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1. INTRODUCTION
Consider the simulation of a stochastic process {X,:t=0} for which
X=X (1.1)

(= denotes weak convergence). In many simulation applications, it is
of interest to determine confidence intervals for r(f)2 Ef(X), where
f is some real-valued functional defined on the state space of X,.
This problem is known, in the simulation literature, as the steady-
state simulation problem, and a great deal of effort has been devoted
toward its solution; see Chapter 5 of Fishman (1978) or Section 8.6
of Law and Kelton (1982) for a complete discussion of the problem.
The evaluation of simulation methodology for the steady-state
simulation problem requires that one possess a class of models for
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This research was also supported by National Science Foundation Grant No.
MCS79-09139, Office of Naval Research Contract No. N00014-76-C-0578 (NR 042-
343) and a Natural Sciences and Engineering Research Council of Canada
Postgraduate Scholarship.
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98 P. W. GLYNN

which parameters of interest may be calculated analytically. Behavior
of the procedures on the models then provides a “benchmark” from
which to judge their overall performance. Our goal, in this paper, is
to establish a variety of formulas for finite state Markov chains (in
both discrete and continuous time) and to discuss the importance of
these formulas in the context of methodology evaluation.

One of the earliest techniques proposed for dealing with steady-
state simulation problems is the technique of replication. The
simulator chooses ¢ large, and simulates the process up to time t,
creating a sample path {X!:0<s<t}. The simulator repeats this step
m times, creating a collection {X!:0<s<t}, 1<i<m, of m
independent replicates of the process. The parameter r(f) is then
estimated by

J(X5)ds.

Oty

1 m

r{m, f) :%izl

Note that the independence of the replicates allows application of

the classical central limit theorem (see, for example, Feller (1971), p.

259), thereby yielding a consequent asymptotically valid confidence

interval. In any case, the mean square error of the estimate r,(m, f) is
given by

E(r(m, f)—=r(f)*=a*(r(1, f)/m+b(f) (12)
where

b(f)=Er(1, f)'_r(f)

It is clear that for large m, the bias term b,(f) is the primary
contributor to the mean square error. As a result, the initial bias
term b,(f) has attracted a great deal of attention in the simulation
literature; for a survey, see Wilson and Pritsker (1978). Section 2 is
therefore devoted to formulas for b,(f), and to a qualitative
discussion of initial bias.

More recently, a variety of single replicate procedures have been
proposed (e.g. the regenerative method, batch means, spectral
methods; see Chapters 5 and 6 of Fishman (1978) for further
discussion). They rely on the fact that for many processes X,
satisfying (1.1), there exists a constant s(f), depending on the process
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X,, such that

Vi (g S(x) ds/t—r(f)> / S()=N(O, 1) (13)

where N(0, 1) is a unit normal random variable (result (1.3) holds, in
particular, for finite state Markov chains). Confidence intervals based
on (1.3) require consistent estimators for the constant s*(f). In
Section 3, formulas are derived for the constant s*(f), thereby
allowing the study and comparison of different estimators for s?(f).
These formulas extend the work of Hazen and Pritsker (1980) on
continuous time Markov chains with diagonalizable generators to
the general case and involve computing certain matrix inverses.
Section 4 is devoted to solution of several related conjectures of
Hazen and Pritsker. Among the tools used is a second class of
formulas for s*(f), that exploit the regenerative structure of recurrent
finite state Markov processes. It is shown, by example, that the
regenerative formula, which involves no matrix inverse, is often more
easily computed than the formulas of Section 3.

One well-studied class of estimators for s*(f) is based on spectral
techniques. If {X,} is a second order stationary process, it can be
shown, under certain regularity conditions, that s(f)=2nrc(0), where
c(4) is the spectrum of {X,} given by

0

=5 | eHcov(f(Xo), (X)) d (14

0

(see Theorem 20.1 of Billingsley (1968) for a discrete-time version of
this result). Several recent papers (see Heidelberger and Welch
(1981a), (1981b), for example) have proposed techniques based on
estimating s*(f) via polynomial fitting to an estimated spectrum in a
neighborhood of zero. Section 5 therefore derives formulas for the
spectrum corresponding to finite state Markov chains.

Before concluding this section, it should be noted that the above
discussion for continuous time processes carries over, in an obvious
way, to discrete time processes—this justifies the interest in formulas
for discrete time Markov chains.
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2. FORMULAS FOR THE INITIAL BIAS

Throughout this section, we assume that {X,:n =0} satifies:

{X,:nz0} is an irreducible Markov chain of period d, with
transition matrix P, on state space E={1,...,m}. 2.1

Such a chain necessarily has a unique stationary distribution n=
(mys...,m,) solving nP=n. Given a row vector f'=(f(1),...,f(m))
(f’ denotes the transpose of f), it is well known that

1n=-1
;kZO Jf(X)-nf

with probability 1, for any initial distribution p=(u,,...,u,) (4=
P{X,=i}). Let

n—1
b,.(u,f)=E,‘<% Y f(Xk)>—7rf;
K=o

here E,(-) stands for expectation under initial distribution p. Our
objective is to obtain formulas for the initial bias b,(u, f).

We will need the following standard results from Markov chain
theory (see Kemeny and Snell (1960), p. 70, 71, 100, 101):

P">T1, as n—oo, where Il is a stochastic matrix ~ (2.2)

M=(I+P+ - +P""HIl,/d has all rows equal ton (2.3

NP=PI=T=T1 (2.4)
the inverse matrix F=(IT—Q) ! exists, where =P—1. (2.5)

The matrix F is called the fundamental matrix of the Markov chain,
It is worth noting that when P is aperiodic, the matrix F has the
representation F'=Y (P —TI)*. Since the natural analog of IT for
transient chains is the zero matrix, it follows that the fundamental
matrix is a generalized form of the potential matrix (see Cinlar
(1975), p. 196-7).
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Tueorem  The initial bias b,(u, f) is given by (2.6)
b, f)=w(I—P"F f/n. 27

Furthermore, if n=kd+i, where 0<i<d, then

ba(u, f) = (I — PTLo)Ef fn+0(p") (2.8)

where 0Sp <1 (a sequence b, is 0(a,) if there exists K >0 such that
D] < K]a,).

Proof The bias can be written in the form
1 n—1 . . . 1 n—1 .
ba(y, f) =~ Z z ,uiPijf(])—Z it f () == Z p(P*—1I1) f.
Nk=o0i,j i,j Nk=o
Now, it is easily verified, using (2.4), that

n—1
Y (P =TI)([—Q)=I—P" (29)
k=0

from which (2.7) follows 1mmed1ately, after postmultiplying through
(2.9) by F. Equation (2.8) is a direct consequence of the geometric
convergence of P to I, (see Corollary 4.1.5 of Kemeny and Snell
(1960)). ||

This result generalizes Theorem 7-15 of Heyman and Sobel (1982)
(their proof requires that P be aperiodic). We now illustrate the
application of the theorem to a two state Markov chain. Let

l—a a
P=
(5" %)
where a,b20 and 0<a+b<2. Then {X,} is aperiodic and

1
= +b\b a)

b a 1 a —a
(b a>+(a+b)2<~b b)'

with
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Hence
1
by(u, /)= (@t byn (apy —bu)(f(1)—£(2))+0(p™.

A similar bias formula can be obtained for continuous time
Markov chains. We assume that:

{X,:t=0} is an irreducible Markov jump process on state space
E={1,2,...,m}, with generator Q. (2.10)

Recall that Q generates X, in the sense that P(t)=exp (Qf), where
P;(t)=P{X,=j| X,=i}). Such a chain necessarily possesses a unique

stationary distribution 7 solving nQ=0. Retaining the notational
conventions previously stated, set

b = [ K )

The following results are well known:
P(t)—TI, where IT has all rows identical to n (2.11
P(OII=TIP(t) =T12=T1. (2.12)

We will also need the following lemma.

LeMMA  The inverse matrix F=(I1—Q)~ ! exists. (2.13)

Proof Using (2.12) and the fact that T1Q =0 = QIT, observe that

(I1—0) (i(P(s)—H) ds+H>= —j}Qexp(Qs) ds+I1=1—exp(Qt)+IL
(2.14)

Then, letting

Ja=max {5,
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we have
°§||p(s)_n||ds= 20 T1iPe) ~ T P(s)] ds < 20 I1P(n)— 1]

which is finite, since P(1) is an aperiodic irreducible matrix and
therefore P(n) converges to IT geometrically fast. Hence, letting t— co
in (2.14), we see that TT—Q has an inverse. ||

Initial bias for continuous time Markov chains is determined by

the following theorem.

TuEOREM  The bias b,(u, f) is given by
b, )= (I — PO)ESf/t=pu(I —TDEf/t+0(e™™), (2.15)
where o is some positive constant.

The proof of this theorem is similar to that given in the discrete
time case. It should be pointed out that Theorem 2.13 generalizes a

result of Grassman (1982) given for f(k)=k.
These initial bias formulas have several interesting properties. First
of all, we observe that there exists a constant ¢(y, f) such that

(b, f)—clp, ))/1)—>0

for all k=0. Hence, in any bias expansion of the form
be(us f)=lz1 alw N/ +0(t™ 7Y,

it must be that ¢;,(u,f)=0 for [=2. Secondly, for any u and f, there
exists ¢t such that for s=¢, either:

i) by(n, f) decreases monotonically to zero, or
ii) by(u, f) increases monotonically to zero.

Hence, for s sufficiently large, the bias has a constant sign. Several
proposed initial bias procedures require this sign consistency
property (see, for example, Schruben (1982), p. 577). Of course, the
above discussion is equally valid for discrete time chains (provided
one accounts for periodicity).
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3. VARIANCE FORMULAS FOR THE SAMPLE MEAN

A natural way to try to evaluate s(f) is to take the variance of both
sides of (1.3), yielding the formal relation

ml(btf f(X) ds/t)—»sz( 1. 3.1)

For finite state Markov chains, relation (3.1) can be justified
rigorously, in the sense that it is correct that

1 2
tEn<;(f) fX)ds—nf ) =s*(f); (3.2)

a similar result holds in discrete time. For continuous time Markov
chains, (3.2) can be proved by using the fact that {X,:t=0} is
¢-mixing and then applying Theorem 20.1 of Billingsley (1968). The
discrete time version of (3.2) follows from Theorem 3 of Chung
(1966), p. 102. The following theorem therefore provides a formula
for evaluation of s?(f).

TueoREM  Let {X,:nz0} and {X,:t20} satisfy Assumptions (2.1)
and (2.10), respectively. Then, (3.3)
fnot 2 .
nEn(; k;o f(Xk)—nf> =fTU-I)f+2f'TP(F-1I) f

+% [ TP ' —P)F?f (3.4)

1t 2
tE,,<? (j) f(X)ds— nf> =2f"T(F—TI) f+% J'T(P(t)—DF?f, (3.5)

where T is a diagonal matrix with T,; =m;.

1

Proof The process {X,} is stationary under P,(*), so
1 n—1 2 2 n—1
nE\ = Y f(X)—nf) =var, f(Xo)+= Y (n—k)
Ri=o n=1

x cov, (f (xo), f(Xy))- (3.6)
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Now,

cov(f(Xo), f(Xy) = Z m f()P Z mr; f()f()=f T(P* =TI

3.7
and
not n—1
kZ1 (n—k)(P* —IT)(I1— Q) :kgl (n— k)(P¥ — P+ 1)
=nP— z": P"=n(P——H)— i (Pk“n)+l—n (38)
k=1 k=0

Applying (2.8) to the sum in (3.8), and postmultiplying through (3.8)
by F yields

nil(n—k)(P"—l'I)=n(P—H)F—(I—P"+1)F2+(I—1'I)F". (3.9)

Since II(I1— Q) =11, it follows that II=TIF. Also, Q =(TT—I)(TT—Q)
so that OF =TI—I and thus QF?=(IT—I)F. These observations,
together with (3.6), (3.7), and (3.9), lead directly to (3.4). The proof of
(3.5) is similar.

The right hand side of (3.5) can be algebraically rearranged, by
using the identity F—TI=I1—(I1+Q) !, to obtain Theorem 1 of
Hazen and Pritsker (1980). Their derivation required, however, that
Q be diagonalizable. The formula also extends Eq. (16) of Grassman
(1982) to general f. Formula (3.4) is an exact form of an asymptotic
result found on page 84 of Kemeny and Snell (1960).

We now apply Theorem 3.3 to determine s*(f) for the two state
Markov chain studied in Section 2. Routine calculations show that

ab(2—a—b)

“atb’ () —f@n*

SN =TA-I)f+2f TP(F~TI)f =

We can, in fact, extend Theorem 3.3 to cover arbitrary initial
distributions.

TueorEM Let {X,:n=0} and {X,:t=0} satisfy Assumptions (2.1)
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and (2.10), respectively. Then, (3.10)

1n=1 2 1
nEu<;1— D f(Xk)ﬁnf> =s2(f)+0<—>
k=0 n

1t 2 1
tEu(?gf(Xs) ds—nf> =52(f)+0<?>.

Proof We prove only the case where {X,} is aperiodic; the
periodic and continuous time proofs require only simple
modification. Let g(j)=f(j)—nf and observe that

1n=t 2 n—1 2
En(; Z g(Xk)) _En(l Z g(Xk)>
k=0 NiK=o

n—2 n—1

Z E,g*(X,)— E.g*(X, )+ Z Z (Bug(Xe(X))

_Eng(Xk)g(Xl))"

Now, P"—II geometrically fast (see Corollary 4.1.5 of Kemeny and
Snell (1960)) so there exist constants a>0 and 0< p<1 such that
|P¥; —m;| <ap*. Thus, for I>k,

|E.8(X)8(X) — Eg(X)g(X )| =Y u,

J)Z Pl - 7,)g(r)

Sl & mas' =l

where ||¢||=max; |g(i)|. This inequality, together with Theorem 2.5,
allows one to bound (3.11) by

2 n—2 n—1
lbn(u,gﬂl+;,—Hgﬂzm2k;m=;ﬂ a?p' =0(1/n).

Application of (3.4) completes the proof. ||

FORMULAS FOR MARKOV CHAINS 107

Theorem 3.10 allows us to obtain an asymptotic formula for the
mean square error of the estimator r(m, f) used in the method of
replication. By (1.2), and Theorems 2.5, 3.3, and 3.10,

E,(r(m, f)—nf)*=E,r(m,g))* =;n1—(E,.(rt(Lg))2 —Eir(1,8) +b/(1,9)

2 1 1
=Ef’T(F—H)f+;2—(u(I—H)Ff)2+0<;;5>;

an analogous expansion holds in the discrete time setting.

4. SOLUTION TO CONJECTURES OF HAZEN AND
PRITSKER

In their study of continuous time Markov chains, Hazen and
Pritsker considered the dependence of s(f) on scaling of the
generator Q. Writing s(Q, f) to indicate the dependence of s(f) on Q,
they showed that if «>0, then s*(«Q, f)=s*Q, f)/« for finite state
processes and conjectured that the same result holds for countable
state processes, as well. The following theorem answers their
conjecture (see Feller (1971), p. 326-332 for definitions and results on
Markov jump processes).

THEOREM  Let Q be an irreducible conservative (i.e. Q;;=0 for i},
—0<Q;=—);0;;) generator. If the minimal process {X,}
corresponding to Q satisfies

Pu{(i (f(X)—r() dS> <x./t5(0, f)}*P{N(O, D =x}

as t—co, then the minimal process { X .} corresponding to aQ, for a>0,
satisfies

F {(‘ (S =r(/) ds) <x/is(«Q, f)}ﬂP{N(o, Hsx}

and s*(aQ, f)=s*Q, f)/o. (4.1)
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Proof Since {X,} is the minimal process corresponding to Q, it
follows that it may be constructed via a discrete time Markov chain
{Y,} that determines the sequence of states visited by X,, with the
holding time in the kth state visited given by an exponential random
variable with parameter g(Y,)(q(i)= —Q;;). On the other hand, the
minimal process X, associated with aQ has the same embedded
discrete time chain {Y,}, but with holding times determined by
exponential random variables with parameters og(Y,). Hence, one
can represent X, via X,=X,,, so that

at

<£ (S(X5) =) dS)/t“zfx“z:(bf (f (X =1(1) d5>/t”2a“2

=/(j () =r() ds> / e,

from which the theorem follows. ||

An application of the result shows that the variance constant
s%(Q, f) for the queue-length process associated with an M/M/1/co
queue with arrival rate a1 and service rate au is proportional to 1/u
(see p. 31 of Hazen and Pritsker (1980)).

Before proceeding to the second conjecture of Hazen and Pritsker,
it is convenient to discuss a second group of formulas for s*(f),
based on the regenerative structure of finite state Markov chains.
The regenerative property dictates that blocking the sample path of
the process according to consecutive entrance times T; into some
fixed state, say i, yields a sequence of independent and identically
distributed random variables. It is to be expected, then, that the
variance constant s*(f) can be evaluated in terms of quantities
expressed over a single regenerative block. In fact, it can be shown
that (see Smith (1955), Theorem 9)

T \2
Sz(f)in<!; (f(X)—mf) dS) /EiTl (4.2)

where E;(-) denotes the expectation conditional on X, =i (a similar
formula holds in discrete time; see Chung (1966), p. 99). Hordijk,
Iglehart, and Schassberger (1976) derive matrix-theoretic expressions
for the numerator and denominator of (4.2). From a historical
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viewpoint, it is interesting to note that there is a third group of
formulas for s*(f), based on the eigenstructure of the transition
matrices; see Romanovsky (1970), p. 241.

Returning now to the second conjecture, consider a capacity one
single server queue with Poisson arrivals and Erlang-p service times,
with inter-arrival and service time means given by 1/ and p/u
respectively. If one is interested in the variance constant associated
with the number of customers in queue, then the method of stages
shows that the constant may be evaluated by considering s*(f) for
the continuous time Markov chain described by the (p+1) by (p+1)
generator

-2 0 0 A
Iz —p 0 0
0=1 0 1 — i 0
0 ... 0 u —u
where f=(0,1,1,...,1) (ie. f is one so long as the customer is in

service). Writing s*(p, u, f) to denote the dependence of s*(f) on p
and u, the conjecture of Hazen and Pritsker was that for x>0,

1
2(p, pp, f) =2 2; (1 ). (43)

Relation (4.3) can be most easily proved by using (4.2). Let
Zo,Zy,...,Z, be independent exponential random variables with
EZy=1/4 and EZ;=1/pu for i= 1. Then,

ET,=E(Zo+ +Z,)=1/A+1/u (4.4)

2

T 2 p
E<£ (f(Xg)—nf) dS> =13,~<—7er0+_;1 Z,-(l—frf)>

_ ZL 2 1 p+1
o -n0 = ()
4.5)
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since 7 f = A/(1+ p). Substituting (4.4) and (4.5) into (4.2), one gets

p+1\ Au
Sz(p,pu,f)< >(H#)3,

verifying (4.3). Incidentally, it is easily shown, using (4.2), that
s*(p,pu, f) tends to the variance constant associated with the
constant service time version of the model as p—oco, as would be
expected.

5. FORMULAS FOR THE SPECTRAL DENSITY

The spectral density of a discrete time Markov chain is defined by

C(l)——- Z e cov, (f(Xo), f(Xy);

for continuous time Markov chains, ¢(4) is given by

1 = .
d(A=5 | eteov, (f(Xo), f(X)) dr.

The spectral density of finite state Markov chains may be computed
via the following theorem.

Tueorem Let {X,} and {X,} satisfy Assumptions (2.1) and (2.10),
respectively. Then, the inverse matrices F(A)=(I1—Q +(e'*— 1)I)~*
and F(2)=(IT1—Q+ill)~" exist for all A, and the spectral densities
&(4) and c(A) are given by (5.1)
2né(A)=f'"TU—TI) f + [ TP(F(— )+ F(A) = TI(e* + e~ %) f (5.2)
2me(A)=f"T(F(—A)+ F(1) —2IT/(1 + A%) f (5.3)

Proof We give the proof in the discrete time aperiodic case, the
proofs in the other cases being similar. Using (3.7), one gets

i) = [ TU=TDf+ Y, (e~ +e™) TP —TD) S (5.4)
k=1
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Now, observe that
3L P T P e ) =P-TT—e (P D, (55)
Also, it is evident that
3l - § Pt <eo

since P*—II geometrically fast, and thus the sum in (5.5) converges
to some limit, say D(1). Taking limits in (5.5) yields

DAY —P+e " )=P—TI

SO
D)+ DT —P+e i )=1

and thus F(—A)=I1—0+ (e *—1)I)"! exists. Postmultiplying
through (5.5) by F(— ) and letting n—co proves that

ki ¢ (P _TT)= (P — TT)F(— ). (5.6)

It is easily verified that TIF(J)=¢'*TI and combination of (5.4) and
(5.6) leads easily to (5.2). ||

Formulas (5.2) and (5.3), together with Theorem 3.3, prove that
2mc(0)=s%(f) (see (1.4)), justifying the use of spectral methods for
finite state Markov chains. Returning to the two state Markov chain
introduced earlier, the computation of &(1) is straightforward, given
that

POl < 1 b a
()_e“‘(b+a——1)+e"2’1 b a

1 (*ﬂ(a+b)b —a >
@ bra-D+eHath)\ b eatbh—a
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The formulas also yield some interesting qualitative information
about the spectrum of finite state Markov chains. Applying Cramer’s
rule to compute the inverse matrix F(1) shows that the elements of
F(J) are always rational polynomials in the indeterminate e'*—in
fact, the polynomials describing the numerator and denominator
must be of degree less than or equal to m. Consequently, the
spectrum of a stationary discrete time finite state Markov chain
corresponds to that of a finite order autoregressive moving average
process.

References

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

Chung, K. L. (1966). Markov Chains with Stationary Transition Probabilities. Springer-
Verlag, New York.

Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs.

Feller, W. (1971). An Introduction to Probability Theory and its Applications, Volume
2. Wiley, New York.

Fishman, G. 8. (1978). Principles of Discrete Event Simulation. Wiley, New York.

Grassman, W. K. (1982). Initial bias and estimation error in discrete event simulation.
Proc. of 1982 Winter Simulation Conference, 376-384.

Hazen, G. B. and Pritsker, A. A. B. (1980). Formulas for the variance of the sample
mean in finite state Markov processes. J. Statist. Comp. and Simulation 12, 25-40.

Heidelberger, P. and Welch, P. D. (1981a). A spectral method for simulation
confidence interval generation and run length control. Comm. A.C.M. 24, 233-
245.

Heidelberger, P. and Welch, P. D. (1981b). Adaptive spectral methods for simulation
output analysis. IBM J. Res. Dev. 25, 860-876.

Heyman, D. P. and Sobel, M. J. (1982). Stochastic Models in Operations Research,
Volume 1. McGraw-Hill, New York.

Hordijk, A., Iglehart, D. L., and Schassberger, R. (1976). Discrete time methods for
simulating continuous time Markov chains. Adv. Appl. Prob. 8, 772-788.

Kemeny, J. G. and Snell, J. L. (1960). Finite Markov Chains. Van Nostrand, Princeton.

Law, A. M. and Kelton, W. D. (1982). Simulation Modeling and Analysis. McGraw-
Hill, New York.

Romanovsky, V. L. (1970). Discrete Markov Chains. Wolters-Noordhoff, Groningen.

Schruben, L. W. (1982). Detecting initialization bias in simulation output. Operations
Research 30, 569-590.

Smith, W. L. (1955). Regenerative stochastic processes. Proc. Roy. Soc. A232, 6-31.

Wilson, J. R. and Pritsker, A. A. B. (1978). A survey of research on the simulation
startup problem. Simulation 31, 55-58.

J. Statist. Comput. Simul., 1984, Vol. 19, pp. 113-127
0094-9655/84/1902-0113 $18.50/0

© Gordon and Breach Science Publishers Inc., 1984
Printed in Great Britain

A Monte Carlo Investigation
into the Properties of a
Proposed Robust One-Sample
Test of Location

BERCEDIS PETERSON

Department of Biostatistics, University of North Carolina, Chapel Hill, NC
27514

and

DANA QUADE

Department of Biostatistics, University of North Carolina, Chapel Hill, NC
27514

(Received April 7, 1983)

In testing for the median of a symmetric distribution, a preliminary test of normality
is sometimes used to decide whether to use the ¢ test or the Wilcoxon signed-rank
test. This paper examines this proposed procedure by using it upon samples generated
from four different distributions. Alpha levels for the resulting conditional ¢ and
Wilcoxon distributions are compared to unconditional alpha levels. The overall power
of the proposed procedure is compared to the powers of unconditional Wilcoxon and
¢ tests. Results suggest that the proposed procedure preserves desired alpha levels and
has power not significantly different from the power of the better of the two tests.

KEY WORDS: Ttest, Wilcoxon signed-rank test, Kolmogorov-Smirnov test,
kurtosis test, symmetry.

1. INTRODUCTION

It has been suggested that a robust test for the location of the
median of a symmetric distribution can be obtained by incorporating
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