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Abstract 

The familiar queueing principle expressed by the formula L = NW can be inter- 
preted as a relation among strong laws of large numbers. In a previous paper, we 
showed that this principle can be extended to include relations among other classical 
limit theorems such as central limit theorems and laws of the iterated logarithm. 
Here we provide sufficient conditions for these limit theorems using regenerative 
structure. 
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1. Introduction 

This paper is a sequel to [6] in which we established functional-central-limit- 
theorem (FCLT) and functional-law-of-the-iterated-logarithm (FLIL) versions of the 
fundamental queueing principle L = XW [15]. Here we present sufficient conditions 
for bott/kinds of functional limit theorems (FLTs), exploiting regenerative structure. 
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Sufficient conditions for the FLTs are important because the FLT versions of  L = XW 
state, roughly speaking, that the customer-average wait satisfies an FLT if and only if 
the time-average queue length satisfies an FLT. Consequently, to obtain these FLTs 
for specific models, one FLT must be established exploiting available probabitistic 
structure. The sufficient conditions here, based on regenerative structure, are natural 
for queueing models; e.g., they contain light-traffic limit theorems for GI/G/s queues 
in [8] and [18] as special cases. In fact, regenerative structure is more appropriate 
than might be apparent because, as shown by Athreya and Ney [1] and Nummelin 
[10,11 ], regenerative structure exists for almost any irreducible Markov chain. (There 
is an extra minorization condition; see chapter 4 of [11 ] .) For example, regenerative 
structure exists for the vector-valued Kiefer-Wolfowitz workload process in a stable 
GI/G/s queue [3,14] and p. 67 of [11]. Of course, FLTs can be established without 
the independence associated with regenerative structure, but the regenerative structure 
covers many applications. Our purpose here is to bring the L = XW FLT relations in 
[6] one step closer to applications. 

This paper is organized as follows. We briefly review the L = XW framework in 
sect. 2 and give sufficient conditions for the FCLTs and FLILs in sects. 3 and 4. 

2. The  L = X W f r a m e w o r k  

The standard L = XW framework is a sequence of ordered pairs of  random vari- 
ables { (Ak, Dk) : k = 1 ,2 ,  . . .  }, where 0 ~< A k K A k § 1, Ak K Dk < ~' for all k and 
A k ~ ~, as k -+ ~ w.p. 1. We interpret A k and D k as the arrival and departure epochs 
of  the kth customer. Other processes of interest are defined in terms of {(A~, Dk)}. 
The associated interarrival times are U k = A k - A k_ 1, k > 1, U 1 = A 1 and the wait- 
ing times are W k = D k - A  k. The arrival counting process is N(t) = max{k ~> 0:A k ~< t} 
and the output counting processes is O(t) = max {k/> 0 :D k ~< t}, t >10. The queue 
length at time t, Q(t), is the number of k with A k ~< t ~< D k. The principle L = XW 
relates the cumulative processes 

WI: k /> 1 and s) 

j = l  0 

ds : t  >~ 0 

using the arrival and departure process {A k }, {D k }, {N(t)} and {O(t)}; see [6] and 
[15] for further discussion. 

3. T h e  f u n c t i o n a l  cen t ra l  l imi t  t h e o r e m  

Sufficient conditions for the FCLTs in theorems 3 and 4 of  [6] can be obtained 
from regenerative structure. Our argument closely follows Iglehart's [8] treatment of 
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the GI/G/1 queue and the extension to the GI/G/s queue in [18], but the results are 
not limited to those special models. We extend [8] by not using the special structure 
of the GI/G/1 queue and by treating joint limits. To make the connection to [8] clear, 
we use much of the same notation. 

We work in the general framework of sect. 2, i.e., with the sequence 
{ (A k, Dk), k = 1 , 2 , . . .  }, where A o = D O = 0 without there being a 0 tia customer. Let 
X k = (U k, Wk), k >~ 1 ; let {ak, k ~> 1} be a sequence of i.i.d. (independent and identi- 
cally distributed) nonnegative integer-valued random variables with E(ak) = m, 
0 < m < oo; and let/3k = al + �9 �9 �9 + ak" We assume that {t3~} provides a sequence of 
regenerative points for {Xk}; i.e. the random vectors V k = {Olk, X~k - 1 + 1 . . . . .  Xr k } 
are i.i.d. (Extra measurability conditions are unnecessary; see [5] .) The construction 
of V k for the GI/G/1 queue is described in detail in [8]. There, a k is the number of 
customers served in the kth busy cycle. 

Let {L(k), k ~> 1} be the discrete renewal process associated with {ak}, i.e., 

L(k) = max{j/> 0:/3i ~<k}' k /> 1, (3.1) 

where/30 = 0. Now define two functionals of Vk: 

= ... and Yk (1) = 142~k-1 k' ~k U~k_ 1+ x + + Ut3k +x + ' ' "  + lgt3 (3.2) 

so that the vectors (ak, ~k, r ( 1 ) )  are i.i.d., 

(A~k, fl~ l'~]) = ( ~ ~/., ~'~ y](1)) 
1 j 1 j 1 

and 

(A k ) /L(k) L(k) Sk) k'  ~ , W ]  = l Z ~ / + r k  Z Y. (1) -I- ' ] 
/=1 \ j = l  j=l 

(3.3) 

where r k and s k are remainder terms that will be asymptotically negligible in the 
FCLT. In the GI/G/1 queue, ~k is the length of the kth busy cycle and i,(1) is the sum 
of the waiting times during the kth busy cycle. We assume that first two moments of 
~ ~k and y(1) are finite. We define X and w by 

X- 1 = m- i E(~k ) and w = m-  1E(yO) ) .  (3.4) 

Of course, w equals the mean of the stationary distribution in the GI/G/1 queue, but 
here W k need not be either stationary or converge in distribution as k ~ ~ .  For 
example, W k could be periodic. 
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Let ~ = Var(~k) , -~2 = Vat(y(1)), ~2 = Var(o~k) ' ~ = C~ y(1)~ k Y, 
~13 = C~ %)  and a23 = C~ 0),  %)" By the second moment  assumption, these 
are all finite. Let Z, be the covariance matrix of ($k, Yk (1), %),  i.e. 

- - 2  m _ _  

O 1 0"12 O13~ 
- -  - -  - - 2  

Z = 0"12 0 2 0"23 I (3 .5)  
/ 

0"-,3 u23 

As in [2], [6] and [19], let = >  denote weak convergence and let D k be the k-fold 
product of the function space D [0, ~ )  of right-continuous real-valued functions with 
left limits. Define the following random functions in D: 

An(t ) = nl/2 [A[nt] 
[nt] ] 

- X - l n t ] ,  Wn(t ) = n 1/2 ~. Wj-wnt 
/=1  

gn(t) = nl/  L k ~ = , ~ , - m X - ' n  , Y ( t ) =  n-"2 k=,Z Y(ga)-mwn 

r [nt] ] 
Ln(t ) = n-'12 [L( [n t ]  ) - m - ' n t ] ,  Sn(t ) = n-l/= [ 10tk - - rant  

(SL)n(t) = n - 1 / 2  Z ~ , (BL)n(t) = n - l / 2  

k=l 
~k -- )k- 1 nt] 

(YL)n(t) = n- 1/2 
"L([nt] ) 7 

Z Y(1)-wnt 
k = l  

t ~ > 0 ,  

(3.6) 

where [x] is the integer part of x. 
The following result shows that the conditions of  theorems 3 and 4 in [6] are 

satisfied in this regenerative setting. Expressions are also given for the normalization 
constants in the FCLTs, in terms of the variances and covariances of (~k, yO),  %).  
Let o be the composition map, defined by (x oy)(t) =x(y(t)) as in sect. 3 of [19]. 

THEOREM 1 

Under the above regeneration and moment  assumptions, 

(Bn, Yn,Sn, Ln,(SL)n,(BL)n,(YL)n,An, Wn) = >  (B, Y,S,L,O,A, W,A, W) inD 9, 
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where (B, Y, S) is three-dimensional Brownian motion with zero drift vector and 
covariance matrix ~ in (3.5), e(t) = t and O(t) = O, t >~ O, and 

L = m - a ( S o ( m - l e ) )  

A = B o m - l e +  X-lmL = ( B - X - l S ) o r n - ' e  (3.7) 

W= Y � 9  = ( Y - w S )  o m - l e ,  

so that (A, W) is two-dimensional Brownian motion with zero drift and covariance 
matrix ~ with elements 

0"12 = m-1 ( ~  + X-2-20.3 -2X-x  a13) = m-1Var (~g -X-a  ag ) 

2 : m - l ( ~  + w 2 - 2  _2w~23)  = m- lVar(y(1)  _ w a k )  0"2 ~  (3.s) 

0"12 = m -1 (X -1 w ~  + -0"12 _ w~13  _ ~-1 ~23)  

= m-1 Cov(~k _~,-1 ag, y~l )  _WOrk)" 

Proof 

The limit (Bn, Yn, Sn) --> (B, Y, S) is Donsker's FCLT in D 3 because 
(~x, yO),  Gk) are i.i.d, with finite second moments. (Donsker's theorem as discussed 
in [2] extends easily to the multivariate setting, e.g. apply theorem 8 of [17] .) The 
limit for L n is added on by applying the inverse mapping in sect. 7 of [19]. The 
limits for (SL)n, (BL)n and (YL)n are added on by applying composition plus transla- 
tion (random sums) in theorem 5.1(i) of [19]. The appropriate translation to apply 
[19] is illustrated in the proof of theorem 3 in [6]. Note that the limit for (SL)n is 
(S o m -1 e) - mm -1 (S o m -1 e) = 0. Finally, the limit for (An, Wn) is added by apply- 
ing theorem 4.1 in [2] and showing that P(An, (BL)n) = >  0 and [(Wn, (YL)n) = >  0, 
where p is a metric on D inducing uniform convergence on compact subsets. The argu- 
ment is essentially the same as in [8] except for this last step. Here we do not have 
the special structure of the GI/G/1 queue to exploit. Instead, we use the established 
weak convergence to knock out the remainder terms. In particular, note that 

Wn(t ) = (rL)n(t) + n-l/2 
[nt] 

~. Wk, (3.9) 
k = Tn(t)+ 1 

where 
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L([nt] ) 
Tn(t  ) = ~ o~ k, n -1/2 [Tn( t  ) - n t ]  = (SJL)n(t), 

k = l  

(SL)n => 0 and ( r t )  n = >  w. 

We show that p(Wn, (YL)n) = >  0 by showing that the remainder term in (3.9) is 
asymptotically negligible. Since W k ~> 0 for all k, 

[nt] 
n-1/2 2 ~4]k ~ n - 1 / 2 y ( ~ n t ] ) + l  ~ n-l/2 m a x  { r ( 1 ) } .  ( 3 . 10 )  

k <<. L([nt] ) + 1 k = Tn(t)+l  

Since Yn = >  Y where P ( Y E  C) = 1 and L n obeys an SLLN, the continuous mapping 
theorem with the maximum jump functional, as in the proof of  theorem 4(e) in [6], 
shows that this remainder term converges to 0 in probability. A similar argument 
applies to show p(A n (BL)n) = >  0. [] 

Remark 3.1. By lemma 1 in sect. 5 of [6], the asymptotic efficiency of the estimator 
/3~ 1 N~k 1 ~. is the same as for (mk) -1 N[mgj W., where m = E/3., namely m -I/2 o]. "= / = t  ] �9 z 
The regeneration cycles affect the asymptotic efficiency only through the expected 
number of  arriving customers. This remains true for other ratio estimators [4,9] and 
for arbitrary random times (without the regenerative structure) provided they obey an 
FWLLN. 

4. The  f u n c t i o n a l  law o f  the  i t e r a t ed  logar i thm 

We now obtain sufficient conditions for the FLIL analogs of theorems 3 and 4 
of [6] discussed in sect. 6 there. We work in the regenerative setting of sect. 3, which 
includes the second moment conditions. We also assume that the covariance matrix 
in (3.5) is positive definite so that it has an invertible square root F, i.e. ~ = FF t = prF. 

"v2 "~1/2 = (X1 ,  Xk)- Let Itxllbe the Euclidean normin Rk, i.e. Ilxll = (x~ §  forx  . . . .  
We treat vectors as row vectors. Let the compact limit set in D k associated with 
Strassen's [16] FLIL for Brownian motion (his theorem 1) or partial sums of i.i.d. 
random vectors in R k (Strassen's theorems 2 and 3 for k = 1 and corollary 1 to 
theorem 1 of  Philipp [12] for k > 1) with covariance matrix I (the identity matrix) 
be the set  K k of all absolutely continuous functions x - (x 1 . . . . .  Xk) in D e, with 
xi(O ) = 0 for all i and derivatives J - (k 1 . . . . .  kk) satisfying f o  ILk(s)l[ 2 ds ~< 1 or, 
equivalently, f~ IIJ(s)ll 2 ds ~< 1 for all t > 0. Note that x(mt)  C K k if and only if 
m 1/2x(t) E K k. 
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Let the random functions be defined as in (3.6) except that the normalization 
is by q~(n) = (2n log log n)-1/2 instead of n-1/2, e.g., 

w ( t )  = 4)(n w / -  w n  , 

] = 1  

t /> 0. (4.1) 

As in [6], we write X n x/-+K if w.p. 1 every subsequence o f { X n : n )  1} has acon- 
vergent subsequence and t h e  set of all limit points is K. 

THEOREM 2 

where 

and 

Under the above regeneration, moment and covariance matrix conditions, 

( B ,  Y,Sn,  Ln,(SL)n,(BL)n,(YL)n,A n, Wn) ~ KBYSLoAWAIeinD9, (4.2) 

Kgy S = K3F = { x F ' x  E K3} (4.3) 

KBYSLOA WA W = {(X 1 . . . . .  x 9 )  "(x 1 , x 2, x 3)  ~ K B y  s , 

X 4 = - -  m-ix3 �9 (m -1 e),x s = O, 

x 6 = x s = ( X l - X - l x 3 ) � 9  and 

x 7 =x 9 =(x  2 - w x 3 ) � 9  

so that (A n, Wn) X/+ KAW , where KAW = KBYS A , and 

(4.4) 

Proof 

m- 1/2 0 / 

2x = 0 m- 1/2 . ( 4 . 5 )  

- ~k-1 m - 1 / 2  _wm-1/2] 

Since 2 has the invertible square root F, the random vectors (~k, y0),k ak)I ' - i  
are i.i.d, with uncorrelated marginals. We thus can apply theorem 3 of [16] plus 
corollary 1 to theorem 1 of [12] to conclude that (Bn, Yn, Sn)X/~ KBYS = K 3 F ,  
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where K 3 is the standard limit set in D 3 associated with uncorrelated marginals 

defined above. The rest of  the proof  follows by the continuous-mapping and con- 
vergence-together arguments as in the p roof  of  theorem 1. Just as in the proof  of  

theorem 1, we can translate into the framework of  [19] ,  but  here we use the normal- 
ization by ~(n)instead o f  n -1/2 as in (4.1). [] 

We now apply theorem 2 to obtain an ordinary LIL. For a direct t reatment  of  
ordinary LILs, see [7] .  

COROLLARY 

Under the conditions of  theorem 2, JAn(l), Wn(1)] X/+ KAW in R 2, where 

KAW = nl(KAw ) = { x ( 1 ) : x  E KAW } = { y l P A : y  E R 3 and Ilyll ~< 1} 

with % 'D  2 -+ R 2 defined by nl(X ) =x (1 ) .  

Proof 

The projection map 7r I is continuous. [] 

We conclude by  remarking that the SLLN for {(An, W n) } associated with L = )via/ 
in [15] is also a corollary to theorem 2; i.e. n-lAn -+ X -1 and n -1 ~:,=1 Wk -+ w 
w.p. 1 a s h - +  
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