue (Poisson arrivals, exponential 
service, and 5 servers) with truncated state-space E = {0, I, 2 , . . . ,  14}. Thus, the 
system can accommodate at most 14 customers, 5 in service and 9 in queue. Since the 
state-space is finite and irreducible, we know that X(t )  ~, X as t -~ oo. The arrival 
rate ~ = 10 and the service rate # = 4. For this model the birth parameters are h i = 10 
and the death parameters are #i = 4(i ^ 5). Table 4.1 contains values associated with 
estimating the expected stationary queue-length, that is, r = E X  = 2.6287. Values are 
given for three return states: 0, 5, and 10. Elements of  the two covariance matrices 
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are denoted as foUows: D = d(i, ]) and D~ = d~(i,]) . All moments are computed 
using formulae from Glynn and Iglehart [4]. 

Table 4.1 

M/M/s queue, r = EX 

Return state 

Parameter 0 5 10 

E{~'(1) / 1.24828 0.51130 I6.36170 
d(1, 1) 2.18920 2.18920 2.18919 
d (1,2) 2.84292 2.84292 2.84290 
d(2, 2) 68.78821 30.18836 1432033.12500 
d~(1, 1) 2.18920 2.18920 2.18919 
dry(l, 2) 5.60163 -- 0.02955 -- 13.44083 
d~(2,2) 24.76746 10.04333 190.10800 

A number of comments are in order with respect to table 4.1. Return state 5 
yields the shortest expected cycle length of the three return states used. The d(1, 1) 
and d u o  , 1) elements are invariant (except for round-off errors) with respect to return 
state. This is expected since d(1, 1) = EZ2(1)/F,r(1), the invariance constant in the 
CLT (3.1). What is unexpected is that d (1 ,2 )  also appears to be independent of return 
state. This invariance appeared in all the models and f values we considered. Addi- 
tional theoretical work is being pursued to establish our conjecture that d(1, 2) is  
independent of return state. Observe that the variability of  d(2, 2) and d~(2, 2) over 
retum states is enormous. Also, d u (2, 2) is much smaller than d(2, 2). For this ex- 
ample, d(2, 2) and d~(2, 2) are both minimal for return state 5, the one with the 
shortest expected cycle length. This is not true in general, as a counter-example given 
below indicates. 

Our next example is the truncated M/M/oo queue in which X(t) is the number 
of  jobs in the system at time t. Again, E = { 0, 1 , . . . ,  14} and k = 35, tz = 5. So the 
system can accommodate a t m o s t  14 customers, all of whom will be in service. The 
quantity estimated here is r = P{X <~ 10} = 0.90666. Numerical values are given in 
table 4.2. Similar comments are relevant for table 4.2 as were for table 4.1. In addition, 
note that d(2, 2) is not minimal for state 5, the return state with the shortest expected 
cycle length. 

Our last example is the classical repairman problem with n = 10 machines, 
m = 4 spares, machine failure rate k = 1, service rate # = 4, and s = 3 servers. For this 
model, the birth-death process X(t) denotes the number of  machines down at time t. 
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Table 4.2 

M/M~** queue, r = P{X <~ 10} 

Return state 

Parameter 0 5 10 

E{r(1)} 31.15363 0.12975 0.16479 

d (1, 1) 0.01702 0.01702 0.01702 
d(1, 2) - 0.01612 - 0.01612 - 0.01612 

d(2, 2) 5436.38379 0.03313 0.03253 
d~t(1, 1) 0.01702 0.01702 0.01702 
d~(1, 2) -- 0.03234 -- 0.02532 - 0.00122 
d~(2, 2) 0.90090 0.05396 0.01007 

Table 4.3 

Repairman problem, r = P{X <~ 2} 

Return state 

Parameter 0 5 10 

~'{'r(1)} 1.64168 0.43228 9.33730 
d(1, 1) 0.17208 0.17208 0.17208 
d(1, 2) 0.01104 0.01104 0.01104 
d(2, 2) 16.98646 0.97848 11340.19727 

dt~(l , 1) 0.17208 0.17208 0.17208 
d~(1, 2) -- 0.32921 0.21195 0.59497 
dU(2, 2) 1.14822 0.50353 7.05369 

The parameter to be estimated in this example is P{X <~ 2} = 0.4035. Table 4.3 con- 

tains values of  the relevant quantities. Again we see that d (1 ,  1) and d(1 ,  2) are 
independent  o f  return state and that  d (2 ,  2) varies enormously for different return 

states. Finally, note that  the elements du (2, 2) are much smaller than d(2 ,  2). 
In conclusion, we list the main lessons learned from these three numerical 

examples. 

1. The variance o f  the point  estimate o f  r, d (1 ,  1), is independent  o f  the 
return state. As mentioned above, this fact was previously established. 
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2. The covariance between the point estimates of  r and o, d(1,  2), appears 
to also be independent of the return state. This fact came as a surprise and deserves 
further study. 

3. The ratio d(2,  2 ) /d (1 ,  1) is enormous. This large variability in the point 
estimate of  o may contribute to the sometimes observed under-coverage of  regenerative 
confidence intervals. 

4. In general,the variance of  the point estimate of  o with r unknown, d(2,  2), 
is much larger than the corresponding estimate when r is assumed known, d~ (2, 2). 
Recall that a counter-example in sect. 3 shows that the reverse can hold. 

5. While the variance of  the estimate of  o, d(2,  2), is not  always minimized 
by taking the return state with the shortest expected cycle length, using this return 
state appears to be an excellent procedure in practice. 
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