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ABSTRACT 

Given a parametric family of distributions {F(S,.): S € (a,b)}, we 

consider the problem of constructing a process {XeS) : S € (a,b)} such that: 

i.) for all S € (a,b), XeS) has distribution F(S,.), ii.) X(.) is 

differentiable in an L1 sense at SO. This problem is motivated by certain 

computational questions associated with Monte Carlo estimation of the 

derivative of an expectation which depends on a parameter. A by-product of 

this work is a partial solution to the problem of constructing, for a given 

parametric family {F(S,·)}, a function u such that u(S,X(SO» has 

distribution F(S,.). 
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SIGNIFICANCE AND EXPLANATION 

Sensitivity analysis for stochastic systems plays an important role in 

the statistical study of such systems, and in the optimization of stochastic 

processes. In this paper, we consider questions related to the efficient 

computation of Monte Carlo estimates for the derivatives corresponding to such 

systems. These derivatives playa crucial part in the development of 

numerical schemes for accomplishing the statistical analysis and optimization 

mentioned above. 

The responsibility for the wording and views expressed in this descriptive 
summary lies with MRC, and not with the author of this report. 



1. INTRODUCTION 

CONSTRUCTION OF PROCESS-DIFFERENTIABLE REPRESENTATIONS 

FOR PARAMETRIC FAMILIES OF DISTRIBUTIONS 

Peter W. Glynn 

For an index set A = (a,b) (-~ ( a < b (~), let {F(8,·): 8 € A} be an associated 

parametric family of distribution functions. Our goal in this paper is to consider, for 

80 € A, the question of how to construct a probability space (Q,F,p) and an associated 

process {X(8) : 8 € A} such that: 

L) P{X(8) ( O} = F(8,·) for all 8 € A; 

ii.) There exists an integrable r.v. Y(a) such that 
o 

( 1.1) Ox(a ;h) + Y(a ) o 0 

as h + 0 
1 

L (Q,F,P), where in 

-1 
oX(8;h) h ( X ( a +h ) - X ( 8 » . 

We say that {F(S,·) : 8 € A} admits the process-differentiable representation 

{xes) : a € A} at S = a O if (1.1) holds; the r.v. Y(a O) is called the derivative of 

X(.) at a = 80 • 

This problem is motivated by certain applications arising from Monte Carlo simulation. 

Specifically, suppose that 

( 1.2 ) a(a) f== r(a,x)F(8,dx) 

is a parameter which is of interest in a statistical setting in which the "true" value a* 

of S is unknown. Given an estimator 

that there exists a such that 

( 1. 3) 

{8 : n ;> 1} of 
n 

* - 8 ) ==> aN(O,1) 

* 8 , it frequently can be shown 

as n + ~; this typically occurs, for example, when a is a maximum likelihood estimator n 

* of 8 (see Chapter 2 of Ibragimov and Has'minskii (1981». The natural estimator of the 

* "true" value a(8) is given by a(8n ); a(8n ) can also be justified on the basis of 
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asymptotic efficiency principles (see p. 404 of Lehmann (1983». If a(.) is 

differentiable at 8*, a standard "delta method" analysis (see p. 118 of Serfling (1980» 

shows that (1.3) implies that 

as n +~, where a ' (8*) 

y. * * n 2 (a(8 ) - a(8 » ==) oa ' (8 )N(0,1) 
n 

is the derivative of a(.) evaluated at * 8 = 8 • 

The asymptotic limit theory for the estimator a(8n ) therefore requires evaluation of 

a ' (8*) (or, more precisely, the quantity a ' (8n ), which acts as an estimator of a ' (8*». 

In many settings, the quantity a ' (·) can not be evaluated analytically; numerical 

evaluation, via the Monte Carlo method, is a practical alternative. 

The most obvious Monte Carlo strategy involves approximating a ' (8 0 ) by a central 

difference of the form -1 oa(8 0 ;h) = h (a(8 0 + h/2) - a(8 0 - h/2». By generating 

independent variates X(8 0 ± h/2) with distribution F(8 0 ± h/2,.), one can then estimate 

a(8 0 ± h/2) via a sample mean of the r.v.'s r(8 0 ± h/2, X(8 0 ± h/2». The key to 

obtaining a reasonable rate of convergence for this Monte Carlo estimator a I ( 0 ) 
n of a I ( 0 ) 

is to choose the difference increment h to depend on the sample size n in an optimal 

fashion. However, as shown in Fox and Glynn (1987), even if h = h is chosen optimally, 
n 

the finite-difference estimator a I ( 0 ) 
n 

converges slowly, in the sense that 

a ' (.» ==) Z(o) as n +~, where Z(o) is a non-zero proper r.v. (i.e. roughly speaking, 

the rate of convergence of a I ( • ) 
n 

is of order n- 1/ 3 ). 

typically enjoyed by Monte Carlo estimators is of order 

Since the rate of convergence 

-1/2 
n (due to central limit 

theorem effects), this suggests that one should look for more suitable estimators. 

A more sophisticated approach to the problem is available if F(8,dx) = f(8,x)~(dx), 

where ~ is the distribution of some r.v. W. In such a situation, a(8) can be 

expressed as 

( 1.4) a(8) = E r(8,W)f(8,W) 

if the derivative can be interchanged with the expectation, a ' (8 0 ) can be estimated via a 

sample mean of r.v.'s of the form 
a a aX

1 
r(8

0
,W)f(8

0
,w) + r(8 0 ,W) aX

1 
f(8 0 ,W). Under 

suitable moment hypotheses, this estimator converges to a ' (8
0

) at rate n- 1/ 2 • 
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Frequently, f(6,x) occurs as a likelihood ratio in a parametric family; as a consequence, 

this technique is called the likelihood ratio method for derivative estimation. (For 

further details, see Glynn (1986), Reiman and Weiss (1986), and Rubenstein (1986).) 

OUr interest here, however, will focus on a second approach. Suppose that {F(6,.) 

6 ~ A} admits a process-differentiable representation at 6 = 6 0 • Then 

a(6) = E r(6,X(6» 

for 6 ~ A. Consequently, if the expectation and differentiation operations can be 

interchanged (this follows from (1.1) ii if, for some E > 0, the partial derivatives of 

r are bounded on the set {(x 1 ,x2 ) : IX1 - 6 0 1 < E}), a'(6
0

) can be estimated via a 

a a 
sample mean of the form aX

1 
r(6

0
,X(6

0
» + aX

2 
r(6

0
,X(6

0
»Y(6

0
), where Y(6

0
) is the 

derivative of X(.) at 6 = 6 0 • Again, it is clear that under suitable moment hypotheses, 

this estimator converges to a'(6 0 ) at rate -1/2 n • Since this procedure involves 

defining r.v.'s X(6) with appropriate marginals on a common probability space, this 

algorithm is known as a common probability space derivative estimator. As we shall see in 

Section 2, common probability space estimators can exist in settings where likelihood ratio 

estimates do not, and vice versa. Further relationships between the two approaches are 

explored in Glynn (1987). 

Before concluding this section, it is worth pointing out that the problem (1.1) also 

arises naturally in a Monte Carlo systems simulation context. Specifically, the 

probabilistic dynamics of certain discrete-event systems (e.g. queueing systems) depend on 

various input distributions (e.g. inter-arrival and service time distributions). If the 

input distributions are allowed to depend on a parameter 6, then the corresponding 

steady-state a of the system depends on 6 i.e. a = a(6). In many design settings, the 

parameter 6 can be viewed as a decision variable (e.g. the service rate in a queue may be 

* subject to optimization); in such a setting, the design goal is to choose 6 to minimize 

the steady-state cost a of running the system. Efficient numerical optimization 

algorithms for minimizing a frequently are based on evaluations of a'(·). One efficient 

class of Monte Carlo procedures for calculating a'(.) in such a discrete-event setting is 
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the method of perturbation analysis (see Suri (1983». The idea is to represent the 

stochastic systems correspondina to different values of e on a common probability space, 

and to observe that for certain types of steady-state responses (e.g. waiting times in a 

queue), the corresponding ergodic sample mean is almost surely differentiable in the 

parameter e. The path-wise derivative is then used to estimate a ' (.). In any case, the 

representation problem (1.1) arises naturally in this discrete-event setting (see, for 

example, the Appendix of Suri (1985).) 

In Section 2, we describe the main results of this paper. Unless otherwise stated, 

the proofs of all results are deferred to Section 3. 

2. DESCRIPTION OF MAIN RESULTS 

T~e most obvious approach to constructing a process-differentiable representation for 

a given parametric family {F(e,·) : e ! A} is to use a simulation technique based on the 

method of common random numbers (see Rubinstein (1981), p. 224-229). The idea is based on 

the observation that if U is a uniform r.v. on [0,1], then F- 1 (e,U) is a r.v. with 

distribution F(e,-), where -1 F (e,·) is the inverse distribution function defined by 

F- 1 (e,x) = sup{y : . F(e,y) <: x}. If one sets 

the hope is that X(e) will be almost surely differentiable in e, so that Y(e O) may bl 

defined as Y(e O) = x'(e O). 

Although this approach is basically sound, it is not universally applicable. As our 

first result shows, there exist parametric families for which no process-differentiable 

representation exists. 

(2.2) PROPOSITION. Let R be a set which contains no cluster points. Suppose that 

( 2.3 ) 
00 

F(e,x) = L Pk(e)I(X) Yk) 
k=1 

where Yi! R for all i. If {F(e,·) : e ! A} admits a process-differentiable 
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representation at 6 60 , then it is necessary that Pk(6 0 ) exists and equals zero, for 

all k > 1. 

This proposition basically says that process-differentiable representations do not 

exist for parametric families of the form (2.3). It is interesting to observe that (2.3) 

is amenable to likelihood ratio derivative estimation; one choice for ~(dx) = p{W ~ dx} 

is given by 
00 

~«-co,x]) = 

We will now show that there are parametric families {F(6,·) : 6 ~ A} for which 

process-differentiable representations exist, and yet the stochastic process {X(6) : 

6 ~ A} defined by the inversion formula (2.1) does not satisfy (1.1). In other words, the 

inversion representation (2.1) is in some sense, not always the "smoothest" way to 

stochastically represent a parametric family {F(6,·) : 6 ~ A}. 

(2.4) EXAMPLE. For 6 ~ R, let 

3 1 
F(6,x) = - I(x > 6) + - I(x > -6) 

4 4 

Set V = I(U (3/4). If we set X(6) = V6 + (1-V)(-6) = 6(2V-1), then it is easily seen 

that {X(6) : 6 ~ R} is a process-differentiable representation of {F(6,·) : 6 ~ R}. 

On the other hand, observe that for 6 > 0, 

-1 { - 6 
F (6,x) = 

6 

o ( x .. 1/4 

1/4 < x .. 1 

whereas 

-1 __ { - : F (-6,x) 0 

o ( x .. 3/4 

3/4 < x .. 1 

As a consequence, we find that F- 1 (.,x) is non-differentiable at 6 = 0 for 

1/4 < x < 3/4. Hence, the inversion representation (2.1) fails to satisfy (1.1) (since 

Y(6 0 ) is assumed to be independent of how h approaches zero) at 6 0 = o. 

Let us expand on this example further. Consider a parametric family of the form 
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co 

(2.5) F(6,·) I p I(. ) Yk(6» 
k=1 

k 

Set 
co 

(2.6) X( 6) = I Yk(6)I(P
k

_
1 

.; U < P
k

) 
k=1 

where Po = 0, Pk = P1 + ••• + Pk for k) 1. Then, {X(6): 6 € A} automatically 

satisfies (1.1) i; (1.1) ii is then satisfied if the Yi(6) 's are suitably regular in a 

neighborhood of 6 0 • For example, (2.6) is a process-differentiable representation of 

{F(6,·) : 6 € A} at if the y.(·)'s 
~ 

are twice differentiable in a neighborhood of 

60 and if there exists £ > 0 such that 

(To verify this result, just expand Yk(6 0 + h) in a Taylor series about 6 0 .) Observe 

that X(.) = F- 1 (.,U) a.s. only if Y1(6)'; Y2(e) ( ••• for e in a neighborhood of 6 0 • 

This confirms the idea that the inversion representation (2.1) breaks down in Example 2.4 

because of the fact that the points e and -6 reverse order as the parameter e passes 

through zero. 

Coincidentally, it is interesting to observe that likelihood ratio methods are 

generally inapplicable to parametric families of the form (2.5). Specifically, (2.5) 

permits the possibility that F(6 0 + h,.) and F(6 0,·) are mutually singular for all 

h ~ O. In such a setting, it is certainly possible to define a "reference" distribution 

~ which permits likelihood ratio analysis along any sequence 

co 

~(dx) = I 2-
n

F(6
0 

+ h
n

, dx) 
h=1 

h -+- O· n ' one possibility is 

The difficulty is that regardless of how one chooses ~, the densities f(6 0 + hn , .) 

will be poorly behaved. Specifically, f(e O + h n , .) can not converge to f(6 0 ,·), 

ruling out existence of a derivative. For suppose that f(e O + h n , x) -+- f(eO'x) ~ a.e. 

as n -+- co. By Scheffe's theorem, 

( 2.7) 

as n + co. But since F(e O'.) and F(e O + h n , .) are mutually singular, there exists a 

set An which supports f(eO'·) and on which f(e O + h n , .) vanishes. Clearly, 
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fA If(e
o 

+ h n , x) - f(eo,x)I~(dx) = 
n 

contradicting (2.7). 

Our third example shows that the inversion representation may not be the "smoothest" 

way to stochastically represent a parametric family {F(a,.) : a ~ A}, even if the 

F(e,·)'s are continuous. 

(2.8) EXAMPLE. Let F(a,x) = p{aN(O,1) (x}; clearly X(e) = eN(O,1) is a process-

differentiable representation of {F(e,.): e ~ R}. 

Due to the symmetry of the normal, F(a,·) = F(-a,·) and consequently -1 F (a,.) = 

-1 F (-a,·). As a result, the inversion representation (2.1) yields a process X(e) defined 

via 

Clearly, the inversion representation fails to satisfy (1.1) at aO = O. (Note, however, 

that if we relaxed (1.1) ii to permit different one-sided derivatives, this example would 

satisfy the relaxed definition.) 

Despite the above examples, it seems fair to say that the inversion representation is 

generally well-behaved. Our next goal is therefore to show that the derivative Y(a O) of 

the inversion representation (2.1) can frequently be generated without having to explicitly 

generate r.v.'s via inverse transform methods. This is an important observation, since 

inversion can be computationally inefficient; other techniques, like acceptance-rejection 

(see p. 45 of [8]) are often more suitable for efficient variate generation. 

(2.9) THEOREM. Suppose there exists g > 0 for which: 

i.) F(a,dx) = f(e,x)I(a(a) < x < b(e»dx 

for (a,x) ~ (eO - g, a o + g) x R, where 

f(·) is strictly positive 

ii.) F(.) is continuously differentiable on 

{(a,x) : le-eol < g, aCe) < x < bee)}. 
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Then, for exists and equals G(80'x) = 

a -1 
aX

1 
F(8 0 ,F (8 0 'x» 

a -1 
aX

2 
F(8 0 ,F (8 0 'X» 

If {X(8) : 8 € A} is an inversion representation satisfying (1.1), then Y(8
0

) can 

be obtained as an a.s. limit of oX(8 0 ;hn ) along some deterministic sub--equence hn + 0 

(see the proof of Proposition 2.2). It follows that 
a -1 

Y(8 0 = aX
1 

F (8
0

,U) a.s., yielding 

the next corollary. 

(2.10) COROLLARY. Let {F(8,.) : 8 € A} be a parametric family satisfying (2.9) i-ii. 

If {X(8) : 8 ~ A} is an inversion representation which is process-differentiable at 8 0 , 

The above formula for G(8 0 ,x) was previously obtained, using formal methods, by Suri 

(1985). This theorem supplies an immediate solution to our problem. Since 

-1 V V 
F (8 0 ,U) = X(8 0 ) (= denotes equality in distribution), 

-1 d -1 V 
(F (8 0 ,U), d8 F (8

0
,U» = (X(8 0 ), g(8 0 ,X(8

0
» 

where Consequently, to generate both and its 

derivative Y(8 0 ), one may generate X(8 0 ) by one's method of choice, and calculate 

Y(8 0 ) as g(8 0 ,X(8 0». From Section 1, it is clear that the common probability space 

derivative estimation method can be subsequently applied to the random vector (X(8 0 ), 

Y(8 0 » thus obtained. 

The above discussion suggests a second approach to obtaining process-differentiable 

representations for a parametric family {F(8,.) : 8 ~ A}. Specifically, let A be the 

set of x for which the differential equation 

(2.11) 
a 

-a- u ( 8, x ) = g ( 8 , u ( 8 , x) ) 
x

1 

subject to u{8 0 ,x) = x has a unique solution u{.,x) on 18-8 0 1 < E. 

(2.12) PROPOSITION. Let X(80) have distribution F{eO'·). Assume the conditions of 

Theorem 2.9 and that P{X(8 0 ) ~ A} = 1. (If A is non-measurable, replace it by a 

measurable subset.) Then, u{8,X(8 0 » has distribution F{8,·) for le-8 0 1 < E· 
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Rather than explicitly invert F(S,·) for all S in the interval (SO - £, So + e), 

Proposition 2.12 allows us to construct a process satisfying (1.1) 1 by instead solving the 

differential equation (2.11). (Of course, in most applications, we expect the process to 

also satisfy (1.1) ii.) We illustrate this idea with an example. 

(2.13) EXAMPLE. For S > a, consider the parametric family 

o x < 1 

F(S,x) R-n x/S 

1 
S 

x > e 

Let So = 1. Fixing x, we set u(.) = u(·,x) and find that 

du 
-= 
dS 

1 
- u R-n u 
S 

subiect to u(1) = x. The solution of this differential equation is u(S) = xS. Thus, 

u(S,X(So» = X(1)S. Note that X(1) may be generated according to one's method of choice. 

Proposition 2.12 solves, for a large class of parametric families, a certain "inverse" 

problem. It is well-known that many parametric families are derived from families of 

r.v.'s of the form u(S,X) for some fixed r.v. X (e.g. scale and location families). 

Proposition 2.12 shows how to solve the inverse problem of constructing a function u and 

r.v. X which corresponds to a given parametric family. 

We conclude this paper with our only uniqueness result for the construction problem 

(1.1). Before stating our results, it is worth noting that (1.1) determines only the 

marginal distributions of {xeS) : S € A}. 

(2.14) THEOREM. Let {xes) : S ~ A} be a process-differentiable representation for 

{F(S) : S € A} at S = SO' If Y(SO) € B(X(SO»' the distribution of (X(SO),Y(SO» is 

uniquely determined. 

As argued in the proof of Proposition 2.2, Y(SO) equals the a.s. limit of oX(SO;hn ) 

for some deterministic sequence h n + O. Thus, 

(2.15) Y(S ) € A B(X(S) 
o h>O 
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In many settings, we would hope that the a-field in (2.15) is just B(x(SO»' Hence, the 

hypothesis on Y(SO) given in Theorem 2.14 seems reasonable. Not all derivatives Y(SO) 

need satisfy this measurability condition, however. For example, for the representation 

Xes) = SN(O,1) used in (2.8), yeO) = NCO,1) i B(OeN(O,1». 

In any case, Theorem 2.14 shows that if Y(SO) € B(X(SO»' then the joint 

distribution of {XeS) : S € A} is constrained through its infinitesimal behavior at SO' 

3. PROOFS 

Proof of Proposition 2.2: Since converges to Y(So) in 

follows that there exists a deterministic subsequence h + 0 n such that 

1 L (Q,F,p), it 

a.s. as n + ~ (see Theorem 4.2.3 of Chung (1974». Consequently, X(SO + hn ) + X(So) 

a.s. as n +~. Recall that (1.1) i implies that X(e) € R a.s. Since R contains no 

cluster points, if therefore follows that for n sufficiently large, X(SO + hn ) must 

equal X(So) a.s. Then, OX(SO;h
n

) = 0 a.s. for n large, from which it is evident 

that Y(SO) = 0 a.s. 

Hence, by (1.1) ii, we may conclude that EloX(SO;h)1 + 0 as h + O. Observe that 

for S1' S2 € A 

( 3. 1 ) Elx(s ) - X(S )1 ) E{S(X(S.»I(X(S1) 'I X(S2»} 
1 2 ~ 

for i = 1,2, where Sex) = inf{ly-xl : y € R}. Since R contains no cluster points, 

sex) > 0 for all x € R. From (3.1), it follows that for all y € R, 

(3.2) Elx(s + h) - X(S )1 ) S(y)p{X(S ) = y; X(S ) 'I X(S + h)} o 0 0 0 0 

(3.3) 

From (3.2) and the convergence of EloX(SO;h) 1 + 0 as h + 0, we find that 

P{X(So + h) = y} ) P{X(SO) y; X(SO) = X(SO + h)} 

P{X(SO) = y} - P{X(SO) = y; X(SO) 'I X(So + h)} 

P{X(SO) = y} - o(h) 
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From (3.3), we similarly find that P{X(6 0 ) = y} ) P{X(6 0 + h) = y} - o(h). Combining, we 

find that P{X(6 0 + h) y} P{X(6 0 ) = y} + o(h), from which it follows that 

Pk(6 0 ) = 0 for all k) 1. 

Proof of Theorem 2.9: The positivity of f implies that for 0 < x < 1, F- 1(6,x) is the 

unique solution of F(6,F- 1 (6,x» = x for le-eol <~. Then, for 0 < x < 1, 

(3.4) 

Applying Taylor's theorem to the left-hand side, we find that 

(3.5) 

where lies on the line segment joining and (eo + h, 

F- 1 (eO + h ) ) , x • By the positivity of f and the continuity of F's partial derivatives, 

a -1 -a-- F(eO,F (SO,x» > 0 x
2 

it is evident that for o < x < 1. We therefore obtain the 

result by dividing appropriately in (3.5) and letting h + O. 

Proof of Proposition 2.12: Note that t(e,x) F- 1 (e, F(eO'x» satisfies (2.11) for 

o < x < 1. Thus, by definition of A, l(S,x) u(e,x) for x € A, Ie-eo) < e:. Since 

x(e o ) € A a.s., we find that u(S,X(SO» = l(e,X(e» 

V 
continuous distribution function, F(eO,X(e O» = u, 

result. 

a.s. 

so 

But since F(e O'.) 

V -1 t(S,X(e» = F (S,u), 

is a 

proving om 

Proof of Theorem 2.14: Since Y(SO) € B(x(SO»' it follows that Y(SO) = h(X(SO» for 

some Borel measurable h (depending, in general, on 8 0 ). For t € R, set c(6,t) = 

E exp(i + X(6» and observe that c(6,t) is uniquely determined by F(S,·), which is 

given. Then, 

(3.6) 
-1 -1 

h (c(6
0 

+ h,t) - c(6
0

,t» = h E exp(it X(6
0

»{exp(it(X(So + h) - X(6 0 » - 1} 

The bracketed term in (3.6) is dominated by 21tl • IX(6 0 + h) - X(6 0 ) I. Condition 

(1.1) ii and the boundedness of exp(it X(6 0 » permit one to pass the limit inside that 

expectation, showing that exists and equals E exp(it X(SO»Y(6 0 ). 
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Let Yi(8 0 ) (i = 1,2) be the derivatives associated with two different 

representations of 

follows that 

(3.7) 

Le. 

{F ( 8 , • ) : 8 I! A}. Since is uniquely specified, it 

E exp(it X
1

(8
0

»Y
1

(8
0

) = E exp(it X
2

(8
0

»Y
2

(8
0

) 

h. (X. (8 0 », we find that 
~ ~ 

for all t I! R. Splitting K into its positive and negative parts, this shows that 

J~ itx J~ itx __ e K+(dx) = _~ e · K_(dx). By the inversion theorem for characteristic functions of 

probability distributions, we may conclude that K+ = K. Thus, h1 = h2 F(8 0,.) a.s., 

proving our result. 
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