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Let X be a positive recunrent regencrative process on state space S with steady-state distribution . Given a funciion
f: § = R, we consider the problem of estimating the stead;-state conlral monents py(f ) = fof f(x)— r)*n{dx) where r is the
steady-state mean of f( X(+)). We obtain strong 1aws, central limit theorems, and confidence intervals for our cstimators, and
present numerical results.

statistical analysis of simulation cutput » regenerative processes

1. Introduction

Suppose we are simulaiing a stochastic procss
X = {X(1): 120} with the intent of estimating
the steady-state mean of the process. This problem
has been extensively studied in the simulation
literature and a number of nethods have been
developed to do the job. However, suppose that
we are also interested in ¢stimating the steady-state
varience of X. To the best of our knowledge, no
technique is available for estimating this variance.
Our goal in this paper is to provide such a tech-
nique in the context of the regenerative method.

To be specific, let X be a (possibly) delayed
regenerative process taking values in state space S,
with regeneration times 7'(—1) =0 < T(0) < 7(1)
< ---(to incorporate regenerative sequences
{X,: n =0}, we pass to the continuous time pro-
cess X(-) defined by X(2) = X, where {7] is the
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greatest intcger less than or cqjual to 7). Under
quite general conditions (see, for example, Hey-
man and Sobel [4, p. 185], there exists a probabil-
ity distribution # on § such that

W)= [HX()) a5 [f(y)n(@y)

=r{f). (1.1)
a.s. as t— o0, for a broad class of functions
[ S—-R.

As is clear from (1.1). r(f) has an interpreta-
tion as the steady-state mean of f(X(-)). In cer-
tain applications, however, it may also be of inter-
est to estimate the fluctuations of f( X(-)) around
its steady-state limit. To be precise, set f.(-)=
f¢:)=r(f) and put v(f)=r(f?); for g: S-R,
define g": S—>R via g"(x)=g(x)-g(x)---
g(x) (m times). Letting fZ play the role of f in
(1.1), we observe that »{f) may be regarded as
the steady-state variance of ,( X(-)). In the same
spirit, the simulator may be interested in estima-
ting the skewness or kurtosis of the steady-state
distribution of f(X(-)). Then estimating r(f’)
and r(f*) would he required.

More generally, let u_ (f)=r(f™); then g, (f)
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is. the mth steady-state central moment of f(-).
Clearly, £,(f)=0 and g,(/)=uv(f). Note that
estimation of p,,(f)=r{f") is not a special case
of the standard regenerative meihiod (see, for ex-
ample, Iglchart [5]), since f, depends cn the un-
known parameter r(f), which itself must be
estimated. Our goal, in this paper, is to develop an
estimation methodology for the central moments,
B..(f)- In Section 2, we prove the required limit
theorems upon which our methods are based. Sec-
tion 3 develops confidence intervals for central
moments, and numerical results are presented in
Section 4 only for the case of steady-state vari-
ances (m = 2). The reader who is only interested
in estimating the steady-state variance, p,(f),
should consult the confidence intarvals given i
egs. (3.4) and (3.5) and the examples in Section 4.

2. Estimators and limit theorems for centrai mo-
nients

We assume throughout the remainder of this
paper that

E(Y,(1/1>") +72™) < o0, @21) -

where
7,=T(n)—T(n-1) and
T(n)
()= [ " s(X(s)ds
for functions g: § — R. Our goal is to estimate
the central moments p,(f), 1<k <m.

The following binomial representation of the
central moments is crucial to our development:

w ) =r((£=r())")
=ff?u(f)r(f')(—l)k"'r(f)“". (2.2)

For g: s:n, set r(n, g)= Y,(g)/7,, where

17n(g)=%k)§‘,l Y(g)

and

n
Z Tk

k=1

Pl
[
R
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Relation (2.2) suggests that

k
u(n, k)= X (5)r(n, 3= r(n, )"~

=0
(2.3)
should be a reasonable estimator for ut,( f).
Proposition 1.
u(n, k) —=p,(f) as.as n—co,
for 1sk<2m. (2.4)

Proof, From (2.2) and (2.3), it is clear that we
need only show that r(n, f¥) = r(f*)as.asn—>
oo, for k < 2m. The strong law of large numbers
applies to both the numerator ¥,(f*) and de-
nominator 7,, yielding the required convergence,
provided that E|Y(/%)| < and Er <eo.
Clearly, {2.1) implies that Er, < oo, whercas the
inequality

E| ()] < B [ £(X() s

el

=En, +EY,(|f|*)<a

(1)
(

14 1 (X(s)) 1) |

provides the finiteness of the other moment. O

By Proposition 1, u(n, k) is strongly consistent
for p,(f) To state Jour next result, we shall use
that notation o,(n~ 2) 15 denote any sequence of
random vanab]es (rv’sy 8, such that n18 = () as
n - o, where = means Aveak convergence. The
following properties fol':~ easily from our defini-
tion and standard results about weak convergence
(see Chung {2, p. 92)): ’

(i) if X,=q,(n"}) and ¥,=o,(n"3),
then Z,=X,+ Y,,=oy(n‘;),

(i) if X,=X and Y,=o,(n}),
then Z,=X, Y,=o,(n"%). (2.5)

L]
For our next limit result, we will need the
following central limit theorem (CLT).
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Propositive: & For 1 £k <m,

wi(r(n, f*) = r(f*)) = o(f*)N(O, 1)

as n - oo, where ‘

o?(g) =EZ}(g)/(En), 26)
Z,(g)=Y,(2)-r(g),

and N(O, 1) is a mean zero normal r.v. with unit
variance,

Proposition 2 is well known in the regenerative
simulation literature (see, for example, Iglehart
[5]); it is a CLT for estimators of the uncentered
steady-state moments of £( X(-)).

Proposition 3.

u(n, k)=r(n, f,()+oP(n“;) Jor 1<k<m,
where

LC)=LEC) =k (D)), 27
Proci. Observe that

k . :
un, k)= X (§)r(n. fY=1)"r(f)4

Jj=0
k-1

+X (8)rton -1

j—=0

x(r(n, 1) =r(£)*7). (28)
Evidently, for<p<m and 1 </<m,

(rlai £Y = r(£) Yol g2 (2.3)
= (slm, )= (1)) (';< e
Xr(n, fP).
From the proof of Proposition 1,
:g:;rtn, 1) r(n, £2)

—=ir(f) " r(s7) (2.10)
a.s. as n— oo, so that (2.5), (2.9) and (2.10),
together with Proposition 2, imply that

(r(n, ) =r(£)') - r(n, )
=(r(n, f)=r(£))-Ir( )" - r(£7)
+o,(n"1). 2.11)
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By noting that the first sum on the right-hand side
of (2.8) is r(n, f¥), we can ¢ombine (2.8) and
(2.11) to obtain

u(n, k) =r(n, fX)+ (r(n, £)-21(f)
xS (U= k=5)

Xr(f)*" 4 o, (n"1)

=r(n, f£)=r(n, f)-k
. ki] (:_l)r(fj)(_l)k—t—j
j=0

Xr(j)"_j_l+op(n_%)
=r(n,f,‘)+op(n‘;). )
Let é(n)=(u(n,1),...,u(n, m))' and p=

(e ()T, We take all vectors as col-
umn vectors and T denotes transpose.

Theorem 1. n:(U(n)—p)= N(O, C(f)) where
N(8, C{f)) is a multivariate normal r.v. with mean
vector 0. and covariance matrix C(f) with ele-
menis given by

G, (f)=EZ,(£)Z,(£)/(Ex,).

Proof. We shall use the Cramér-Wold device (Bil-
lingsley [1, p. 48]) to prove this result. Let 4 be an
arbitrary column vector in R™, and note that
Proposition 3 implies that

a"(U(n) - n)

= Za (el £)= (1) + a7

=Y 4.Z,(£)/7+0,(n}),
iml
where
f..(g)En“kZ Z,(g) for g: S—R.
-1

In the second equality we have used the fact that
#,(f}=r(f). Standard arguments then show that

#}(a™(U(n) - B)) = (a7C(f)a)'N(0, 1)
as n — oo; the Cramér-Wold device completes the
proof. O
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Theorem 1 shows that our estimators have an
asymptotically normal distribution; it is, of course,
a limit theorem expressed in terms of an irdex »
corresponding to the number of regenerative cycles
simulated. However, in certain settings, it is more
natural to express limit theorems in terms of 7, the
amount of time that the process X ha; been
simulated. Then, N(1)=max{n: T(n) <t is the
number of regenerative cycles completed by time
t. Set

ur(k) = {
and
U= (u,(1)....., 5, (m)).

u(N(1), k), N() =1
0, N(t) <1,

Propositicn 4. u,(k) > u, (f) a.s. as i — ¢, for
lgsk<2m

This follows immediately from Proposiiion 1
and the fact that N(¢) — oo a.s. as £ — o0,

Theorem 2. (U, —~ p) = N(0, C*(f)) as ' = o,
where C*( ') is given by

) =EZ(£)Z(£)/En.

The proof of Theorem 2 is based on riaking a
‘random time change’ by substituting th: process
N(1) for the parameter n in Theorem 1, giving

N (UM (1)) - p) = N(0, C(/));

since N(¢)=¢/Er, we obtain the result. For a
rigorous proof of a more general result, see Glynn
and Iglehart [3, Theorem 3.10). O

Specializing our results to the steady-state vari-
ance, we observe that the estimator u(n, 2), re-
spectively «,(2). is asymptotically normal with
limiting variance given by EZ.(f,)*/(E)?, re-
spectively EZ,(f,)?/Er. Since EZ,(f,)?=
EZ,(f2)? it follows that the asymptotic variabil-
ity of our steady-state variance estimator is unaf-
fected by having to estimate r(f). (Note that
EZ,(f2)?/(Em)” is the variance of the limiting
normal r.v, which approaches r(n, f2)) For
higher-order central moments, however, the vari-
ances will generally differ.
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3. Confidesice interval generation

In this section, we use onr limit theorems of
Section 2 to construct confidence intervals for the
kth central moment. To accomplish this, we need

consistent estimators for the covariance matrices
C(f) and C*(f). Set

Ak("9 iy J)
= [T (f(X(s))=r(n, £))'es
T(k-1)
x [ (F(X(u)) = r(n, 1)) du,
T(k—1) )
and

4,6, )= 5 & Ayl ).
k=1

Proposition 5. For 1 <i, j<m,
YROWIES SAVA A
a.s. as n— oo.

Proof. Note that
i J )
43, )= XD (n, )

k=0 !=0

12 ) )
X ; Pgi Yp(/lvk)yp(/}—h),rpkd-l

i J
- L LDt
kw0 [n0
XEY, (4 (1~ ") =t
= BYI(-/;")YI(-[:'];I

a.s. as n - oo, by the strong law of large nuinbers.
o

Let

Clns i )= (Al J)=JuCn, j=1)

x A,(i,1) —u(n, j)4,(i,0,
—iu(n, i-1)4,(1, j)

+iju(n, i=1)u(n, j—1)4,1,1)
+iu(n, i—-1u(n, j)4,Q1,0)
~u(n, i)4,(0, j)

+ju(n, iYu(n, j—1)4,(0,1)
+u(n, i)uin, j)A4,(0,0)).
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Propositions 1 and 5 together yieid the following
result.

1 .
Proposition 6. For 1<i, j<m, C(n, i, j)=
Ci(f)as asn~co0.

Application of the converging-together lemma
(Billingsley [1, p. 5]) to Theorem 1 and Proposi-
tion 6 shows that if C,,(f)>0 (1 <& <m), then

u("’ k) 2(8) Ckk(f)

u(n, k) +z(6)—c%‘{-)—i] 31)

is an asymptotic 100(1 - 8)% confidence interval

for p,(f), where z(8) solves P{N(0, 1) < z(8)} =

1-8/2,
A similar confidence interval can be based on
simulation of X to time 1. Set
C(N('): i j)"_'N(e)’ N(’)Sl
0, N()<1l.

Cl(i’ J)‘{

Propasition 7. For1<i, j<m, C(i, j) = C}(f)
a.s. ast— oo,

‘This result is an immediate consequence of
Proposition 6, and leads to the following asymp-
totic 10001 — &)% coniidence interval for u,(f)
(assuming C,, (/) >0, 1 <k <m):

C
u,(k) (6) kk(f)

u,u«)+z<a)5"l‘,,~’-Z - (32)
ti

For the steady-state variance o(f) = a,( f), we
can use our knowledge that pu,(f)= 0 to obtain a
simpler family of estimates for Co,(f) and C3(f).
Note that

EZ,(f) =EZ(£2)
=EX(£2) - 20(£)EY,(£2),
+v(f)25712- (3.3)
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C°(n)= -32- (4,(2,2) - 2u(n, 2)4,(2,0)

+uln, 2 4,(0,0)},

[CUN())Fw,,.  N(£)21
\o, N(t) <1.
Propositions 1 and 5 show that C’(n)~ G
as. as n—= oo and C2~C, (f) as. as i~ o0,
provided m > 2. Thus, lf Cn(f ) > 0, the following

"tervals are 100(1 — 8)% asymptotic confidence
intervals for v(f):

Q=

4

[u(Z n)~z(8)c (n)
u(2, n)+z(6“c (n)z ], (349
no |
[u. ~)—z<8)‘ L 420k )]
(35)

4. Numerical results

To illustrate the results obtained in the previ-
ous se.idon we have simulated three modeis: the
waiting time process in the M,/M/] queue (p=
0.5), and (s, S) inventory model, and the classical
repairman model. For all three models we selected
J to be the identity function (f(x) =x)and k=2,
so that our goal was to estimate the variance of
the steady-state distribution.

Example 1: M/M/1 queve. This model is the
single server queue with Poisscn arrivals and ex-
ponential service times. We simulated the waiting
time process W= {W,: n >0}, where W, is the
waiting time (exclusive of service time) of the nth
customer. Our simulations were carried out for
arrival rate A =5 and service rate p=10, and
hence the traffic intensity p = 0.5. This guarantees,
that W, = W as r —> o. Regenerative cycles begin
at those values of n for which W, = 0. The quan-
tity being estimated here iz o*( W} =3.0. We did
50 replications of 5000 cycles each. The sample
mean of the 50 point estimates, #(2,5000), was
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3.0417, and the sample mean of the 50 point
estimates of Cy,(f)?, CO(5000):, was 13.2782. As
a result, the sample mean of the 90% confidence
intervals was [2,7328, 3.3506]. The coverage frac-
tion was 58%.

Exzmple 2: (s, S) inventory model. This model is a
periodic review inventory model with a stationary
(s, §) ordering policy. An (s, §) policy is char-
acterized by two positive integers: s and § with
s < §. If the amount of inventory on hand plus on
orde: is less than s, order to bring the vm up to
&. If the inventory is greater than or equal to s, do
not order. Let X, denote the level of inventory on
hand plus on order in period n immediately after
the ordering decision. If 4, denotes the demand in
period n, then

_{X,,—d,,, d, <X, —s
S, otherwise.

X,

n+i

We assume that s < X, < S. The state space of
{X,: n=0)is {5, s+1,..,5). For this example
we have selected s =6, S =10, and

X
-

&l
-

P{dn=j}=

oel—

St
O S SN
I
WO

(o

1

[

L3

Again we simulate to estimate o2{ X} =2.3333.
Using i =10 as the regenerative state we ran 50
replications of 1000 cycles each. The sample mean
of the 50 point estimates, u(2,1000), was 2.3352
and the sample m;an of the 50 point estimates for
Cypo(f ), CO(1000)}, was 1.2396. The sample mean
of the resulting 50 90% confidence intervals was
[2.2708, 2.3897]. The coverage fraction was 94%.
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Example 3: classical repairman model. This model
is a continuous time Markov chain with X(¢)
denoting the number of failed units undergeing or
waiting, for service at the repair facility at time ¢.
We have w2+ n identical machines each with an
exponential failure time with failure rate A. At
most n of the units operate at one time, the other
m being thought of as spares. When a unit fails, it
is sent to a repair facility consisting of s repair-
men (servers) having exponential repair (service)
times with repair rate u. With these assumptions
{ X(1): 1= 0} is a birth—death process with state
space {0, 1,...,m+n), birth parameters A; = (n
~[i—=m]*)A, and death parameters p,=p-
min(i, s). For this example we have used n =10,
m=4, A=1, p=4 and 5= 3. Again we are inter-
ested in estimating the steady-state variance,
o2{ X} =5231. We ran S0 replications of 1000
cycles each with the regenerative state taken to be
i = 2. The sample mean of our 50 point estimates,
4(2,1000), was 5.1916, and the sample mean of the
50 point estimates of Cy(f)', C°(5000)}, was
11.5562. The sample mean of the 50 90% confi-
dence intervals was [4.5905, 5.7927). The coverage
fraction was 74%.
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