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ABSTRACT 

Let {X(t) : t ) O} be a real-valued stochastic process and set 

a = J; X(t) G(dt), where G is a (non-random) distribution func t ion. I f t h E 

support of G is large, standard Monte carlo technique s for estimating a 

are inefficient, since X must be simulated over the entire support o f G. 

To avoid this difficulty, randomization schemes are derived that require 

simulation of X over random subsets of the support of G. Large-sample 

behavior of randomized estimators is studied in detail. Some variance 

reduction techniques are also presented. 
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SIGNIFICANCE AND EXPLANATION 

Consider a stochastic system for which one needs an estimate of the 

expected discounted cost over the infinite horizon. Standard Monte Carlo 

procedures do not apply since the parameter to be estimated involves values of 

the process over an infinitely long time interval. In this paper, we present 

Monte Carlo estimation techniques, based on randomizat ion, that can be u s ed in 

t h e abov e sett ing. The techniques developed turn out to be more eff ici e nt 

than the standard approach, even when the parameter to be estimated c umulates 

costs over a finite time interval. 

The responsibility for the wording and views expressed in this descriptive 
summary lies with MRC, and not with the author of this report. 



RANDOMIZED ESTIMATORS FOR TIME INTEGRALS 

Peter w. Glynn 

1. Introduction 

Let {X(t): t ) O} be a real-valued stochastic process representing the 

output of a simulation, and consider a time integral of the form 

(1.1) I a J; X(t) G(dt) , 

where G is a (deterministic) non-decreasing function. Our objective, in 

this paper, is to study Monte Carlo techniques for estimating the param ter 

a = EI. 

The time integral (1.1) includes several commonly studied performa nce 

criteria. 

(1 2) Ex I If G(t) = 1 - e-at(a>O), •• amp e. then I corresponds to 

discounting X(t) at rate a over an infinite horizon. Such time int grals 

occur frequently in inventory models. 

(1.3). Example. If G(t) = min(t/T, 1), then I is the average of X(t) 

over the interval [O,T]. Such averages are often of interest, in a queueing 

context. 

(1.4). Example. Let {Y(t): t ) O} be a stochastic process and f(t,y) -. be 

a real-valued performance measure which may depend explicitly on t. By 

setting X(t) = f(t,Y(t», criteria of the form 

I = J~ f(t,Y(t» G(dt) 

can be incorporated as a special case of. (1.1). 

(1.5). Example. Grassman (1982) has recently developed a Monte Carlo 

technique for estimating Ef(Z(t», where Z(t) is a uniformizable Markov 

jump process. The idea is to represent Z(t) as Y(N(t», where N(t) is a 
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Poisson process with rate A (say), and {Y(k) k ) O} is an independent 

discrete-time Markov chain. Thus, 

( 1 .6) 

00 

Ef(Z(t» a I Ef(Y(k»e-At(At)k/kl 

k=O 
• 

Setting X(t) = f(Y( (t]» «(t] = greatest integer less than or equal to t), · 

and G(dt) = Poisson measure, we see that the representation (1.6) is a 

special case of (1.1). 

In Section 2, we shall briefly discuss the direct method for estimating 

ai this involves generation of independent variates 1 1, 1 2"", each having 

the distribution of I. The parameter a is then estimated by I(n), where 

I(n) 

The difficulty with the direct method is that if T = sup{t : G(t) < G(oo)} 

(G(oo) = lim G(t» is large, then generation of variates is expensive. Thus, 
t+oo 

in Section 3, a general framework for randomized estimation of a = EI is 

presented. 

(1.7). Definition. R(n) is a randomized I(n) estimator if there exists a 

a-field G such that 

E{i(n) I G} = I(n) 

The definition of conditional expectation implies that ER(n) = EI(n) = 

a, justifying the description of R(n) as an. I(n) - estimator. Some 

authors refer to methods based on randomized estimation as conditional Monte 

Carlo procedures (see, for example, Rubinstein (1981), p. 141). However, we 

prefer to reserve the term "conditional Monte Carlo" for the "converse" to a 

randomized estimator. 

(1.8). Definition. I(n) is a conditional Monte carlo R(n) - estimator if 

and only if R(n) is a randomized I(n) - estimator. 
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The definition (1.8) of the term "conditional Monte carlo" is consistent 

with its usage in several recent books; see, for example, Bratley, Fox, and 

Schrage (1983) or Law and Kelton (1982). The following proposition is "a well-

known property of conditional expectation (Burrill (1972), p. 392). 

(1.9). Proposition. Suppose that EIR(n)1 < - and that R(n) is a 

randomized l(n) - estimator. Then, 

var(R(n» ) var(l(n» • 

Proposition 1.9 states that a randomi zed len) - estimator has larger mea n 

square error (MSE) t h a n fen). For this reason, the conditional Monte Carlo 

estimator len) is to be preferred in the case that generating R(n) 

requires the same effort as simulating fen). However, it turns out that in 

our time integral setting, the time required to generate a randomized l(n)-

estimator will often be smaller than that required to simulate l(n); this 

property can offset the MSE advantage of len). This is the theme of Sections 

3 through 6. After developing a general framework for randomized estimation 

in Section 3, three specific randomized estimation algorithms are studied in 

Section 4 through 6. 

2. The Direct Method 

Development of estimation theory for the parameter a requires some 

assumptions on the simulation. Let (O,F,p) be the probability space which 

supports our simulation. We assume that: 

Al. there exists a family of processes {(Xk,Sk): k ) l} such that 

+ 
~ : R x 0 + Rand 

+ + 
Sk:R xO+R, where 

+ R = [0,-) 

A2. the processes ~(.,w) possess left limits and are right continuous, 

for each w £ 0 
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A3. the processes Sk(·'W) are non-decreasing and right continuous for 

each W £ 0; also P{Sk(t) > O} > 0 for t > 0 

A4. ((Xk,Sk): k ) 1} is a sequence of independent and identically 

distributed (i.i.d.) random elements 

AS. G: R + [0,1] is a non-decreasing right continuous function such 

that G(O-) = 0, G(O) < 1, and G(~) = 1 (G(x-) = 

su p { G ( t ) : t < x}). 

A6. J~ E!X
k 

(t)! G(dt) < ~ 

Assumption A2 guarantees that Xk is product measurable (see Dellacher ie 

and Meyer (1978), p. 89). Fubini's theorem applied to A6 therefore asserts 

that if 

G(dt) < ~ 

then Ik is F-measurable (i.e. a random variable) and satisfies 

CD 

~ = J 0 ~ (t) G(dt) a.s. 

The goal is to estimate a ~ Elk. The process ~(t) will be interpreted as 

the amount of "effort" required to simulate x (.) 
k 

up to time t. 

j ) O} is a Markov chain and Nk(t) is a Poisson process. Assuming 

that' the simulation effort is measured by the number of random variables 

and ~ (t) + 1 for the exponential variates) ' • . 

n 

Let I( n) 2 Ik/n with I(O) = 0; I(n) will be referred to as the 
k=1 

direct estimator of a. Set T = sup{t : G(t) < 1} and put N(t) = 

max{k : S1(T) + .•• + Sk(T) ( t}; N(t) is the number of I 's k generated by 

t units of effort. Then, I(t) ~ I(N(t» is an estimator for a, which can 

be constructed from t units of effort. 
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(2.2). Theorem. Assume A1 - A6. Then, I(t) + a a.s. as t + ~ if 

Proof. The strong law of large numbers guarantees that I(n) + a a.s. By AJ 

and A5, P{Sk(T) > o} > 0 so N(t) < ~ a.s. for all t. Furthermore, the 

assumption P{Sk(T) =~} = 0 assures that N(t) + - a.s. (see ~inlar 

(1975), p. 290), from which the result follows. II 

It is worth observing that if P{Sk(T) ~ -} > 0, then I(t) does not, 

in general, converge to a (see Example 1.2). We will also be interested in 

rates of convergence for our estimators. For such results, we require a 

further moment assumption. 

A7. 0 2 = E(I
k 

- a)2 < ~ • 

(2.3). Theorem. Assume A1 - A7. If P{Sk(T) < ~} = 1, then 

(2.4) lim a(t) • II(t) - al = a(ESk(T»~ a.s. 
t~ 

where a(t) ~ (t/2 log log t)% and o.~ ~ o. 

Proof. The Hartman-Wintner form of the law of the iterated logarithm implies 

that 

(2.5) lim a(n)II(n) - al = a a.s. 
n~ 

Since N(t) + "" a.s., (2.5) yields 

But N(t)/t + 1/ESk (T) 

(2.7) 

lim a(N(t»II(t) - al = a a.s. 
t-

a.s. (see [6], p. 290), which in 

a(N( t) )/a( t) + 
. 1; 

1/(ES
k 

(T» 2 a.s. 

turn implies that 

Relation (2.4) follows immediately from (2.6) and (2.7). I I 

Confidence intervals for a can also be constructed from the direct 

estimator I(t). The key tool is a central limit theorem (CLT), which is 

valid under slightly stronger assumptions than Theorem 2.3. 

(2.8). Theorem. Assume A1 - A7. If ESk(T) < "", then 
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(2.9) 

as t +~, where N(O,1) is a mean zero unit variance r.v. and ==> denote~ 

weak convergence. 

Proof. From the CLT for i.i.d.r.v.'s, 

1f2 -
n (I(n) - a) ==> a N(O,1) 

as n +~. Let tk be an arbitrary sequence converging to infinity. Since 

N(~)/~ + 1/E~(T) a.s., one can apply Theorem 7.3.2 of Chung (1974) to 

conclude that 

as k +~. The converging-together lemma (Billingsley (1968), p. 25) then 

yields 

tk1f2 (I(t
k

) - a) ==> a(ES
k

(T»1/2N (O,1) 

as k +~. Since {tk } was arbitrary, we obtain (2.9) ([2], p. 16). II 

If solves P{N(O,1) < zo} = 1 - 0/2, Theorem 2.8 proves that the 

random interval 

is an approximate 100(1-0)% confidence for a, where vet) is a con

sistent estimator for a
2

ES
k

(T). 

Before concluding this section, we consider a special case of Example 

1.4. Suppose that the process yet) considered there is a stationary process 

on state space S. Then, 

(2.10) a = EI ' = l~ Ef(t,Y(t) )G(dt) 

= l~ ls f(t,y)P{Y(t) E dy} G(dt) 

= ls l~ f(t,y) G(dt)w(dy) 

where w(o) = p{Y(O) EO}. In general, if the process yet) can be 
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simulated, then the distribution W is known explicitly so that a can be 

calculated analytically from (2.10). Thus, the interest in Monte Carlo 

estimation of a occurs when y(e) is non-stationary. In the simulation 

literature, such non-stationary estimation problems are referred to as 

transient simulations. 

3. A General Framework for Randomized Estimation of Time Integrals. 

In this section, we assume that: 

AS. there exists a sequence of processes (Hk 

~ : R x n + R+ and which satisfy: 

k ) 1} such that 

i.) Hk ( e ,(0) is non-decreasing and right continuous, for each 00 

i1.) (~ : k ) 1} is a sequence of i.i.d. random elements, which 

independent of the collection {(X
k 

,5
k

) : k ) 1} 

iii. ) EHk(t) = G(t) for all t e: R. 

(3.1). Lemma. Under AS and AS, Hk(O-) = 0 a.s. and E~(~) = 1. 

e: n 

is 

Proof. For t < 0, Hk(t) is non-negative and satisfies EHk(t) = Gk(t) = 0, 

so that Hk(t) = 0 a.s., proving that Hk(O-) = 0 a.s. For the finiteness of, 

EHk(~)' observe that Hk(n) increases to ~(~). Hence, by monotone 

convergence, 

E~(~) = lim E~(n) = , lim G(n) = 1 " n+<D n~ 

Our randomized fen) - estimator will ' be based on 

(3.2) {
J~ 

~(W) = 00 

X (t,W)H (dt,w); 00 t A 
k k k 

00 e: ~ 

where Ak = (J~I~(t)I~(dt) = CD}. Observe that for each 00, ~(w) is well-

defined by formula (3.2), since ~ is product measurable, and Hk satisfies 

AS i.). Several later arguments will require the following approximation 
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result. Let 

~ (t) = min{~ (t) ,m} 

(3.3). Proposition. Assume A1 - A6, A8, and suppose that Xk is non-

negative. Then 

(3.4) lim lim J~ X~m(t)Hk(dt) 
m+<» n+<» 

Proof. First, it is easily seen that ~m(·'w) is right continuous. The 

right continuity of Xkm implies that 

lim X~(t) = Xkm(t) 
n+<» 

for all t) o. Now, H (00) < 00 a.s., 
k 

so that we can apply a.s. 

bounded convergence theorem to conclude that 

a.s. 

the 

Now, apply the monotone convergence theorem to co~plete the proof. I I 

Since the integrals on the left-hand side of (3.4) are discrete sums, it 

is clear the the right-hand side of (3.4) is a r.v. and that ~ e F. Observe 

now that if XkCt) is right continuous with left limits, then the same 

property holds for 

= ( ~(t); ~(t) ) 0 

o ; else 

Thus, by splitting Xk into its positive and negative parts, and using (3.4), 

we see that ~ is a r.v. 
n 

We will use Proposition 3.3 to prove that R(n) = L ~/n is a 
k=1 

randomized I ·(n) - estimator. Let G = a(X . 
J 

j ) 1) (the a-field generated 
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by the Xj's). 

(3.5). Theorem. Assume A1 - A6 and AB. Then E{~ I G} = I k • 

Proof. Let f: RP + R be a non-negative bounded continuous function with 

compact support. Fix an arbitrary selection of time indices t 1, ••• ,tp ' and 

non-negative. Then, 

( 3.6) E{f(Xn ) JCD
O 

Xn (t)H (dt)} 
km km k 

= L 
j=O 

= E{f(X~) J~ X~(t)G(dt)} 

where the second equality follows from independence of Xk and Hk • Since 

Xkm is right continuous, f(X~) + f(Xkm ) as n + CD by continuity of f, 

so that Proposition 3.3 implies that 

(3.7) 

-Now, ~m is bounded by m and ~(CD) is integrable (Lemma 3.1) so 

evidently the left-hand side of (3.7) is dominated by an integrable r.v. 

Hence, one can apply dominated convergence to (3.6), yielding 

(3.8) 

Since f has compact support, f(Xkm) = f(XkM ) for all m greater than 

some M. Then, the non-negativity of f implies that the r.v.'s on both 
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sides of (3.8) are increasing in m, for m > M. Hence, monotone convergence 

can be applied to (3.8), yielding 

By appealing to the montone class theorem ([7], p.14) and using the fact that 

the functions f(Xk ) generate O(X
k

), one obtains 

for all bounded Z £ O(Xk ). Hence, by definition of conditional expectation, 

P(Ak ) = 0 for k) 1. Thus, 

so that E{~ I Xk } = Ik a.s. Since ~ £ O(Xk,Hk ), ~ is independent of 

o(X . : j ~ k) and hence ([6], p. 308) 
J 

E{~ I G} = E{~ I ~} = ~ a.s. , 

completing the proof of the theorem in the case that Xk ) O. For the general 

situation, split Xk into its positive and negative parts, repeat the above 

argument, and recombine using the fact that P(Ak ) = O. I I 

(3.9). Corollary. Under A1 - A6 and A8, ERk = a. 

We wish 'to prove limit theorems in terms of the parameter t, where t 

corresponds to an index of effort. In the applications we will be considering 

in Sections 4 through 6, the effort required to generate Hk will be 

-10-



- "':> ,/ 

negligible compared to the effort necessary to simulate I k • 

is the effort required to generate Rk , where T = sup{t 
k 

Then, ~ (T k ) 

~(t) < ~(CD)}. 

Note that Tk and Sk(Tk ) are F-measurab1e, due to right continuity of Hk 

and ~. 

(3.10). Proposition. Assume A1 - A6 and AB. Then 

(3.11) 

where F(t) = P{T
k 

... t}(E{~(Tk)~ A} ~ E~ (Tk )IA, where IA (Ill) is 1 or 

0 depending on whether or not III e: A) • 

Proof. Let Skm(t) = min{sk (t) ,m} and set n 2-n(~1) Tk = on 

{J' < 2n T / j+1} Th k " • en, 

(3.12) 

CD 

1 n 2-n j ... 2-n (j+1)} = E{skrn(T k ); < Tk 
j=O 

CD 

= 1 ES (2-n(j+1»p{2~nj < Tk ... 2-
n

(j+1)} 
j=O 

km 

where the second inequality is due to independence of Sk and Tk • Applying 

bounded convergence and then monotone convergence to (3.12) yields (3.11). II 

Let M(t) = max{k : S 1 (T 1 ) + ••• + Sk(Tk ) ... t}; then M(t) is the number 

of R • s k generated with effort t. The next lemma shows that M(t) is no 

smaller than the number of I • s k generated. 

(3.13). Lemma. Assume A1 - A6 and AB. Then M(t) ) N(t) a.s. for t ) O. 

Proof. We need to show Sk(Tk )'" ~(T) a.s.~ this inequality is trivial 'if 

T = CD. By monotone convergence, 

E{~(CD) - ~(T)} = lim E{~(T+n) - Hk(T)} = lim G(T+n) - G(T) = 0 
n+CD n+CD 

The non-negativity of ~( .. ) - ~(T) implies that ~( .. ) = ~(T) a.s., 

proving that Tk '" T. I I 

-11-



Let R(t) ~ R(M(t»i R(t) is a randomized estimator constructable from 

t units of effort. 

(3.14). Theorem. Assume A1 - A6 and A8. If P{Tk < ~} 

R(t) + a a.s. as t + ~. 

Proof. Since EH (~) = 
k a.s. (Lennna 3.1), 

1, then 

so that 

P{T
k 

> O} > O. Hence, P{Sk (Tk ) > O} > 0 by Proposition 3.10 and A3. This', 

in turn, implies that M(t) < ~ a.s. The fact that Tk < ~ a.s . forces 

Sk(T
k

) to be finite a.s. (see A1), which assures that M(t) + ~ a.s. as 

t +~. The theorem then follows from t he strong law for ~(n) and Corollary 

3. II 

To obtain analogs of Theorems 2.3 and 2.8, we need to analyze 

2 
E(~ - a). Our expression will involve the function K(s,t), where K(s,t) 

A9. E~(t) < ~ for + t e: R 

(3.15) • . Lennna. Under A8 - A9, K(s,t) is the distribution function of a 

a-finite measure on ~. 

Proof. Note that 

for s < t. Hence, K(s,t) < K(t,t) < ~ so K(s,t) is real-valued. Let sn' 

tn decrease to s, t respectively. Since H(sk)H(tk ) < H(s1)H(t 1 ), the 

finiteness of K(s1'~1) allows application of dominated convergence to prove 

that K(s ,t ) + K(s,t)i K 
n n 

so that 

is therefore continuous from above. Also, for 

The lennna then follows from Theorem 12.5 of Billingsley (1979). I I 
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Al0. l~ l~ EIXk(s)Xk(t)1 K(ds,dt) <-

(3.16). Theorem. Under Al - A6 and A8 - Al0, 

(3.17) 2 --ERk = Jo 10 EXk(s)Xk(t) K(ds,dt) < -

Proof. For ~ non-negative, observe that for any integer T, 

(3.18) 

2~ 2 nT 

1 1 n -n n -n 
=< E{X

km
(j2 )X

km
(12 )AH

k
(j,1,n)} 

j=O 1 =0 

2~ 2
n

T 
= 1 1 EXn ( ' 2 -n)Xn (12 -n)6K( ' 1 ) 

j=O 1=0 
km J km J, ,n 

= lTo JT
O 

n n EXkm(S)Xkm(t)K(ds,dt) 

where 

Letting n, m, and T tend to infinity in (3.18) (in that order), bounded and 

monotone convergence proves (3 . 17) for Xk non-negative. For Xk of mixed 

- sign, split Xk into its positive and negative parts and recombine 

using A 10. I I 

Let 0; = l~ l~ E~(s)X~(t)K(ds,dt) - a
2 

= E(~-a)2 and set s(t) = 

E~(t). The proof of the following theorem is identical to those of Theorems 2. 

and 2.8. 

(3.19) •. Theorem. Assume Al - A6 and A8 - Al0. If P{Sk(Tk ) < -} = 1, then 

(3.20) lim a(t) • IR(t) - al 
t+<» 

2 - 1.1 
= (OR 1; s(t)F(dt) )/2 a.s. 
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where If, in addition, then 

(3.21) 
~ ~ ~ 

t 2 (R(t) - a) ==> C1R<J ° s(t)F(dt» N(O,1) 

as t + ~. 

On the basis of the CLT (3.21), it is natural to interpret 

the asymptotic variance of the estimator R(t). 

In addition to the estimator R(t), one can construct a second estimator 
n 

based on the framework described thus far. Let hen) = 

__ {R(n)/h(n); hen) > 0 
R(n) 

o ; hen) = 0 • 

I Hk(~)/n 
k=1 

and set 

as 

The estimator R(n) is merely R(n) normalized by the random total mass of the 

first n Hk's; we therefore refer to R(n) as a normalized randomized 

I(n) - estimator, and set R(t) = R(M(t». 

The following result has an identical proof to that of Theorem 3.14 (recall 

that by Lemma 3.1 so that hen) + 1 a.s.). 

(3.22). Theorem. Assume A1 - A6 and AS. If P{Tk < ~} = 1, then 
A 

R(t) + a a.s. as t + ~. 

An analog to Theorem 3.19 is also available, under a certain moment 

condition. 

where ~(s) = ~(s) - a 

(3.23). Theorem. Assume Al - A6, AS, A9, and All. If P{Sk(Tk ) <~} =', then 

... 2 J' ~O s ( t) F ( dt) )' L. (3.24) lim aCt) • IR(t) - al =(C1
R 

IL, a.s. 
t-+<» 

addition, ESk(Tk ) <~, then 

(3.25) t 1;2 (;(t) - a) ==) ;R<J~ S(t)F(dt»'/2 N (O,1) 
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as t + .... 

Proof. Note that if Xk(t) satisfies Al - A7, then Xk(t) also does. Under 

All, one can therefore apply Theorem 3.19 to the process X
k 

to obtain the 

relation 

(3.26) 
1 

lim aCt) • 
M(t) t+c» 

But observe that 

= h(M(t»(R(t) - a) 

Since heMet»~ + 1 a.s. as t + ... , (3.24) follows from (3.26). A similar prooj 

is valid for (3.25). I I 

We wish to emphasize that Al0 and A11 are not equivalent moment 

hypotheses. Consider a case in which Xk(t) = 1 for 0 ( t (1 and vanishes 

elsewhere, with 0 < G(l) < 1. Then, A10 is always satisfied but A11 is valid 

only if K("', ... ) < .... On the other hand, suppose that Xk(t) = 1 for t ) O. 

Then, All always holds but A 10 is valid only if K("', ... ) < .... 

As in the case of R( t), relation (3.25) . suggests that 
"2 
OR ESk(Tk)/t may 

be interpreted as the asymptotic variance of the estimator R(t). The goal, in 

.Sections 4 through 6, will be to determine randomization schemes that make 

as small as possible. 

"2 
o are available. The lower bound 

R 

O! ) 0
2 

can be obtained from Proposition 1.9, under A1 - AB. Theorem 3.5 

asserts that 
oro A 

E{) 0 ~ (t)H
k 

(dt) I G} = 

from which it follows, by Proposition 1.9, that 

I - a 
k 
"2 2 o ) a 

R 
Note that the lower 

bounds are attained for Hk = G a.s. Upper bounds are also available, under 

certain conditions. 
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(3.27). Proposition. Assume A1 - A6 and A8. Then, if EH~(~) < ~, 

(3.28) a~ ( J~ F.X~(t)G(dt) • EH~(~) - a
2 

(3.29) 

The upper bounds are attained. 

Proof. By Cauchy-Schwartz, 

Replicating the approximation argument of Theorem 3.16 proves that 

(3.30) 

Let f be a bounded continuous function with compact support. Then, the 

definition of K implies that 

L 
j=O 

-n -n -n 
f(j2 )(K(j2 ,~) - K«j-1)2 ,~)} 

= E{ 1 
j=O 

Letting n + ~, we obtain 

(3.31) 

The monotone class theorem extends (3.31) to include all bounded Borel 

measurable f. But, by Cauchy-Schwartz, 

( J
A 

G(dt) • EH~(~) 

so that we may conclude that K(dt,~) (G(dt)EH~(~). Applying this inequality 
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(3.30) yields (3.28). Inequality (3.29) is obtained by letting Xk(t) play the 

role of ~(t) in (3.28). 

The upper bounds are attained by taking Hk(t) = 0 for t < Mk and 1 fo~ 

t > M
k

, where {~l is an i.i.d. sequence of r.v.'s having common 

distribution G. II 

The inequalities (3.28) and (3.29) may be easily adapted to provide bounds 

on the moments entering hypotheses A10 and A11, respectively. 

(3.32). Proposition. Assume A1 - AS and A8. Then, A6 - A7 and A9 - A11 are 

satisfied if EH;(-) < - and J~ EX;<t)G(dt) < -. 

Proof. First, observe that EIXk(t)1 < EX;<t) so A6 is satisfied. Al so , 

Ea;(-) < - implies that K(-,-) = E~(-) < -, yielding A9. As for A10, the 

argument of Proposition 3.27 is easily adapted to show that 

(3.33) 

'"' 
For A11, substitute X for X in (3.33), and observe that 

- '"'2 - 2 2 1n EXk(t)G(dt) = 10 EXk(t)G(dt) - a 

As for A 7, 
2 2 

a is a lower bound on aRe I I 

We turn now to a variance reduction technique that is sometimes applicable 

to the randomized estimators developed above. Let 0 = 

to < t1 < ••• <tt-1 < tt = - and set 

Qi (e) = p{~ € e I t i - 1 ( Tk < til 

for i = 1, ••• ,.t. SUppose that one can generate independent deviates from the 

measures Q1, ••• ,Q.t (see Sections Sand 6 for examples) and that Pi ~ 

P{t
i

-
1 

< Tk < til is known, for 1 < i < t. These assumptions will allow us to 

stratify our sampling scheme. 

Le~ {m
k

: k ) 1} be a sequence of integers taking values in 

{1, ••• ,.t}~ the 

Fi
S 

generates k 

m 's k define a sampling order for the 

(independently of the and sets 

-17-
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If W. = {j ( n 
n~ 

mj = 1} (1 ( i (1), and kni is the cardinality of 

one sets 

Let T~ = {t : H~(t) 

max{n : S1(T~) + ••• + 

1 -s 1 L 
s 

R (n) = Pi R./k . 
i=1 j£w

ni 
J n~ 

1 
i?(n) = L Pi 1 H~("'")/k 

i=1 j£W
ni 

J ni 

< H=(",")}, and set 

S (Ts ) (t}; NS(t) 
n n is the number of ~·s 

t units of effort. We wish to study the stratified estimators 

-s s 
RS ( t) = R (N (t» 

A12. ~i/n + c i > 0 as n + "'", for 1 ( i ( 1. 

Let d i = E{Sk(Tk ) I t i - 1 
( 

2 
t. 1 ( Tk < t.} ), 
~- 1 

generated in 

t. 1 ( Tk < t
i

}2). 
1-

The following theorem is a stratified analog of the 

CLT's (3.21) and (3.25). 

(3.32). Theorem. Assume A1 - A6 and A8 - A12. If ESk(Tk ) < "'", then 

(3.33) 

(3.34) 

as t + ... , where 

~ 2 -2 . 
L p~ o./c .• 

... ~ 1 
i=1 

~ _ _ 1 · ~ 

t 2 (Rs(t) - a) => 0RS( 1 . c. d. ) 2 N(O, 1) 
. 1 1 1 

and 

1= 

2 
°RS = 

-18-



guarantee the fin i teness of 

Assumptions A10 and A11, together with ESk(Tk ) 
.t 
L c. d .• 

i=1 ~ ~ 

< CD, clearly Proof. 

2 ""2 
GRS , GRS ' and Under A12, 

n .t 1. 

L 
s 1 ( L S.(T~)/k .) (k . In) L ( 3.35 ) Sk(Tk)/n = • + cidi a.s. 

k=1 i=1 jEw . 
] ] n~ n~ 

i=1 
n~ 

as n + CD. But 

(3.36) 

S 
N (t) 

L 
k=1 

N
S
(t)+1 

Sk(T=)/NS(t) < t/NS(t) < L 
k=1 

on However, as in the proof of Theorem 2.2, it is easily argued 

that NS(t) < CD a.s. and NS(t) + CD a.s. as t + CD. Using this fact in 

(3.36), (3.35) implies that t/Ns(t) is "squeezed" between two terms converg-

1. 
ing to L cidi • Hence, 

i=1 

(3.37) 
I. 

NS(t)/t + ( 1 
i=1 

)
-1 

c. d. a.s. 
~ ~ 

The central limit theorem and the converging-together lemma ([2], p. 25) imply 

that 

(3.38) 

as n + CD. 

(3.39) 

n% ('" s S) 1/2 L R . - ER. /k . ==> ~Gi/ci )N(O,1) 
J ] n~ 

jEw . 
n~ 

Since the r.v.· s L 
jEw . 

n~ 

are independent, 

1. 

( L 
i=1 

2 2 )1fi p.G./c. N(O,1) 
~ ~ ~ 

as n + CD. Arguing as in Theorem 2.8, we see that (3.39) and (3.37) together 

yield (3.33); a similar proof works for (3.34). II 

We now turn to the ques t ion of determining the 

A13. 

(3.40). 

2""2 
p . G. G. > 0 
~ ~ ~ 

Proposit ion. 

, 1 < i < 1. 

Under A13, the minimum of 
1. 

g(~) & G2 (L c.d.) 
RS . 1 ~ ~ 

~= 

-19-
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{~ c, > O} is 
1. 

(3.41) 

.1 % 2 
(L Pia,d, ) and is achieved at 

1. 1. 
i=1 

= 
1/2 

c, a p , a./d
i -1. - 1. 1. 

.1 % a = L p,a./d, - 1. 1. 1. 
i=1 

c, d,) 
1. 1. 

over Similarly, the minimum of 

( ~ "2 112 )2 
f. p,a,d, 

i=1 1. 1. 1. 

(3.42) 

and is achieved at 

.... ... 1/2 
c, = ap,a./d, 

1. 1. 1. 1. 

a = 
.1 ., 1; 
L p , a

i
/d,2 

i=1 1. 1. 

{~ c, > o} 
1. is 

The proof involves a simple application of Lagrange multipliers; see Theorem 

3 of Glynn (1983) for a similar argument. We shall now show that stratification 

always provides a variance reduction. 

(3.43). Proposition. Assume A1 - A6, A8 - A12, and ESk(Tk ) <~. Then, 

(3.44) ( ~ % )2 2 f. p,a,d, < a R ESk(T
k

) 
'11.1.1. 1.= 

(3.45) 

Proof. By Cauchy-Schwartz 

.1 ~ 2 
.1 2 .1 

( L p,a, d, ) < ( L p,a,)( L Pi d ) 
i=1 

1. 1. 1. i=1 1. 1. i=1 

(3.46) 
.1 

Pia~)ESk(Tk) = ( L 
i=1 

-20-



Using Cauchy-Schwartz again yields 

.t 2 2 .t 2 2 
(3.47) 1 Piai = ER - 1 Pi(E{Rk ; t

i
_

1 < Tk < til /Pi) 
i=1 k i=1 

2 .t 2 ) ER - ( 1 PiE{Rki t
i

_ 1 < Tk < ti}/Pi) k i=1 

, 

proving (3.44); (3.45) is proved similarly. I I 

Utilization of the constants specified by (3.41) and (3.42) 

.... 
requires a "trial run", in order to obtain estimates for ai' ai' and d i • If 

one wishes to dispense with a "trial run" and is willing to accept a sub-optimal 

choice of the consider using ci = Pi. Observe that if then 

2 .t .t 2 t 
a

RS
( 1 C

i 
d

i
) = ( 1 Pi aiH L Pidi) 

i=1 i=1 i=1 

< a2 
• ESk(Tk ) ; 

R 

the inequality derives from (3.46) and (3.47)~ Hence, the suboptimal choice c i 

= Pi yields a variance reduction over a nonstratified sampling plan. 

One final remark is in order. Suppose that there exists T such that G(t) 

= 0 for t < T and 1 for t) T. Then, an argument similar to that used in 

Lemma 3.13 proves that Hk = G a.s., in which case ~ = Ik a.s. Hence, our 

randomized framework yields no new estimators when I = EX(T) for some non-

random T. 
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4. Poisson Process Randomization 

In this section, we consider a class of randomized time integral estimators 

for which the Hk's previously defined are non-homogeneous Poisson processes. 

Specifically, we shall assume that 

(4.1) 

for some A > 0, where {Nk : k > 1} is a sequence of i.i.d. Poisson processes 

for which ~(t) = t; of course, the family {Nk k ) 1} is assumed to be 

independent of {(Xk,Sk): k ) 1} satisfying Al - AS. The following proposition 

is an immediate consequence of standard properties of the Poisson process. 

(4.2). Proposition. The sequence {Hk : k ) 1}, as defined through (4.1), 

satisfies A8 and A9. Furthermore, E~(~) < ~ for n) 1. 

Calculation of the distribution K is easy. 

(4.3). Proposition. For 0 ( s ( t, 

K(S,t) 
1 = r G(s) + G(s)G(t) 

Proof. The independent increments property of the Poisson process implies that 

for s (t, 

K(s,t) = ~ E(N(AG(S»N(AG(t» 
A 

= ~ E(N(AG(S»(N(AG(S» + N(AG(t) - N(AG(S»} 
A 

= 1 EN
2

(AG(S» + ~ (AG(S)(AG(t) - AG(S» 
A2 A 

1 = I G(s} + G(s}G(t).11 

Theorems 3.19 and 3.23 require moment hypotheses on the process Xk. 

Bl. J~ EX~(t)G(dt) < ~ 

Propositions 3.32 and 4.2 prove that B1 is sufficient to guarantee A6 - A7 and 

A10 - All. 

(4.4). Theorem. Under A1 - AS and Bl, 

-22-



(4.5) 

(4.6) 

Proof. Note that 

2 . 2 1 - 2 
C7R :a C7 + r 10 EXk(t)G(dt) 

_ co A ... 

- 10 Jo E~(S)~(t)G(ds)G(dt) 

2 
- a 

2 
- a 

Hence, the result follows from Proposition 4.3 and the fact that the 

distribution K1 (s,t):a G(min(s,t» induces a measure on a2 which has support 

on the diagonal s = t. I I 
.. 

Theorem 4.4 suggests that the normalized estimator R(t) has better large 

sample properties than R(t); consequently, we shall consider only 

" 
R(t) for the remainder of this section. We shall now calculate F. 

(4.7). Proposition. The distribution F(x) = P{T
k 

(x} is given by 

F(x) = exp(-~(1 - G(x») 

Proof. Evidently, 

(4.8) Tk = sup{t 'it(t) < 'it(-)} 

= inf{t 'it (t) ) Hk (CD)} 

= inf!t Nk(~G(t» ) Nk(~)} 

= inf{t G(t) ) Tk(Nk(~) )/~} 

where Tk(j) = inf{t : ~(t) ) j}. Let A(t) = p{t - Tk(Nk(t» > u}. Then 

A(t) solves the renewal equation 

Jt -s 
(4.9) A(t) = a(t) + 0 A(t-s)e ds 

where 

a(t) 
o 
-t 

e 

-23-
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Since the renewal function M(t) = ENk(t) = t is known, (4.9) can be solved 

explicitly (see [6], p. 294): 

(4.10) A(t) - { o 

-u 
e 

t < u 

1 t > u 

Now, (4.8) implies that {Tk < x} = {Tk(Nk(A»/A ) G(x)} so (4.10) yields , 

F(x) = ptA - Tk(Nk(A» ) A(1 - G(x» 

= exp(-A(1 - G(x». I I 

We shall now assume that: 

B2. set) = ESk(t) is strictly increasing. 

(4.11). Proposition. Under B2, 

~ -1 
ESk(T

k
) = J

O 
{1 - exp(-A(1 - G(s (x»»}dx 

The proof is immediate from Propositions 3.10 and 4.5. 

Theorem 4.4 and Proposition 4.11 can be used to optimize the value of A so 

as to minimize the asymptotic variance of R(t). For example, suppose that 

G(t) = tiT for t < T and 1 for t > T, and let set) = t. Then the goal is 

to ' find A* to minimize (see Theorem 3.23) 

2 1 T 
(0 + I S)(J o {1 - exp(-A(1 - x/T»}dx) 

where S = J~ EX;(t)G(dt); differentiation leads to a non-linear equation which 

A* must solve. 

In any case, the inequality exp(-Au») 1 - AU for AU) 0 leads to the 

bound 

Hence, Poisson randomization with intensity A is more efficient than I(n) if 

2 ~ -1 2 
(0 + S IA ) (A J 0 (1 - G ( s ( x) ) ) dx) < 0 s (T ) 
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5. Point Mass Randomization 

Suppose that {(Xk,Sk): k ) 1} is a family of processes satisfying Al -

AS and 

C1. 

Let h be a non-negative function for which: 

C2. {t : h(t) > o} = [y,.), J~ h(t)G(dt) = 1 

C3. J.o 2 I[y,_) (u)/h (u)G(du) < -

The family {~: k ) 1} of point mass randomized estimates will be defined 

through the rule 

(5.1) { 

min{G(t),G(y-)}; t < ~ 

H (t) = 
k G(y-) + 1/h(~); t ) ~ 

where {~: k ) l} is a sequence of i.i.d. r.v.'s, independent of the 

(~,~)'s, having common distribution p{Mk £ dt} = h(t)G(dt). With the 

Hk'S defined through (5.1), 

~ = 1; I[O,y) (u)Xk(u)G(du) + X(~)/h(~) 

(5.2). Proposition. Under C1 - C3, A6 - All hold. 

Proof. First, observe that Hk(t) = G(t) for t < y. For t) y, Cl proves 

that 

E~(t) = G(y-) + E{l/h(Mk); ~ < t} 

= G(y-) + 1;1[y,1:] (u)/h(u) • h(u)G(du) 

= G(t) 

so that . Hk satisfies AS. For A6 - A7 and A9 - All, we apply Proposition 

3.32. It is evident that Hk (-) = G(y-) + 1/h(~) so that it 'suffices to 

prove that E(1/h(M
k
»3 < -. But 
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Eh(~)-3 - J~ I [y,.)CU)hCU)-3 • h(u)G(du) 

which is finite by C3. I I 

It should be clear that the moment assumptions C1 and C3 are considerably 

stronger than is necessary to obtain A10 and A11. 

(5.3). Theorem. Under C1 - C3, 

G(s)G(t) min(s,t) < y 

(5.4) K(s,t) = G(y-)(G(s) + G(t) - G(y-» + J~ I[y,min(s,t)] (u)/h(u)G(du); 

min(s,t) ) Y 

(5.5) 

(5.6) 

( 5.7) 

where 

B1 (Y) = J~ J~ I[O,y)(S)I[O,y) (t)EY(s)Y(t)G(ds)G(dt) 

Proof. Relation (5.7) is immediate from the definition of Hk • For (5.4), 

observe that if s < y ( t, 

If Y ( s (t, then 

-26-



= G(y-)G(t) + J~ Iry,S] (U)E~(U)/h(U)G(dU) 

+ G(y-)(G(s) - G(y-» 

which is (5.4). The expressions for 
"2 
OR are obtained from Theorems 

3.16 and 3.23 by appropriately integrating against K(ds,dt) as defined by 

(5.4), and by using the fact that the integrands are symmetric in (s,t). II 

A cert.ain amount of analytical optimization can be performed in our 

current setting. Specifically, one can determine the function h which 
... 

minimizes the asymptotic variance of R(t) over all point mass estimators in 
... 

which Y = O. Note that if y = 0, the asymptotic variance is v 1(h)/t, 

where 
.. 

= {J~ Ei~(t)/h(t)G(dt)}(J~ s(t)h(t)G(dt» • (5.8) 

attained by 

(5.10) h(t) = a(Ei~(t)/s(t»~, a > 0 

Proof. Observe that 

( J ~ (s ( t ) Ei ~ ( t) )lh G ( d t) ) 2 

= <J~ (Ei~(t)/h(t) · . S(t)h(t»Y2G(dt»2 

< J~ Ei~(t)/h(t)G(dt)" • J~ s(t)h(t)G(dt) 

by the Cauchy-Schwartz inequality. To check that h(t), as defined by 

(5.10), attains the minimum, it is only necessary to observe that h(t) is 

undefined only on a set of zero measure with respect to s(t)G(dt), 

similarly, l/h(t) is undefined on a set of zero measure with respect to 

E~~(t)G(dt). II 
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l "o Hence, if 

(5.11) h(t) 

'"'2 1,1-
(EXk(t)/s(t» 2 G(dt) < .. , the density h defined by 

'"'2 ~.. '"'2 1t2 
= (EXk(t)/s(t» /lo (EXk(t)/s(t» G(dt) 

minimizes the asymptotic variance of R(t) over all point mass estimators 

with y = O. Strictly speaking, (5.11) may not be in the class of randomized 

estimators discussed thus far, since the equality 

'"' 
E{1/h(~); ~ ( t} = G(t) 

may not hold due to the possibility of Ei;(t) vanishing on the support of 

G. If that occurs, set G(t) = IA(t)G(dt)/lA G(dt), where A = 

{t EX;(t) O} • -: > Note that G satisfies A6 and A11 if and only if G does; 

furthermore, 

'"' 
E{ 1/h(~); ~(t} = G(t) 

'"' -Thus, h always gives rise to a randomized estimator if G is allowed to 

play the role of G. 

'"' 
One interesting property of the optimal density h is that (5.11) is 

independent of G, modulo the normalization constant. Furthermore, although 

'"' h(t) can be estimated via a trial run, that may b~ undesirable. In such a 

case, it may be reasonable to assume that Ei;(t) is approximately constant 

and . s(t) linear, leading to the approxim~tely optimal density 

- 1t2 .. - 1t2 
t /lo t G(dt). 

Analytical information about the optimal density h is available also in 

the case that y is positive. The idea is to define the functionals 

J 1(h) = ~~(h)(J~ th(t)G(dt» 

where ~~(h) is given by formula (5.6). We wish to minimize J 1 (h) subject 

to the constraint J 2 (h) 1 over functions h having support [y,"). 
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Necessary conditions for a minimizing h may be obtained using variational 

'" arguments (see Smith [12]). Formal analysis shows that a minimizing h 

should be of the form 

, 

for some constants a and d, when y > o. 

Before concluding this section, we offer an extended version of the point 

mass estimator studied thus far. For a density h having support [y,~) and 

satisfying e3, let {M
ik

: i ) 1, k ) 1} be a family of i.i.d.r.v.'s for 

which P{M
ik 

£ dt} = h(t)G(dt). Set 

(5.12) 

= {min{G(t), G(y-)}; t < Mik 

G(y-) + l/h(M
ik

); t ) Mik 

n 

and let Hk(t) = L 
2 "'2 i=l 

Hik(t)/n. In the presence of el, A6 - All then hold. 

Let oRen), ORen) be the corresponding values of for the current 

randomization scheme. 

(5.13). Proposition. Under the assumptions of the above paragraph, 

(5.14) 
2 2 = o;tn + (n-l)o In 

(5.15 ) 
"'2 2 
o;tn + (n-1)0 In 

where 0
2 "'2 
R' OR are defined by (5.5) and (5.6). 

Proof. Let ~k = J~ ~ (t)Hik (dt) and observe that ~ = Then, 

the exchangeability of {Rik 
i )1} proves that 

E~ = 
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But R1k has the same distribution as the randomized estimator defined 

through (5.1); hence 
2 2 

ER1k = CJ R' To calculate the expectation of the product 

term, note that 

(5.16) 
~} 

; 

the second equality follows from the conditional independence of CJ(~,H1k) 

and CJ(X
k

,H
2k

) given CJ(X
k

) ([6], p. 308); the final equality was actually 

proven during the argument of Theorem 3.5. Relat ion (5.16) yields ER1kR2k = 
... 

which proves (5.14); (5.15) is obtained from (5.14) by substituting X 

for X. II 

The final ingredient in calculating the asymptotic variance of estimators 

based on (5.12) is the value of ESk(T
k

). But Tk = max{M
ik 

: 1 ( i (n}, so 

that 

thus, if s(t) is strictly increasing, 

Je Je n 
ESk(Tk ) = O( 0 I -1 (t)h(t)G(dt» dx 

(s (x),~) 

It should be clear that point mass randomization is amenable to variance 

reduction via stratification. Observe that if 0 = to ( T < t1 < t2 < ••• < 

t = ao, then simulating Mk from the conditional distribution 
n 

t. 
h(u)I[ t )(U)G(du)/J

t
1 

h(u)G(du) and defining Hk via the rule (5.1) 
t. l' . . 1 1- 1 1-

yields a deviate from Qi' 
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6. Integrals with Random Endpoints 

Assume that {(Xk,Sk): k') 1} is a family of processes satisfying A1 -

AS and 

01. )~ E~(t)G(dt) < -

Let L be a probability distribution function satisfying: 

02. L(O-) = 0, sup{t : L(t) < 1} = T 

03. ) "'0 G(du)/L(u-) < 00, where L(t) := 1 - L(t) 

We define {H
k 

k ) 1} by the rule 

) "'0 I [O,tJ(u)G(du)/L(u-); t < Nk 

(6. 1 ) 

where the sequence {N
k

: k ) 1} is a family of i.i.d.r.v.'s, independent of 

the (Xk,Sk)'s, such that p{Nk € dt} = L(dt). With the Hk's defined 

through (6. 1 ) , 

(6.2). Proposition. Under 01 - 03, A6 - A11 hold. 

Proof. It is evident that 

...... 
EHk(t) =)0 )0 I[O,tJ (U)I(t,oo)(s)/L(u-)G(du)L(ds) 

) 00
0 

)"'0 + I[O,s] (U)I[O,tJ (s)/L(u-)G(du)L(ds) 

) "'0 = I[O,t] (u)L(t)/L(u-)G(du) 

+)~ I[O,tJ(U)(L(U-) - L(t»/L(u-)G(du) 

= G(t) 

the second equality is Fubini's theorem, whereas the third uses the fact that 

L(t-) > 0 on [O,T], Hence, Hk satisfies AS. For A6 - A7 and A9 - A11, we 

apply Proposition 3.32 - it will suffice to prove that E~("') <.... But 
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< 

3 
EH ('"') 

k 

1/L(u.-)G(du. ) 
1. ~ 

= (1~ 1/L(u-)G(du»2 < '"' I I 

(6.3). Theorem. Assume 01 - 03. Then, 

(6.4) K(ds,dt) = L(max(s,t)-)/L(s-)L(t-)G(ds)G(dt) 

(6.5) 
2 '"' - 2 OR = 10 a(x

k
1t)/L(t-)G(dt) - a 

(6.6 ) 
... 

1'"'0 a(x
k

1t)/L(t-)G(dt) 

(6.7) 1~ s(t)L(dt) 

where 

a(Y;~) = 2 1~ I(t,,",)(S)EY(S)Y(t)G(ds) + Ey2(t) (G(t) - G(t-» 

Proof. For 0 < S < t, 

... '"' 
K(s,t) = E{l o I[O,N

k
] (U)I[O,S] (u);L(u-)G(du) • 10 I[O,Nk](V)I[O,t](V);L(V-)G(dV)} 

1"'0 J"'o J"'o = I[O,x] (U)I[O,x] (V)I[O,s] (UrI[O,t] (v)/L(u-)L(v-)G(du)G(dv)L(dx) 

proving (6.4). For (6.5), we use the sYmmetry of EXk(s)Xk(t) in (s,t) to 

write 
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- - 2-+ 1010 I{t}(S)EXk(t)/L(t-)G(ds)G(dt) 

... 
proving (6.5);. for (6.6), apply (6.5) to ~. Since L(-) = 1, Tk < - a.s. 

so 

= s(t)F(dt) = 1""0 

= 1; s(t)L(dt) II 

As in Section 5, one can try to analytically optimize the choice of L. 

We shall require several additional assumptions. 

04. set) < - for t) 0 

05. there exists a non-negative function u(t) such that 
... 

a(Xk't)/U(t)G(dt) = s(dt) (by 04 and A3, set) is a finite non-

decreasing function). 
... 

The asymptotic variance associated with R(t), for a fixed L, is given by 
... 
V

2
(L)/t where 

(6.8). Proposition. Under 01 - OS, 

;2(L) ) <1; a(ik't)/~fz (t')G(dt»2 

Proof. Observe that 

... 1f2 2 (1; a(xk;t)/u (t)G(dt» 

by Cauchy-Schwartz. But 
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= J ~ s ( x) L ( dx) 

where the second equality is by Fubini, and the final equality uses 05. I I 

Assumption 05 requires absolute continuity of s(dt) with respect to 

G(dt) on [O,T] and non-negativity of a(Xk 't). The non-negativity of 
.. 

a(Xk1t) clearly arises when ~ has non-negqtive correlations in time. 

However it also holds under other conditions • 
.. 

06. (Xk(t): t ) O} is a stationary process. 

(6.9). Proposition. Suppose 01 and 06 hold for G(t) = 1 - exp(-~t), 

.. 
~ > O. Then a( X

k
1t) is non-negative and decreasing to zero. 

Proof. By stationarity, 

(6.10) 

By 01 °and Cauchy-Schwartz, 

o ~ A -~S 2 ~ A 2 -~s 
E(~ JOIXk(s)le ds) < J O EXk(S) ~e ds < ~ 

Hence, Fubini proves that 

~ .. -~s 2 
o < E<J O Xk(s)~e ds) 

.. 
from which it follows, using (6.10), that a( X

k 1t) is non-negative and 

decreasing to zero. II 
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Assume that G(t) and that set) = st. Proposition 6.9 can be 

used to find a distribution L which is approximately optimal, provided that 
A 

~ is reasonably close to stationarity. Substituting the expression for 

a(X
k
't) derived in the proof of Proposition 6.9 into the defining relation 

for u(t), one gets 

hence u(t) = Be-
2At 

for some B. The following property holds in our 

current setting. 

07. u(t) is a continuous function which decreases to zero as t + -. 

(6.11). Proposition. Under 01 - 05 and 07, L1 (t) = 1 - (u( t)/u(O»% is a 

A 

distribution function which minimizes V2 (L). 

Proof. The continuity of u implies that L has the required right 

continuity, so that L is a distribution function. From Proposition 6.8, 
A 

CD 

v
2 

(L) ) () 0 
A 1~ 2 

a(Xkit)/U (t)G(dt» 

CD 

= () 0 

where the second equality is by Fubini, and the third follows from the 

def ining relation for u. I I 

As a consequence of Proposition 6.11, we see that L(dt) = Ae-Atdt is 

A 

approximately optimal for a simulation problem in which X is approximately 

stationary and 
-At G(dt) = Ae dt. 

We now turn to an application of antithetic variance reduction to 

integral estimators with random endpoints. Let L-
1

(x) ~ inf{u : L(u) ) x} 

and assume that there exists a sequence of i.i.d.r.v.'s {Uk: k ) 1}, 
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independent of 

for k odd; 

Nk1 = L-1 (Uk ), Nk2 = L-1 (1 - Uk+ 1 ) 

= L- 1 (Uk ) for k even. Let 

J
N
Oki ~i = Xk(s)/L(s-)G(ds) 

for i = 1,2; the pairs (Rk1'~+1,1) and (Rk2'~+1,2) (k odd) are said to 

n 

be antithetic. Let R1(n) = 1 ~l/n. The following theorem involves a 
k=l 

proof similar to that of Theorem 3.19. 

(6.12). Theorem. Assume 01 - 04. If J~ s(t)L(dt) < "", then 

(6.13 ) 1/2 _ __ 2 + J"" t (R 1 (M 1(t» a) --> a (R 11 R21 ) 0 S(t)L(dt)/2 

as t + "", where M1 (t) = max{2n : N11 + ••• + N2n ,l < t}. 

Based on Theorem 6.3, the antithetic estimator R1 (M 1 (t» is more 

efficient than R( t) if 

(6.14). Proposition. Assume 01 - 04 and 08. Then, 
2 2 

a ( R 11 + R2 1) < 2 a R • 

Proof. Clearly, it is sufficient to prove that COV(R 11 ,R21 ) < O. By 08, 

-1 -1 
L (u

1
) L (u

2 
) 

R11 - R22 = JO X1 (s)/L(s-)G(ds) - JO Xl (s)/L(s-)G(ds) 

has the same sign as 

Hence, 

Variance reduction for integrals with random endpoints can also be 

accomplished via stratification. Note that if 0 = to < t1 < ••• < tn = "", the 

simulation of Nk from the conditional distribution L(du)/(L(ti -) - L(t i _ 1-» 

(t i - 1 < U < t
i

) and definition of a: via (6.1) yields a deviate from Qi. 
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