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A1 Definitions

In each period t = 1, 2, 3, ..., two policymakers, L (him) and R (her), bargain over policy. The

policy space is two-dimensional. The first dimension is an ideological continuum represented

by the real line, R. The second dimension captures the quality of policy. Each policy has a

maximum quality that we set to be zero, and quality is unbounded below. Thus, the policy

space is R× R−.

Policymakers have a common preference over quality but differ in their ideological pref-

erences. In the ideological space, L’s ideal point is 0 and R’s is π, such that their ideal

policy positions in the two-dimensional space are (0, 0) and (π, 0), respectively. We assume

that per-period utility is separable across dimensions, linear in quality, and quasiconcave

in ideology. A common functional form that satisfies these requirements is quadratic-loss

utility over policy.

We assume that decay λt arrives each period iid from an exponential distribution with

rate parameter r. We denote the CDF of λ by F (λ) and the corresponding density function

by f(λ). Only the proof of Lemma 3 relies on specific properties of the exponential distri-

bution; for the other lemmas it is sufficient that F has full support on the positive reals

and finite expectation, E[λ] = λ̄ < ∞. Section A3 shows that the numerical solution is very

similar when we substitute alternative distributional assumptions in place of the exponential,

suggesting that the specific shape of this distribution is not crucial.

Finally, we assume that proposals must be on the efficient frontier; i.e., all proposed

policies take the form (x, 0). This assumption is needed to guarantee existence of an optimal

proposal and rule out cases where Proposer, recognizing that she cannot retain power, offers

a policy infinitesimally below the frontier to avoid realizing decay that period.
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We define the value functions vL(x, q, P ), vR(x, q, P ) for P ∈ {L,R}, where P denotes

the identity of the Proposer. The value functions give the expected discounted future utility

for each player along the equilibrium path of play beginning from the point (x, q, P ). We

define the total utility of any point as Ui(x, q, P ), where Ui(x, q, P ) = ui(x, q) + δvi(x, q, P )

and δ < 1 is the common discounting parameter. Under the Markov assumption, we can

write the value functions as

vi(x, q, P ) =

∫ ∞

0

Ui(g
∗(x, q − λ, P ))f(λ)dλ (1)

where g∗(x, q−λ, P ) is the equilibrium outcome resulting from status quo (x, q, P ) when

the realization of decay is λ. Defining the Receiver’s acceptance set A = {(x′, q′, P ) :

U−P (x
′, q′, P ) ≥ U−P (x, q − λ,−P )}, we have:

g∗(x, q − λ, P ) =

argmaxA UP (x
′, q′, P ) maxA UP (x

′, q′, P ) ≥ UP (x, q − λ,−P )

(x, q − λ,−P ) o.w.
(2)

A2 Proofs

Proposition 1 in the main text is Proposition 4 in Callander and Martin (2017). The proof

is given in the appendix to that paper.

To prove Proposition 2, we first show that the policy space can be restricted without loss

to a bounded subset of R× R−.

Lemma 1. Let S⋆ be the set of all points (x, q) visited in equilibrium with positive probability.

S⋆ ⊆ [0, π]× [0,−B] where 0 < B < ∞.

Proof. Suppose that R is Proposer and L in the Receiver role. An identical argument will

apply in the opposite case. Note that the worst possible path for L following R’s ideal point

(π, 0) is decay forever from that point, which yields total utility for L in expectation of

∞∑
t=0

δtuL(π, 0)−
∞∑
t=1

tλ̄δt

=
1

1− δ
uL(π, 0)− λ̄

δ

(1− δ)2
> −∞
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Since the total utility for L here is finite, at some sufficiently negative decay shock he

will accept a proposal from R of (π, 0) over allowing the utility from the decayed status quo

to be realized, regardless of what he expects to follow from that point or from (π, 0). R will

prefer proposing this point to allowing decay to take hold for the same reason. Hence there

must be a finite lower bound below which no status quo is realized in equilibrium.

Lemma 1 implies that one-period utilities are bounded. Hence we can apply theorem 9.6

of Stokey and Lucas (1989) to show that the value functions are continuous and unique.

We now show several useful properties of the value functions vL(x, q, P ), vR(x, q, P ). We

first show that the value functions are monotone for both players along the ideological di-

mension.

Lemma 2. The value functions are monotone in x for x ∈ [0, π]. vL(x, ·) is decreasing in

x, and vR(x, ·) is increasing.

Proof. We apply Theorem 9.7 of Stokey and Lucas (1989). uR and uL are monotone in the

directions proposed. The remaining condition to verify is that the acceptance sets A are

monotone in the sense defined in Stokey and Lucas’ Assumption 9.9. We consider the case

with R proposing, L receiving, with current status quo of (x, q) or (x′, q), with x′ > x, and

current-period decay (not yet realized) of λ. An identical argument will apply for the case

of L proposing, with the directions of inequalities and set containment operations reversed.

The needed monotonicity condition is A(x′) ⊃ A(x). The acceptance sets are defined by the

utility the Receiver would get after allowing decay to manifest and taking power:

A(x′) = {(x̃, q̃) : uL(x̃, q̃) + δvL(x̃, q̃, R) ≥ uL(x
′, q − λ) + δvL(x

′, q − λ, L)}

A(x) = {(x̃, q̃) : uL(x̃, q̃) + δvL(x̃, q̃, R) ≥ uL(x, q − λ) + δvL(x, q − λ, L)}

Given this definition, A(x′) ⊃ A(x) iff:

uL(x
′, q − λ) + δvL(x

′, q − λ, L) ≤ uL(x, q − λ) + δvL(x, q − λ, L) ∀ λ

⇒ δ(vL(x
′, q − λ, L)− vL(x, q − λ, L)) ≤ uL(x, 0)− uL(x

′, 0)

Note that the right-hand side of the second inequality above is strictly positive because

uL is strictly decreasing in x. Suppose this condition is not satisfied, and instead:
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vL(x
′, q − λ, L)− vL(x, q − λ, L) >

1

δ
(uL(x, 0)− uL(x

′, 0)) > 0

for some value of λ > 0. Since vL(x
′, q − λ, L) = maxUL(y) s.t. UR(y) ≥ Eλ′ [UR(x

′, q −
λ− λ′, R)], this implies that there is some value of λ′ > 0 such that

UR(x, q − λ− λ′, R) > UR(x
′, q − λ− λ′, R)

which, following the same logic as above, implies that

vR(x, q − λ− λ′, R)− vR(x, q − λ− λ′, R) >
1

δ
(uR(x

′, 0)− uL(x, 0)) > 0

Repeated application of this logic eventually yields a contradiction because we know from

Lemma 1 that for some sufficiently negative value on the vertical dimension, q, the Receiver

accepts Proposer’s ideal point from any point on the x dimension and hence vp(x, q, P ) −
vP (x

′, q, P ) = 0.

This shows vR(·, R) is monotone in x. To show vR(·, L) is also monotone, note that

because L will optimally exactly satisfy R’s participation constraint, we have that

vR(x, q, L)

=

∫ ∞

0

UR(g
∗(x, q − λ, L))f(λ)dλ

=

∫ ∞

0

UR(x, q − λ,R)f(λ)dλ

=

∫ ∞

0

(uR(x, q − λ) + δvR(x, q − λ,R)) f(λ)dλ

And because uR and vR(·, R) are both monotone in x, vR(·, L) must be as well.

We next show that under the exponential distribution, proposal power is always valuable

in equilibrium.

Lemma 3. vi(x, q, i) > vi(x, q,−i) ∀ (x, q) ∈ S⋆.

Proof. Recall that
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vi(x, q,−i) =

∫ ∞

0

Ui(g
∗(x, q − λ,−i))f(λ)dλ

Maximization by the Proposer implies that g∗(x, q − λ,−i) sets Ui(g
∗(x, q − λ,−i)) =

Ui(x, q − λ, i). Hence

vi(x, q,−i) =

∫ ∞

0

Ui(x, q − λ, i)f(λ)dλ

=

∫ ∞

0

(ui(x, q − λ) + δvi(x, q − λ, i)) f(λ)dλ

= ui(x, 0) + q − λ̄+ δEλ[vi(x, q − λ, i)]

which implies

Eλ[vi(x, q − λ, i)] =
vi(x, q,−i)− ui(x, 0)− q + λ̄

δ
> vi(x, q,−i) (3)

Where the inequality holds because ui and q are weakly negative, λ̄ > 0, and δ < 1. In

words, the expected value of being in power at all points on the vertical line below (x, q) —

taking expectations over the distribution of decay — must be strictly greater than the value

of being out of power at (x, q).

Using the memoryless property of the exponential, we can write the expectation on the

left hand side as:

Eλ[vi(x, q − λ, i)] =

∫ ∞

0

vi(x, q − λ, i)f(λ)dλ

=

∫ ϵ

0

vi(x, q − λ, i)f(λ)dλ+

∫ ∞

ϵ

vi(x, q − λ, i)f(λ)dλ

=

∫ ϵ

0

vi(x, q − λ, i)f(λ)dλ+ (1− F (ϵ))

∫ ∞

0

vi(x, q − λ, i)f(λ)dλ

Differentiating with respect to ϵ and taking the limit as ϵ → 0 yields the relation:

vi(x, q, i) = Eλ[vi(x, q − λ, i)]

and thus vi(x, q, i) > vi(x, q,−i).
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We can now state the main characterization result (Proposition 2 in the main text).

Proposition 2. For a status quo (x, 0) with x ∈ (0, π), obstruction occurs and decay is

experienced in equilibrium with positive probability for all δ > 0 if x is sufficiently close to

the Receiver’s ideal point. Further, for any x, either decay occurs or the Proposer concedes

on policy with positive probability when δ is sufficiently close to 1.

Proof. Suppose the path is currently at (x, 0) and the current realization of decay is λ. The

Receiver will accept Proposer’s offer of (x′, 0) if Ui(x
′, 0,−i) ≥ Ui(x,−λ, i), i.e. that:

ui(x
′, 0) + δvi(x

′, 0,−i) ≥ ui(x, 0)− λ+ δvi(x,−λ, i)

Rearranging:

ui(x
′, 0)− ui(x, 0) + λ ≥ δ(vi(x,−λ, i)− vi(x

′, 0,−i))

Plugging in x′ = x, we get:

λ ≥ δ(vi(x,−λ, i)− vi(x, 0,−i))

Suppose a return to the frontier is acceptable to Receiver for all realizations of λ from

(x, 0). Then the inequality above also holds in expectation:

λ̄ ≥ δ(Eλ[vi(x,−λ, i)]− vi(x, 0,−i))

Plugging in from equation (3) we have:

(1− δ)vi(x, 0,−i) ≤ ui(x, 0)

ui(x, 0) ≤ 0, with the inequality strict at all points other than Receiver’s ideal, so there

is some δ close enough to 1 that this is a contradiction for all such x. Hence, either decay

occurs or Proposer concedes.

Decay must occur in equilibrium as a consequence of Lemma 3. Since Receiver (strictly)

prefers to take power, when the realization of the decay shock is small and the status quo
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x is close to Receiver’s ideal, the proposer does not have enough policy concessions to give

to convince Receiver to remove decay and allow Proposer to retain power. The maximum

concession that the Proposer can give is to offer Receiver’s ideal point, which (in the R-

receiving case) has utility to R of δvR(π, 0, L). The Receiver will accept this offer if:

δvR(π, 0, L) ≥ uR(x,−λ) + δvR(x, 0, R)

By continuity and monotonicity of the value functions and the full-support assumption

on F (λ), there exist x sufficiently close to π and λ sufficiently close to 0 that this constraint

cannot be satisfied.

A3 Equilibrium characterization under alternative dis-

tributional assumptions

Although the proof of Proposition 2 uses a property of the exponential distribution, it does

not appear that this property is critical to the result. We solve for the value functions

with two alternative distributions of decay, uniform and lognormal, holding the mean of the

distribution at 1 as in the baseline case. The results are qualitatively very similar to the

baseline case.
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(a) Uniform on [0, 2]. (b) Lognormal (µ = −0.5, σ = 1.0)

Figure A1: Equilibrium regions under alternative assumptions about the distribution of
decay. E[λ] = 1 in both, as in the baseline case.
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