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Let X be a positive recurrent regenerative pro,2ess on state space S with stendy-stat¢ distribution ~. Given a function 
f: S --' R, we consider the problem of estimating the stead~'.~::.:c ~emr~,i moments tA~(/) m Js(J'( x )-  r)~w(dx) where r is ~te 
steady-state mean of./(X(.)). We obtain strong laws, central limit theoretas, and confidence intervals for our c,qimators, and 
present numerical results. 

statistical analysis of simulation output * regenerative processes 

I. Introduction 

Suppose we are simulating a stochastic p r o c ~  
X = { X(I ) :  t > 0} with the intent of estimating 
the steady-state mean of the process. This problem 
has been extensively studied in the s~mulation 
literature and a number of  nethods I~-r~,e been 
developed to do the job. However, supl~xS¢ that 
we are also interested in estimating the steady-state 
varicnce of X. To the best of o,,~r knowledge, no 
technique is available for estimating this variance. 
Our goal in this paper is to provide such a tech- 
nique in the context of the regenerative method. 

To be specific, let X be a (possibly) delayed 
regenerative process taking values in state space S, 
with regeneration times 7"(- 1) = 0 < 7"(0) < T(1)  
< - . - ( t o  incorporate regenerative sequences 
{ X,,: n > 0}, we pass to the continuous time pro- 
cess X(.)  defined by X(.t)--Xt, j, where [tl is the 
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greatest integer less than oh" ¢,qual to t). Under 
quite general conditions (see, for example, Hey- 
man and Sobel [4. p, 185], there exists a probabil- 
ity distribution ¢ on S such that 

r t ( f )  = tl fo,f( X(s)) d s ~  f /(y)~r(dy) 
--,.(/), O.1) 

a.s. as t ~  0e, for a broad class of functions 
/ :  S ~ R .  

As is clear from (1.1), r ( j ' )  has an interpreta- 
tion as the steady-state mean of J(X(-)) .  in  cer- 
tain applications, however, it may also be of iatcr- 
e, st to estimate the fluctuations of  f (X( - ) )  around 
its steady-state limit. To *~ precise, set ]~(-)-- 
f ( . ) - r ( f )  and put v( f ) - - r ( f~) ;  for g: S--~R, 
define g m - S ~ R  via g'~(x)==g(x).g(x). . .  
g(x)  (m times). Letting f ~  play the role of f in 
(1.1), we observe that v ( f )  may be regarded as 
the steady-state variance o f / ( X ( - ) ) .  In the same 
spirit, the simulator may be interested in estima- 
ting the skewness or kurtosis of the steady-state 
distribution of f(X(.)).  Then estimating r ( f f )  
and r ( f f )  would he required. 

More generally, let p ~ , ( f ) =  r ( f ~ ) ;  then Pro(f) 
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i s .  the mth steady-state central moment of f(-). 
Clearly, p l ( f ) = 0  and ~ t , ( f )=  v(f). Note that 
estimation of ~,,,(f) = r(./~} is not a special case 
of the standard regenerative method (see, for ex- 
ample, Iglehart [5]), since ~ depends on the un- 
known parameter r ( f ) ,  which i t~lf  must be 
estimated. Our goal, in this paper, is to develop an 
estimation methodology for the central moments, 
p , , ( f ) .  In Section 2, we prove the required limit 
theorems upon which our methods are based. Sec- 
tion 3 develops confidence intervals for central 
moments, and numerical results are presented in 
Section 4 only for the case of steady-state vari- 
ances (m--2).  The reader who is only interested 
in estimating the steady-state variance, ~%(f), 
should consult the confidence intervals given i ,  
eqs (3.4) and (3.5) and the examples in Section 4. 

2. Estimators and limit theorems for. central mo- 
meals 

We assume throughout the remainder of this 
paper that 

E ( r , ( I / I  = ')  +.,-,~') < ~o. 

where 

%=Tin  ) - T ( n - 1 )  and 

r.(s)= f r ~ f (  X(~))d • 

(23) ' 

for functions g: S--, R. Our goal is to estimate 
the central moments #k( / ) ,  1 _< k _< m. 

The following binomial representation of the 
central moments is crucial to our development: 

(/) = , ( ( / -  ,(/))* ) 
k 

= E (22) 
j - O  

For g: S --) R, set r(n. g) = ~(g)Fr.. where 

- ~ 
) " ( g )  = ~ k-~ 2 .  r ~ ( g )  

and 

1 L ~ .  

Relation (2.2) suggests that 
k 

, ( , .  k)= E 
j - O  

(2.3) 

should be a reasonable estimator for p , ( f ) .  

Proposition 1. 

for l ~ # ~ 2 m .  

a...T, a$  M ~ 00 ,  

(2.4) 

Proof.  From (2.2) and (2.3), it is dear that we 
need only show that r fn , /k )  ... r ( f f )  a.s. as n --) 
co, for k < 2m. The strong law of large numbers 
applies to both the numerator ~,(fk)  and de- 
nominator ,?,, yielding the required convergence, 
provided that E IY,//*)l < ~ and E¢I < ~¢. 
Clearly, (2.1) implies that Ev t < o0, whereas the 
ineqt.ality 

E{ fT(') l EIY~(fk)]< , ~ T ( o ) f ( X ( s ) ) l ; d s )  

< E( :Tc~): ~")d~) Jrto) 0 + I/(X(~)) I 

provides the finiteness of the other moment. [] 

By Proposition 1, u(n, k) is strongly consistent 
for/~k(f).  To state our next result, we sha~.! use 
that notation oefn-'~) ,.~ denote any sequence of 
random variables (r.v.'s) 8, such that n~8, =* 0 as 
n ~ oo, where =~ means ,veak convergence. The 
following properties fo~,':~, e,~sily from our defini- 
tion and standard rc:;u|ts about weak convergence 
(see Chung [2, p. 92]): 

(i) if X.--op(n-'))and Y.=°r(n-")" 
then Z. = X. + r. = o. ( . -  ',), 

(it) if Xn~-~)X and Yn---%(n-')), 
then Z. = x~.  y. = o. ( . -  :). (2.5) 

q 

For our next limit result, we will need the 
following central limit theorem (CLT). 
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Propositio~ ;L For 1 < k ..~ m. 

n~(r(n, f f  ) - - r ( f * ) ) = * , ) ( f f  )N(O, I) 

(I,V n =-=) oo, where  

0~(~) = EZi ' (g) / (E.r , )~ i  
(2.6) 

z . ( s . )  - = v.(.~) - ,.(g)~-., 
and N(O, 1) is a mean zero normal r.v. with unit 
variance, 

Proposition 2 is well known in the regenerative 
simulation literature (see, for example, lglehart 
[5]); it is a CLT for estimators of the uncentered 
steady-state moments of .f(X(-)). 

Propositaon 3. 

u(n ,k )=- - r (n ,  f k ) + o p ( n - l )  for ]<_k~m, 
where 

A ( ' )  =/,} ( ' )  - k # , _ , ( f ) f ~ ( . ) .  (2.7) 

Proci. Observe that 
k 

. ( . ,  k)= E i f ) r ( . ,  f~)(-1)~ , , ( / )  '-~ 
j=O 

k- ,  
+ g ff)r(n. ¢ ) ( - u  ~-~ 

j-O 

x(r(n./)'-J-r(f)~-'). (2.s) 

Evidentl), for 0 ~ p < m and I ~ I < on, 

(r( , i ,  f ) ' -  r( /')l~,-(n.. : ... fo} (2.9) 

/-I ) 

>~,(,;. p). 
From the proof of Proposition 1, 

/-1 ) 

• --" I r ( f )  ' -1.  r ( p ' )  (2.10 7 
a.s. as n--, oo, so that'(2.5), (2.9) and (2.10), 
to8ether with Proposition 2, imply that 

(,(n,f)'-r(/)').r(,,/,) 
= ( r ( n ,  l)-r(1))'Ir(1)'-'.r(p) 

+ o r ( n - i ) .  ( 2 . n )  

By noting that the first sum on the right-hand .side 
of (2.8) is r(n, .f~), we can o~mbine (2.8) and 
(2.11) to obtain 

u(n. k) = , ( n .  £ ~) + (r(,. f) - ,(l)) 
h-I 

x Z ( ~ ) r ( / ' ) ( - l ) ~ - J ( k - j )  
j -o 

×r ( /Y  -j- '  + op(n-:) 

= .(,. f t ) - . ( , ,  f~) .  k 
k-1 

× E ( . l - ' ) r ( f ' ) ( - l )  l ' - t - '  
j -o  

×all) ̀-~-' + op(,- i) 

=,(, .  A)+o~(,,-l). o 

Let U(n) = (u(n, I), .., u(n, m)) "r and /t-- 

(/.ix(f) ..... ~t,~(f)) T. We :ake all vc~ctors as col- 
umn vectors and T denotes transpose. 

1 teomn n. n;(V(n) - ~) ~ N(e, C( / ) )  where 
N(O, C( f )) is a multivariate normal r.u. with mean 
vector & and covariance matrix C ( f )  wish ele- 
ments given by 

Co(f) --- EZ1( f~)Zt( ~ )/(E~rt) 2. 

Proof. We shall use the Cram6r-WoId device (Bil- 
lingsley [1, p. 48]) to prove this result. Let a be an 
arbitrary column v~tor  in R",  and note that 
Proposition 3 implies that 

aT (u (n ) - -  rO 
m 

= Z ~ , ( , ( . , / , ) - ~ A f ) ) + o , ( , ,  -'=) 
i ~ l  

= ~.  ~ , z , . ( ~ ) / ~  + o,,(,,-~), 
i - - I  

where 

~.(g)=n- '  ~. Z,(8) for 8" s-,n. 
k - I  

In the second equality we have used the fact that 
P i ( f )  = r(f~). Standard arguments then show that 

, , ' ( , e ( v (n )  - ~,)) =, ( , ,~c'( /) , , )- :~(o. ~) 
as n --* oo; the Cran~r-Woid device completes the 
proof. 0 
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Thcoiem 1 shows that our estimators have an 
asymptotically normal distribution; it is, of course, 
a limit theorem expressed in terms of an ir,dex n 
corresponding to the number of reg,merative cycles 
simulated. However, in certain settings, it i~ more 
natural to express limit theorems in terms of t, the 
amount of time that the process X ha~ been 
simulated. Then, N(t)  = max{n: T(n) < t I is the 
number of regenerative cycles completed t,y time 
t. Set 

[u(N(t), k), 
u,(k)= to ' ' 
and 
~ = (u , ( l )  . . . .  , u,(m)) .  

N(,e) > 1 
N(,~) < t, 

Propimilion 4. u,(k) ~ ~tk(f) a,s. as t -) ¢'~, Ira" 
I _~k<2m 

This follows immediately from ProposL,ion 1 
and the fact that N(t) --, co a.s. a~s t --* oo. 

Theorem 2. t;(V,  - ~ )  - N(O,  C * ( / ) )  as : - ,  oo, 
where C*( f )  is given by 

C,~( f )  = E Z , ( / , ) Z , ( ~ ) / E ~ ' , .  

The proof of Theorem 2 is based on ranking a 
"random time change" by substituting tlT~ process 
N(t)  for the parameter n in Theorem I, giving 

N(,. ) ' ~ (V(b : { t ) ) -# )=  N(O, C ( / ) ) ;  

since N(t )= ¢/Ev t, we obtain the result. For a 
rigorous proof of a more general result, see Glynn 
and Iglehart [3, Theorem 3.10]. [] 

Sp~ializing our results to the steady-state vari- 
ance, we observe, that the estimator u(n, 2), re- 
spectively u,(2), is asymptotically normal with 
limiting variance given by EZx(f2)2/(E,I) 2, re- 
spectively EZ1(fz)2/E,']. Since EZI(f2) 2-- 
EZI( f2)  2, it follows that the asymptotic variabil- 
ity of our steady-state variance estimator is unaf- 
fected by having to estimate r( f ) .  (Note that 
EZt( f2)2/ (E, i )  ~- is the variance of the limiting 
normal r.v. which approaches r(n, f2).) For 
higher-order central moments, however, the vari- 
ances will generally differ. 

3. Confide.ee interval generation 

In this section, we use onr limit theorems of 
Section 2 to construct confidence intervals for the 
k th central moment. To accomplish this, we need 
consistent estimators for the covariance matrices 
C ( f )  and C*(f ) .  Set 

a k ( n , i , j )  

= f r ~ : * / 1 ) ( f ( X ( s ) ) - r ( n ,  f ) ) ids  

f " " '  (/( × X(u)) r (n ,  f ) ) i d u ,  
" T ( k -  1) 

and 

1 :~ A~,(,.,, i, j ) .  A.(i, j ) = ~  ~,.,~ 
l 

Proposition 5. For 1 ~ i, j < m, 

LU. j) -. EY,( f: ')r,(/ j) 
a .$ ,  ¢zf t l . - ,  oo. 

Proof. Note that 
J 

• ~2(~, J)= E X (~)(/)t-~)*+'.(., : )*~'  
k;O I-0 

1 
× -  ~ Y, l / ' - ' )Y, ( / , - " ) , /+ '  

n p - I  

j 
~. E Z * ' ) * "  (,)(, )( - ~),+,,( / 

k-0 I=0 

× F .r , ( / , - - . , . )  Y i ( / J - ' ) ' ¢  +' 
-- ~r,(Z;)y,(/ /)  

a.s. as n ~ o0, by the strong law of large numbers. 
[] 

Let 

c(n,i, j ) =  
1 

~ { L U ,  J)-J,,(,,. j - z )  

×A. ( i ,  1 ) -u (n ,  j )  A",,(i, O, 

- ~,,(n, ~ -  1 ) Z . O .  j )  

+ iju(n, i -  1)u(n, j -  I)A,,(1, l )  

+ ~.(n, ~ -  X)=(n, J)Z,O, O) 
- , , ( . ,  i )X. (O,  j )  

+j. ( . ,  i).(n, j -  1)X.(O, a) 
+ u(n, i)u(n, j):T,,(O, 0)}.  
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Propositions 1 and 5 together yield the following 
result. 

I 

Proposition 6. For l ~g i, j < m, C(n, i, j ) ~  
Gs(/) a . s .  a s  ~ -+ m .  

OPERATIONS RESEARCH LETrF_RS 

Appfication of the converging-together lemma 
(Billingsley [1, p. 5]) to Theorem 1 and Proposi- 
tion 6 shows that if Ck~(f) > 0 (1 g k ~ m), then 

u(., k)-~(~) c"( , / )+  , 
I i  z 

.(,,, ,)  + ~,(+) (3a) 

is an asymptotic 100(1 -B)% confidence ,nterval 
for p , ( / ) ,  where z(B) solves P{N(0, 1) ~ z(#)} ffi 
1 -6 /2 .  

A similar confidence interval can be based on 
simulation of X to time :. Set 

{C(N( t ) , i , ) )~vO) ,  N(t )  ~ 1 

C,(i, j ) =  0, N(t) < 1. 

December 1986 

Set 

.1 ( A. (2.2) - 2u(n. 2)A,,,,(2, 0) 

II(R, 2 "+' ~) A.C0, o)}, 

co = { oC..° ~ ~("))'/,.'<.. 
N(t)<L 

Propositions 1 and 5 show that C°(n)~  C~i(f) 
a.s. as n--, oo and C ° --~ Co(f)  a.s. as ~--, oo, 
provided m >_ 2. Thus, if C~.(f) > 0, the following 
"'~tervals are 1 0 0 ( 1 - 8 ) g  asymptotic confidence 
intervals for v( / ) :  

[ , , 1 : ~ ,  , ) -  ~(8) c°(~ ')~ , 

u(2, n)+ z(~) C°(~);n~ .1' (3.4) 

t ~ t~ J 
(3z) 

Proposition 7. For1 < i, / ~ m, ~(~, j )  -.  G~(f) 
a . $ .  a s  t - - ~  o o .  

This result is an immediate consequence of 
Proposition 6, and leads to the followin 8 asymp- 
toti~ 100( ! -  8)~ confidence interval for ~k ( f )  
(assuming C , k ( / )  > O, 1 ~ k < m): 

[ , . ,(k)-~(8) c~(/)~ 
t~ ' 

u , (k )+z (~)  . (3.2) 

For the steady-state variance v ( / )  -- o2(f), we 
can use our knowledge that p~(f)  = 0 to obtain a 
simpler family of estimates for C22(f) and C~(f).  
Note that 

F.Z, ( /~)~ ffi EZ, ( / :  ): 

ffi EYx ( f~ ) 2 - 2v( / )E Yx ( f~ )¢~ 

+v(l)ZE~:. (3.3) 

4. Nmnerieal results 

To illustrate the results obtained in the I~+vi- 
ous st. , ion we have simulated three models: the 
waiting time process in th,* M,/M/1 queue (p = 
0.5), and (s, S) inventory model, and th~ classical 
repairman model. For all three mL, dels we selected 
f to be the identity function ( f ( x )  = x) and k = 2, 
so that our goal was to estimate the variance of 
the steady-state distribution. 

Example I: M / M ~ !  queue. This .nmdel is the 
single server queue with Poissmz arrivals and ex- 
ponential service times. We simulated the waiting 
time process W ffi { W,,: n > 0), where W. is the 
waiting time (exclusive of service time) of the nth 
customer, Our simulations were carded out for 
arrival rate ), ffi 5 and service rate p - ,  10, and 
hence the traffic intensity p = 0.5. This guarantees.. 
that W~ ~ W as n - ,  0o. Regenerative cycles beo,.~ 
at those values of n for which W. = 0. The quan- 
tity being estimated here i~.~ o2{ W } = 3.0. We did 
50 repfications of 5000 .o/cles each. The sample 
mean of the 50 point estimates, u(2,5000), wax 
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3.0417, and the sample mean of the 50 point 
estimates of C22(f):,  C°(5000) ~, was 13.2782. As 
a result, the sample mean of the 90~ confidence 
intervals was [2,'I328, 3.3506]. The coverage frac- 
tion was 585. 

Exsmple 2: (s. S )  inventory model. This model is a 
periodic review inventory model with a stationary 
(s, S)  ordering policy. An (s, S)  policy is char- 
acterized by two positive integers: s and S with 
s < S. If the amount of inventory on hand plus on 
order i~ less than s, order to bring the ~',~ up to 
S. If the i ,ventory is greater than or equal to s, do 
not order. Let X, denote the level of inventory on 
hand plus on order in period n immediately after 

• the ordering decision. If d .  denotes the demand in 
period n, U~en 

= [ x . - a . ,  a . < x . - s  
x.+, 

" [ S, otherwise. 

We assume that s < X o ~ S. The state space of 
{ An: n > 0} is { s, s + 1 . . . . .  S ). For this example 
we have selected s = 6, S - -  10, and 

e { d ~ = j )  = / ~, j - - 0  

¼, j = l  

A, / = 2  
~, j = 3  
_L I~, j --  4. 

Again we simulate to estimate 02{ X} = 2.3333. 
Us ing  i = 10 as the regenerative state we ran 50 
replications of 1000 cycles each. The sample mean 
of the 50 point e.,,timates, u(2,1000), was 2.3352 
at~d the sample m;'.an of the 50 point estimates for 
C2~(j ) ,  C°(1000) ~, was 1.2396. The sample mean 
of the resulting 50 909~ confidence intervals was 
[2.2708, 2.3997]. The coverage fraction was 9470. 

Example 3: classical repairman model. This model 
is a continuous time Markov chain with X(t) 
denoting t~e number of failed units undergoing or 
waiting ~or service at the repair facility at time t, 
We have .,n + n identical machines each with an 
exponential failure time with failure rate ~. At 
most n of the units operate at one time, the other 
m being thought of as spares. When a unit fails, it 
is sent to a repair facility consisting of s repair- 
men (servers) having exponential repa.ir (service) 
times with repair rate p. With these assumptions 
{ X(t):  t > 0} is a bir th-death process with state 
space {0, 1 . . . . .  m + n }, birth parameters ~'i = (n 
- [ i - m ] + ) ~ ,  and death parameters /zi-~/z. 
rain{i, s). For this example we have used n ~ 10, 
m = 4, ~ = 1, p -- 4 and s --" 3. Again we are inter- 
ested in estimating the steady-state variance, 
o2{X} =5.231. We ran 50 replications of 1000 
cycles each with the regenerative state taken to be 
i = 2. The sample mean of our 50 point estimates, 
u(2,1000), was 5.1916, and the sample mean of the 
50 point estimates of C22(f) ~. C°(5000) ~, was 
11.5562. The sample mean of the 50 90~ confi- 
dence intervals was [4.5905, 5.7927]. The coverage 
fraction was 7470. 
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