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Upper bounds on the left and right tails of the Poisson distribution are given. These bounds can be easily computed in a 
numerically stable way, even when the Poisson parameter E large. Such bounds can be applied to variate generation schemes 
and to numerical algorithms for computing terminal rewards of uniformizable conthmous-time Markov chains. 

bounds* Poisson distribution 

1. Introduction 

Let p(~,, k ) f e x p ( - ~ ) . ~ k / k !  (k=O,  1 , . . . )  
be the Poisson mass function. Our goal in this 
paper is to provide upper bounds on the |eft and 
fight tail probabilities, which are defined, respec- 
tively, by the formulae 

p(x, .)= Z p(~, k), 
k=O 

O0 

,~(~, n)= Z p(~, k). 
k-n 

Such bounds have application in several numerical 
methods arising from the analysis of stochastic 
systems. 

Application I. To generate variates from the 
clipped Poisson distribution, it is common to com- 
pute a table of the Poisson distribution function 
(see Bratley, Fox and Schrage [2, pp. 170-171, 
334-335]). The numerical computation of the ta- 
ble rcqilires truncating the Poisson tall, thereby 
introducing numerical error. In order to bound the 
numerical error, it is ne.cessary to have a priori 
bounds on the probability mass of the truncated 
tails (see Fox and Glynn [5]). 

Application 2. Let X =  { X(t): t >I O} be a uni- 
formizabI~ continuous-time Markov chain with 
generator Q. Given that f is a real-valued func- 
tion defined on the state space S of X, one is 
often interested in determining numerically the 

terminal reward r=Ef(X(T)) ,  where T is de- 
terministic. The parameter r can be computed as 

= ~ e -~T(ar)k r k! Ef (Y(k) ) ,  (1) 
k=O 

for a > i A f s u p { - Q x x :  x ~ S } ,  where Y =  
{ Y(k): k >10} is an appropriately defined dis- 
crete-time Markov chain living on S. Gross and 
Miller [6] have suggested numerical algorithms 
based on the representation (1). Of course, from a 
numerical standpoint, it is necessary to truncate 
the infinite sum appearing in (1) at some finite 
quantity, say m. The absolute error introduced by 
truncating (1) at m is given by 

'<-I)=I o k = m + l  k! E/(Y(k)) 

Let II f II -- sup I / ( x )  I: x e $. By observing that 
I F4(g(k)) I ~< II_f II for k ~ O, it follows that 

¢(a, f )  ~ II/II .P(aT, m + 1); thus, for bounded 
functions, an explicit a priori error bound can be 
calculated, provided that P(aT, m + 1) can be 
bounded. 

Incidentally, by letting f ( - )  =- K, one finds that 

sup{¢(a, f): Ilfll~X} = K . P ( a T ,  m+ 1); 

this suggests that one should choose a so as to 
minimize P(aT, m + 1). Recall that P(aT, m + 1) 
= P{N(aT)> m}, where N(. )  is a unit intensity 
Poisson process. Since N(.)  has non-decreasing 
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paths, P(-,  ~. + 1) must be non-decreasing in a. 
Hence, the best choice of a for minimizing 
P(aT, m + 1) is a - A. 

Application 3. The computation of the exponen- 
tial of a matrix A arises (implicitly) whenever it is 
n e c e s ~  to solve a system of linear differential 
equations. Certain numerical methods associated 
with the computation of the matrix exponential 
require tnmcation of the exponential power series. 
If IIBII ffi max~(EjlBs~l}, then it is easy to show 
that 

exp(A) - Y'. AJ / j !  ~ exp(UAl[)" P(IIAII, n). 
y-o II 

Poisson taft bounds are therefore useful in bound- 
ins truncation error in this general numerical set- 
tins. 

In the above applications, an upper bound on 
the tails is used to determine nl(e), n2(¢) for 
which P { n l ( e ) ~ N ( ~ ) ~ n 2 ( c ) )  >~ 1 -E ,  where • 
is a prescribed error tolerance. (In Application 2, 
one would generally take nl(•) -- 0.) One can argue 
that a straightforward method exists for choosing 
such an (nl(•), n2(•)) pair. Choose n~(O -- 0 and 
let n2(~ ) be the first m for which P(~, m) >~ 1 - e; 
the latter operation can be done numerically by 
successively adding the mass probabilities p(X, k). 
This method has two disadvantages. First, the 
computation of n 2 (¢) requires programming set-up 
time and expense. Secondly, for large ~, the com- 
putation of the mass probabilities p(X, k) involves 
significant numerical underflow-overflow prob- 
lems; overcoming these difficulties is non-trivial 
(see Fox and Glynn [5]). 

On the other hand, for large X, the central limit 
theorem (CLT) applies to yield 

(2) -- ,  

as ?, -* oo, where O ( x )  ffi j~-oo~(t) d t  and ~ ( x )  = 
(2~r)--Jexp(-x2/2). The problem in applying (2) 
(together with a table of the normal distribution 
function) to obtain nl(e) and n2(¢) is that (2) is 
only true in the limit. For finite X, (2) gives no 
usable information. An obvious refinement would 
be to combine (2) with the Berry-Esseen theorem 
(see Feller [4, p. 542]). This. however, leads 
nowhere since ~he Berry-Esseen error bound is 
independent of z] and z 2 and consequently gives 
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no usable upper bound on the Poisson tail prob- 
abilities. 

The basic difficulty in applying the normal 
approximation (or variants thereof) to determina- 
tion of upper bounds on the tail of the Poisson is 
that the tail of the Poisson distribution is much 
fatter than that of the approximating normal. 
Specifically, 

tim P(~,, n) 
. - . .  = . ,  (3) 

where O(x )=  1 -  O(x). See the discussion fol- 
lowing Corollary 1 for further elaboration on this 
point. 

Our error bounds are phrased in terms of the 
normal tail probabilities O and O. Thus, one can 
view the bounds here as giving information on the 
range of n, relative to ?~, over which the normal 
approximation can be 'corrected' to give suitable 
bounds on the Poisson. 

2. Results 

Our first result bounds the tail probabilities in 
terms of the mass function. 

Proposition 1. Assume  ~ > 0 ( i)  I f  0 <~ n < ~, 
then 

n) n) - (Z - 

( ii ) I f  n > ~ - 1 and m >~ 1, then 

( ( I'1-' 
kffiffin 

The following corollary is immediate. 

Corollary I. (i) I_'tmT,..eeP(~ , n ) / p ( ~ ,  n)-~ 1, 
( i i )  5mn. .~P(~ , n)/p( 'A,  n) ffi 1. 

According to the second part of our corollary, 
_virtually all the mass of the Poisson right tail 
P(~,, n) sits at the point n. Corollary 1 (fi) can 
also be used to obtain an asymptotic relationship 
for the quality of the normal tail approximation 
for the Poisson distribution. Recall, from (2), that 
the CLT suggests approximating P(?,, n) by O((n 
- ~,)/kJ). Now, by Corollary 1 (ii) and a standard 
tail asymptotic for the normal (see Feller [3, p. 
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175l), 

~(x, n) np(X, n) 
' " 

x,+(t,,- x)/xl) 
as n ~ oo. By Stirling's formula [3, p. 52], we 
obtain 

P(X, , )  

• ((n- 
- exp[(n - X)2 /2X - ( n +  ½) in( .  ) 

+. h (Xe)] 
i 

as n ~ oo; this immediately ]fields (3), Note that 
the exponential appearing on the right-hand side 
converges to infinity (very) rapidly as , ~ oo, 
indicating that one needs to take great care in 
applying the normal approximation to the Poisson 
tail. 

A further consequence of Proposition 1 (ii) 
(with m = 1) is that for a > O, 

#(x, lX(t +,~)J) 
l ~< p(X, lX(l + a ) l  ) ,,~I + I / a ,  (4) 

which implies that 

1 
lim ~ ln  P(X, 1),(1 +a)[) 

1 = lim xln p(X, IXO +a)l) 
--a-(l + a) in(1 +a); (5) 

(5) is a statement of Chernoffs large deviations 
theorem (see Bahadur I1, pp, 6-9]) speciallzed to 
the Poisson distribution. Thus, (4) may be viewed 
as a refinement of Chernoffs result. 

The bourids given by Proposition I cari be used 
directly when ?~ is small, since p(?~, k) can then 
be evaluated without numerical difficulties arising. 
If X is large, it is useful to have error bounds on 
the mass function itself. Let a ffi [~]. 

Proposition 2. Let X, n >i 1. Then, (i) p(X, a - n) 
~< (2~ra)- ½exp( - n(n - 1)/2A), 

(ii) p(X, a + n) <~ (2~a)-½exp(-n(n - 1)/2X 
+ (n - 1)n(2n - 1)/12X2). 

The normal approximation (2) indicates that 
the choices nl(E ), n2(E ) will be of order X½ from 
X. Thus, the values of n appearing in Proposition 
1, which are of most concern, are those within 

order ~½ from X. Consequently, if X is large, the 
factors n/?~ and X/(n + 1) appearing in Proposi- 
tion 1 (i) and (if), respectively, will be close to one, 
causing the bounds to blow up. Thus, more re- 
fined bounds are needed when X is large. 

Theorem 1. Suppose ?~ >~ 2. Then, ( i ) if n>_. 2, 

P(?~, a - n ) < ~ e x p ( 1 / g x ) . ( l  + ~ )  

×~(n-_3 /2) ,X ½ 

(ii) if 2 <~ n ~ (?~ + 3)/2, 

' (~ , ,  a + n ) ~ e x p ( 1 / 8 ? ~ ) . ( l  + ~) .~ /2  

a + n + l  

XO( n -  3 /2  

(2x)+)" 

An obvious limitation of Theorem 1 (if) is the 
restriction on the size of n. However, since one 
expects to use these bounds only for large ~, (in 
which case n will tend to be of order ?,I), this 
restriction is not serious. To avoid the computa- 
tion of the numerically hard-to-compute recipro- 
cal factor in Theorem 1 (if), we also offer the 
following bound. 

Proposition 3. Suppose k >~ 2. For 2 ~ n ~ ( X + 
3)/2, 

' (X,  a + n) ~ expO/16) . (l + l ) . V~ 

×(, ' 

(2x)' 

Note that all the terms appearing in the upper 
bounds of Theorem 1 (i) and Proposition 3 can be 
easily computed in a numerically stable fashion. 
These bounds should therefore be suitable for the 
applications previously described. 

As for the quality of the bounds, some sharp- 
ness was sacrificed in the derivation in order to 
obtai~l bounds that are easily computable. In con- 
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nection with the sharpness issue, lower bounds on 
p(A, n) (see [5]) in terms of the normal density 
show that lower bounds in terms of the normal 
tall are also possible. Thus, the Poisson tail (for 
values of n indicated here) can essentially be 
bounded above and below by normal tails. This 
suggests that the bounds obtained here describe 
(modulo some terms that grow 'slowly" in n) the 
dominant  behavior of the Poisson tail. 

3. Proofs 

Proof of Proposition I. Observe that 

p(A,,,) 

( "-' . ( , , -  , ) . ,  • (k + ,))  
=p(A, .). I + E ~::~ 

k-O 

~p(A, n). (1 ~ l n n - k  ) 
.<p(A, n).~o~A ! =p(~. n). - 

For P(n), it is evident that 
n + m - I  ¢o 

~(A, .) = E p(A. k) + A =. Y" p(A, k) 
k='n k - n  

k! × 
( k + m ) !  

n + m -  I ~z 
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minimizer of g(-)," so that g(y)  >I g(0) = 0 for 
y > - 1 .  The proofs of (ii) and (iii) are similar. 

l~roof of Proposition 2. For 1 ~< n ~< a, we use ihe 
fact that a ~< A to obtain 

p(A, a -  n) 
a a - n + l  ) 

.-, 
o -e p( r. lnO- • 

~kffiO 

By Lemma 1 (i), In(1 -k/A)<<. - k / A ,  so 

=p(A, a) .  exp(-n(,, - 1)/2A), 

by a standard summation formula (see Knuth  [7, 
p. 55]). To bound p(A, a), we use a Stifling 
formula-type inequality (see Feller [3, p. 54]), 

I 

a! > (2~ra)~a°.e-°.exp(1/(12a+ 1)), 

which yields (b = A - a)  

e-~.Ao p(A, a) .< 
2 1 / ~  a a • e - U 

2--~aa e-b I +  a 

. ---.!-- -b. e b (2~a)-~ y. P(A'k)+A"'k~P(~'k) ~ ~6-~ e = '; 
x(,,+ I)-" 

.+m-, (A)" - r. p(A,k)+ ~ ~(A,n). 
k ' n  

Solving for P(A, n) yields Proposition 1 (ii). 

The following lemma collects a series of in- 
equalities which we shall need for the remainder 
of our proofs. 

l_,eamm I. ( i ) For y > - I ,  In(l + y ) <~ y , 
(ii) .tory ~ O, - I n ( l  + y)  ~ - y  +y2/2  ' 

(iii) f o ry~O,  (I + y ) i  ~ 1 +y/2 .  

ProoL For (i), let g ( y ) = y - I n ( 1  + y )  and ob- 
serve that g(0) = 0 and g'(y) < 0 for - 1 < y  < 0, 
whereas g ' ( y )  > 0 for y > 0. Hence, 0 is a global 

12 

(6) 

the last inequality is obtained by exl)onentiating 
both sides of In(1 + b/a)<~ b/a  ( s ~  Lemma 1 
(i)). This proves Proposition 2 (i) for n ~< a; for 
n > a, the inequality is trite. As for p(A,  a + n), 
use a >t A - 1 to obtain 

p(A, a + n) 

=pO,, ,,). 

~<p(A, ~). 

( a+  1)(a+ 2) .-- (a + n) 
A" 

A(A + 0 " "  (A + n -  1) 

( , .  
- -p (A,  a ) - e x p  - Y' ln{1 + 

k - 0  

~<p(A, a ) . e x p  - ~ -- + 
k~O A k=O 2 " ~  ' 
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d~e latter inequality by Lemma 1 (if). Using stan- 
dard sununation formulae (see Knuth [7, p. 55]) 
and (6) gives Proposition 2 (if). 

Proof o|  Theorem 1. By Proposition 2 (i), 

P(?`, a - n ) ~ ( 2 c f a ) - ' . - ~ " :  ex ~ . 
kffin 

Since g(x)ffi - x ( x -  1)/27` is non-increasing on 
[1/2, oo), 

e x p ( - x ( x - 1 ) 1 2 ? `  ) 

J x _ l e x p ( - u ( u -  1)/27`) du 

for x ~ 3/2. Thus, if n >.. 2, 

e ( x ,  a - n )  
I 

<~ ( 2 ¢ta ) - 'exp(1/8?` ) 

< exp(1/Sk)(?`/a)iO((n- 3/2)/?`'). (7) 

By Lemma 1 (iii), (h/a)~ <~ 1 + b/2a.  For ?  ̀>t 2, 
?`~< I k l + l ~  17`1+2-2/?`ffi 17`1+(2/?`).(?`.- 
1)~< Ikl+(2/?`)" Ikl so that b/2a<.g. 1/?`; sub- 
stituting into (7) yields Theorem 1 (i). 

For "l'he~rem 1 (if), we first use Proposition 1 
(if) with m ffi a to obtain 

P(?`, a + n ) ~  a + n + l  

n + a - I  

x IF., p(?`,k) .  
kffin 

For n ~  k ~< n + a - 1, we have 

k ( k -  1) '+  ( k -  1 ) k ( 2 k -  1) 
:~x 127, 2 

k ( k -  1) .fl, 
~ -  2k 

where f l f f i l - ( n + a ) / ( 3 ? ` ) + ( 2 ? ` )  -1. By Pro- 
position 2 (if), it follows that 

a + n + l  • (2era) 

n + a - 1  

X E e x p ( - k ( k -  1 )~ /2k) .  
kmrm 

(s) 

As in the bound for P(?`, a - n), the latter sum ,.'s 
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dominated by 

J n _ l e x p ( - u ( u -  l)fl/27`) du 

-- e x p ( ~ / s ? ` )  • • ( 2 , 0  ~ 

x¥( ( n -  3) 

Now, j8 ~< 1 since n + a >i n >_- 2; furthermore, since 
n ~< (?` + 3)/2, it follows that fl >I 1 - (?`/2 + 3/2 
+ ?,)/3?, + (27`) -1 = 1/2. Hence, /~-½ ~< ¢~, 
exp(fi/8?`) ~< exp(l /8?` ), and 

O ( ( a - 3 ) ~ / - ~ ) ~ O ( ( n - 3 ) . ( 2 ? ` ) - ½ ) . ] -  

Combining these inequalities and the previously 
obtained (?`/a) I <~ (1 + 1/?`) with (8) and (9), we 
get Theorem 1 (if). 

Proof of Pmlmsition 3. For ?` >I 2, exp(1/8?`) 
exp(1/16), so it remains only to show that 

( ~ - ( o + ~ + ~  -< - = ~ ( ~ ) )  
(10) 

Since a + 1 >I ?`, it follows that ?`/(a + n + 1) ~< 
1 - (a/(?` + n)). Now, 

n ~< e x p ( - n / ( ? `  + n)) 1 ?  ̀+ - - ~  

(exponentiate both sides of Lemma 1 (i)). so 

?  ̀ a - n a  

The function / ( x )  ffi (x - 1) / (x + 1) is non-de- 
creasing on [0,0o) so f (x )  >I]'(.2) -- 1/3 for x >1 2. 
Thus, for ?  ̀>I 2, (?, - 1)/(k + 1) >I 1/3, proving 
that a >I (1/3)(?` + 1). Hence, a(?` + n) -1 >t a(?` 
+ ?`/2 + 3/2) -1 >/(k + 1)/(3.  (?` + 1)- 3/2) -- 2/9.  
Relation (11) then yields 

a + n + 1 ~ e x p ( - 2 n / 9 ) ,  

from which (10) follows immediately. 
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