
Dividing the Dollar With Formulas∗

Gregory J. Martin†

March 6, 2017

Abstract

In advanced democracies, most government spending is allocated according to criteria ap-

proved by a legislature but implemented by the bureaucracy. I ask whether this fact imposes

a binding constraint on the ability of legislators to engage in targeted redistribution, by con-

structing a model in which legislators are constrained to allocate spending by a formula of

limited dimension - in contrast to benchmark models where proposers have the flexibility to

manipulate the payoffs of individual members directly. The model predicts over-sized winning

coalitions, positive distributions outside of the winning coalition, and the emergence of persis-

tent voting blocs. I then apply the model to a sample of 31 US federal spending bills, using

new data connecting spending outcomes to authorizing legislation. I find that most allocation

formulas for spending programs involve 5 or fewer factors. Formulaic allocation imposes a

tight constraint on targeting, eliminating more than 90% of Congressional proposers’ degrees

of freedom.
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In advanced democracies, legislatures typically do not directly determine the distribution of

government spending to the geographical sub-units their members represent. Instead, legislatures

enact a set of criteria (a “formula”) that instruct the bureaucracy as to the way in which monies

appropriated for a particular program ought to be spent. The elements of this set of criteria, rather

than the ultimate distribution of funds, are the objects over which legislative bargaining and debate

take place. While appropriations of funds directed to a particular district – “earmarks” – do occur,

in practice they account for only a tiny fraction of government spending.

Canonical political economy models of legislative bargaining (Baron and Ferejohn 1989) and

vote-buying (Snyder 1991) ignore this distinction between legislative proposal and ultimate out-

come, effectively taking the earmark method of appropriations to be the rule rather than the

exception. These models endow legislative proposers with the ability to directly manipulate the

ultimate distribution to an individual legislator. In the US House of Representatives, for instance,

this equates to a proposal with 435 dimensions, one for each legislator. In contrast, real-world

legislative proposers manipulate the vector of spending outcomes only indirectly, by altering the

relative weights of different factors in the criteria that bureaucrats use to award grants.

The objective of this paper is to show that this modeling abstraction misses an important feature

of distributive politics: formulaic spending imposes a binding constraint on the ability of legislatures

to redistribute. I present both theoretical and empirical evidence to support this claim. First, I

extend the “divide the dollar” game due to Baron and Ferejohn (1989), and later generalized

by Banks and Duggan (2000), to incorporate dimensionality limits on the bargaining space and

extract testable predictions. Second, I take the model to a new data set of 31 U.S. spending bills

and estimate its parameters. I recover an estimate of the degree to which formulaic allocation

constrains distributive coalition formation, and show that this constraint is quite restrictive in
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practice.

I model the formula constraint as imposing a limit on the dimension of legislative proposals.

That is, proposers do not have complete freedom to directly specify the payoff to each district

that will result if their proposal passes. They must condition spending allocations on a relatively

low-dimensional set of observable attributes of the districts, rather than the identity of a particular

district. This feature implies that changing the payoff to one member may require altering the

payoffs of other members: buying one legislator often will bring along another from a district with

similar characteristics that will also benefit from the formulaic appropriation. I extend the divide-

the-dollar game to allow for these constraints and solve for the no-delay equilibrium proposals.

Although the formulaic constraint complicates the legislative problem, both for the proposer and

the rest of the chamber, the equilibrium exhibits three aggregate properties that are congruent with

empirical observation but that are not shared by the standard model: oversized winning coalitions,

positive distributions to members outside of the winning coalition, and persistent voting blocs of

similar districts.

These properties have consequences for fundamental features of legislative politics. The endoge-

nous generation of persistent voting blocs dramatically reduces the set of possible coalitions, and

provides a natural focal point for the formation of legislative parties. The fact that benefits will

often flow to members outside of the winning coalition provides flexibility for legislators to engage in

position-taking No votes without denying their constituents access to valuable programs. And the

tendency for formulas to generate large coalitions produces more universalistic policies that benefit

broader collections of districts.

Taking the model to the data, I construct a novel dataset of 31 US federal appropriations bills,

which connects the program authorizing a particular federal grant or direct payment back to the
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roll-call vote on the bill that appropriated funds for the program. Among programs in the sample

with explicit statutory formulas, the median number of factors referenced in the formula is just 3;

90% have 5 or fewer factors. However, many programs do not have an explicit statutory formula,

and appropriations bills often bundle together funds for multiple programs. I use the model to

derive necessary conditions on the properties of winning coalitions and spending distributions in

equilibrium, and apply these conditions to empirically recover an estimate of the effective dimension

of the formula space in the U.S. House. The estimate is 42, rather than the possible 435, implying

that formulaic spending procedures dramatically restrain legislators’ ability to precisely target funds

to marginal districts, eliminating more than 90% of proposers’ degrees of freedom.

In this paper I take the existence of a dimensionality limit as given and exogenous, already

determined by a prior stage of the policymaking game. The goal is to work out the implications

of such a constraint for distributive politics in legislatures, and then use those implications to infer

the degree of the constraint in the empirical data. I do not, however, impose any upper bound

on the dimensionality parameter in the estimation; the fact that the estimated dimension is much

less than the number of legislators suggests that the formula constraint is binding. Throughout

the paper I adopt the interpretation that the constraint is due to the necessity of policies passing

through the bureaucracy. In the discussion section I motivate this restriction more extensively, and

sketch several extensions of the model that would deliver low-dimensional formulas in equilibrium.

To provide better intuition for how these restrictions work in practice and why they might arise,

consider the following classic example described extensively by Joskow and Schmalensee (1998).

A motivating example In 1990, members of Congress debated a set of amendments to the Clean

Air Act that created a system of tradeable emissions permits for sulfur dioxide (SO2) which could

be bought and sold by electric utilities. A contentious issue surrounding the creation of this system
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was that the allowances were to be given away free to utilities, meaning that Congress needed to

determine the initial distribution of what was expected to be a valuable property right.

The rules that Congress ultimately adopted allocated allowances to generating units on the basis

of the unit’s characteristics - its fuel type, historical energy generation, and existing emissions-

control devices, among other things. Though the final rules were lengthy and complex, the total

distribution of allowances to each state did not differ much from what would have occurred under

the very simple benchmark rule initially proposed by the EPA.1 Where there were deviations, they

often did not conform to expectations about the congressional bargaining process. Some states, like

Utah, benefited from significant gains relative to the benchmark scenario despite both lacking any

representation on the relevant committees or party leadership and voting No on final passage.

Utah’s unexpected success in the bargaining process for SO2 allowance allocations presents a

puzzle for standard models. It clearly had nothing to do with holding a powerful committee position,

and given that the Utah delegation voted No on a bill that passed by a wide margin, it cannot be

that the majority “bought” the Utah vote by promising more allowances for Utah utilities. The

possibility that I investigate in this paper is that Utah benefited from an unintended consequence

of the formulaic allocation procedure: benefits that the Democratic leadership intended to target at

swing states in Democratic but coal-heavy Appalachia also ended up flowing to similarly coal-heavy

but Republican and anti-regulation Utah.

Related literature The classic models of legislative bargaining, on which this and many other

papers build, are the “divide the dollar” game of Baron and Ferejohn (1989) and its extension

to general social choice settings by Banks and Duggan (2000). In their setup, an exogenously

1The EPA’s “Basic Rule” would have determined the allocation by multiplying a unit’s historical emissions of SO2

by a constant. Joskow and Schmalensee’s Table 2 shows that the Phase I allowance allocations by state generally
fell within ±5% of the Basic Rule.
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determined budget must be distributed amongst the members of an n-member legislature, which

requires majority approval to pass an allocation. A fundamental result of this model is that in

equilibrium all proposals garner the support of a minimal winning coalition (e.g., they pass by a

bare majority), and the members of this coalition capture the entire budget.

Models of vote-buying, the classic example of which is Snyder (1991), share a similar structure

and produce similar results. In these models, a legislative agenda-setter attempts to pass a bill by

distributing side-payments to recalcitrant members in order to “buy” their votes. The vote-buying

structure replaces the endogenous continuation value in bargaining games with an exogenous spatial

component, but in other respects the predicted behavior is nearly identical. In equilibrium, the

leader targets payments to the most marginal districts, spending only what is necessary to pass

the bill with a minimal winning coalition; only members of the winning coalition receive positive

payments.2

Empirical work on distributive politics has, however, consistently found these stark predictions

to be violated in real data. To cite but one example, Knight (2005) examines a 1998 transportation

bill in the US House on which 337 of the 435 representatives voted in favor, and 357 districts received

funding for projects authorized by the bill. All available evidence indicates that situations like this

one are the norm, rather than the exception.

This empirical regularity has been recognized for some time, and has spawned a variety of

theoretical explanations. An early literature3 argued that a norm of universalism within Congress

governed members’ behavior on distributive bills. While consonant with the empirical patterns,

this approach was criticized for lacking a rational choice micro-foundation. As we will see, the

2While I pursue a direct extension of the Baron-Ferejohn bargaining model in the main text, the results can be
equally well applied to vote buying, a connection which I elaborate in Appendix B.

3See, e.g. Niou and Ordeshook (1985), Stein and Bickers (1994), Weingast (1994).
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present paper rationalizes several empirical patterns often attributed to norms of universalism in a

legislative bargaining framework.

Groseclose and Snyder (1996) propose a variant of the basic vote-buying model where two

competing leaders, one supporting and one opposing a bill, attempt to achieve their favored outcome

on a vote by distributing side-payments. While this model provides a parsimonious explanation for

supermajority coalitions, it retains the prediction of earlier work that side-payments will be targeted

exclusively to the most marginal members of the ultimate winning coalition.

An alternative approach, due to Weingast and Marshall (1988), Carrubba and Volden (2000),

and others, emphasizes the role of long-term agreements between members of Congress that are

built into the structure of institutions such as the committee system. In this explanation, known as

logrolling or vote-trading, members agree to cede control over one area of the budget in exchange for

control over another.4 One problem with this approach is that, like all models of repeated games,

there are many possible equilibria. The logrolling equilibrium relies on an unspecified mechanism for

members to commit to the norm of deference to committees. Furthermore, there is no reason that

distributive benefits should flow to members outside the winning coalition; if anything, members

who vote against appropriations bills ought to be punished for their failure to go along with the

cooperative strategy.

An equally large literature examines the participation and influence of the executive branch in

distributive policymaking. Berry, Burden, and Howell (2010b) find that districts represented by

members of the president’s party receive higher levels of federal outlays. Levitt and Snyder (1997)

compare the distribution of spending allocated by statutory formula to that of programs left to

4For example, rural representatives on the agriculture committee propose a generous farm-subsidies bill, urban
representatives on the transportation committee propose generous federal funding for mass transit projects, and both
bills pass with a broad urban-rural coalition.

7



the discretion of the executive branch, and show that the former are more responsive to changes

in partisan control of Congress. And Stein and Bickers (1997) study the substantial durability of

federal distributive programs, noting the long shadow of influence of “policy subsystems” within

the bureaucracy on outlays.5

This article seeks to join the insights from these two strands of the literature on distributive

politics, which at present are mostly distinct. Recent theories of legislative bargaining focus on the

structure of institutions within the legislature to explain the tendency towards oversized coalitions

on appropriations bills. I instead pursue the fact that policies, once passed, must be implemented.

The basic, static Baron-Ferejohn and Snyder (1991) models get the incentives of legislators ap-

proximately right; what they miss is that legislatures do not directly control the distribution of

government spending but instead rely on bureaucrats, who may have quite distinct motivations, to

implement policies.6 The remainder of the article pursues the implications of this fact for coalition

formation in the legislature.

The Model

The motivating example given in the introduction - bargaining over the distribution of SO2 al-

lowances in the Clean Air Act - demonstrated two salient features that are generally true of pro-

gram and formula spending and that I aim to capture here. First, proposals took the form not of

a list of payoffs for each member of Congress, but a much smaller list of formula elements: in the

example, the relative weights placed on a unit’s fuel type, generating capacity, etc. in determining

5Though Berry, Burden, and Howell (2010a) offer the counterpoint that bureaucratic programs are not indefinitely
lived, and are more likely to end when the current composition of Congress differs substantially from that of the
program’s enacting coalition.

6See e.g. Prendergast (2007) and Besley and Ghatak (2005) on the incentives and motivation of individual
bureaucrats, and the consequences for agency design.
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the allowance allocation. Second, the mapping from formula to payoff was fixed and known: con-

gresspeople were aware of the utilities operating within their districts and how manipulating the

various formula elements was likely to help or hurt those utilities.

I capture these two features formally by postulating that bargaining occurs not directly over

the ultimate distribution of funds, but indirectly over what I will call a policy vector x of length

d, where d is less than the size of the legislature. The policy vector represents the set of “dials”

that legislators can twist in determining how an appropriations bill’s budget is to be allocated. The

number and identity of such “dials,” and hence the substantive interpretation of the policy vector,

will vary depending on the context of a particular bill. For example, negotiations over a farm bill

might take the form of alternative proposals for the relative subsidy levels granted to wheat versus

corn versus soy production.

I model the process that translates the agreed-upon level of the policy vector x into ultimate

distributive outcomes for every district by means of a policy mapping matrix Γ of dimension (n×d),

which multiplies the policy vector x. Γ defines the (linear) mapping from policy choice to district

payoffs.7 In reality, this translation from policy to outcome occurs via bureaucrats’ decisions to

award funds on the basis of the criteria laid out in the authorizing legislation. Multiplication by Γ

thus succinctly captures the process of implementation of a distributive bill’s award criteria.

The columns of Γ define the set of quantifiable measures or attributes, defined at the district

level, that are available on which to condition the distributive consequences of the bill. Each

column represents the vector of marginal effects on districts’ ultimate allocation of a change to a

single formula element.8 The components of each column are multipliers, or weights, determining

7I assume that the mapping from policy to outcome is linear for analytical tractability. If the true mapping is
non-linear, we can think of the linear version described here as a local approximation, valid for small changes of the
elements of the policy vector.

8In the farm bill example, the column of Γ corresponding to the per-bushel corn production subsidy level would
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the relative value of that particular formula criterion to a particular district. The total number of

columns in the matrix, d, defines the dimensionality of the legislature’s choice space. This number

of benefits-determining factors is endogenous in the actual congressional process, but will be taken

as fixed in the model; the Discussion section sketches some avenues for endogenizing this choice and

argues that such an endogenously-chosen dimensionality constraint is likely to be low.

The mapping matrix for a given bill9 is assumed to be fixed, and known to legislators; hence,

the effect of a tweak to any element of the policy vector on the ultimate distribution of funds is

predictable. Appendix C presents some evidence for this assumption, showing that the cross-district

allocation of funds for a given program is relatively stable from year to year. Note, however, that

this structure by no means rules out uncertainty regarding the ultimate allocation. Under risk

neutrality we can add forecast error - resulting, perhaps, from legislators’ expectations regarding

how the administering agency will interpret the statutory criteria being incorrect - with no change

at all to the results. All that is required is that Γ gives the expected change in allocation to each

district resulting from a change to the weight placed on each conditioning factor, and that these

expectations are common across legislators.

The next sections lay this structure out in formal detail, and then derive several substantive

conclusions. The main result is that d < n (fewer policy levers than legislators) generates a partition

of the legislature into voting blocs which always vote together. As d decreases, this partition becomes

steadily coarser, leading to larger and possibly non-minimally sized winning coalitions. Furthermore,

positive distributions to members outside the winning coalition are to be expected when the choice

space defined by Γ is sufficiently constraining. For brevity, proofs are relegated to Appendix A.

be defined by measuring the expected bushels of corn produced by each district.
9As suggested by the farm bill and SO2 allowance allocation examples, the set of relevant conditioning factors will

vary depending on the policy area. Formally, this implies that there is potentially a different Γ for each distributive
bill.
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Primitives The primitives of the model are as follows. There is a set N of n legislators, who

choose policy from a collection of choice sets {Xd} : d ∈ {d, d̄}. The index d indicates the dimension

of the choice set. Each choice set satisfies (1) Xd ⊆ Rd and (2) Xd ⊂ Xd+1.

Each legislator is endowed with a utility function that takes a specific form. Namely, there

exists, for every Xd, a fixed, exogenous matrix of characteristics Γd of dimension (n× d). Γd maps

the “policy levers” in Xd into legislator utilities, such that if the chosen policy is x ∈ Xd, the vector

of utilities for each district that results is:

ud(x) = Γd x (1)

The ith legislator’s utility from policy x ∈ Xd is thus just the ith element of the vector ud(x). Adding

an additional dimension does not change the values of the lower dimensions, e.g. Γd+1 = [Γd | γd+1]

for some (n × 1)-dimensional vector γd+1. For technical reasons I make a final assumption, (A1),

on Γd that for every i there is some element of (Γd)i that is strictly positive.10

The choice sets Xd are bounded above by an exogenous budget constraint B > 0: for a policy x

to be feasible (x ∈ Xd) it must satisfy β(x) ≤ B, where β(x) represents the cost of the policy. β(x)

takes the form:

β(x) =
N∑
i=1

[Γdx]i

I.e., the cost of the policy equals the sum of the benefits it provides to all members. This is a purely

distributive model, in the sense that the game being played is zero-sum. Legislators can choose

only how to divide the “pie” amongst themselves; as the budget constraint B is fixed, there is no

10This requirement is trivially satisfied if we include a dimension d′ in the choice set which has (Γd)i,d′ = 1
n ∀i;

e.g. it is possible to pay out the budget in equal shares to all legislators.
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possibility of increasing the size of the pie.11

The game form is the bargaining structure of Banks and Duggan (2000). Namely, in each

round a single proposer is drawn from N ; legislator i is selected with probability ρi.
12 Whoever is

recognized makes a proposal, which all members of N then vote up or down. If the proposal gains

the support of a decisive coalition D ∈ D, it passes, utilities are realized and the game ends; if

not a new proposer is recognized and the game repeats. Legislators discount future payoffs at the

common rate δ < 1. I make two additional assumptions on the structure of the decisive coalition

set D: one, that it is proper, and two, that it is anonymous.13 Properness implies that if D ∈ D,

then N − D /∈ D; anonymity implies that only the number of legislators in the coalition matters

for its success, or formally: if D ∈ D then {C : |C| = |D|} ⊂ D. This structure subsumes both

majority- and supermajority-rule voting procedures.

A strategy for an individual in the game where legislators bargain over Xd consists of an ac-

ceptance set Ai,d ⊆ Xd and a proposal strategy πi,d. πi,d ∈ P(Xd), where P(Xd) is the set of all

probability measures over Xd. Given a strategy profile for all individuals, the acceptance set of a

coalition C is AC,d =
⋂

i∈C Ai,d. The social acceptance set is Ad =
⋃

C∈D AC,d.

11Note that the setup here includes the canonical bargaining model of Baron and Ferejohn (1989) as a special
case; let d = n and set Γd equal to the n-dimensional identity matrix. The model also nests the “näıve universalism”
hypothesis - all legislators get equal shares of size 1/N - when d = 1 and Γd consists of a column of all ones.

12Note that the recognition probabilities are indexed by legislator because they need not be uniform across legis-
lators; institutional features such as majority party status or committee positions can grant some legislators greater
degrees of proposal power than others. Variation in recognition probabilities within the chamber thus allows the
model to accomodate features like party influence or deference to committees.

13This second assumption rules out bicameralism, as a voting procedure requiring majorities in both houses for
passage is not anonymous. To accomodate bicameral legislatures such as the US congress, the anonymity assumption
can be dropped. Propositions 1 and 3 would go through unchanged in this setting. Versions of Propositions 2 and
4 can be proved without anonymity but both the proposition statements and the proofs are significantly more
cumbersome. I focus on the case with anonymity for expositional clarity.
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Solving the Model As in Banks and Duggan, I focus on no-delay stationary equilibria in which

no legislator uses a weakly dominated voting strategy. The no-delay property implies that for any x

proposed in equilibrium, x ∈ Ad. In such equilibria, we can define for each legislator a continuation

value:

vi,d = E[ui,d] =
n∑

j=1

ρj

[∫
Xd

ui,d(x)πj,d(dx)

]
Applying equation (1), we get:

vd = Γd

n∑
j=1

ρj

[∫
Xd

x πj,d(dx)

]
(2)

In stationary equilibria, the individual acceptance sets Ai,d are the upper contour set of ui,d

at ui,d(vi,d). In other words, all legislators accept any proposal that gives them at least their

continuation value from holding out for another round. For the proposer, the strategic question is

how to assemble a coalition that satisfies enough legislators’ continuation value constraints to get

the bill to pass.

Existence of equilibrium For any dimension d, the model can be formulated as a special case of

the general Banks and Duggan setup. Applying Theorem 1 of Banks-Duggan, we have immediately

the following existence result:

Proposition 1. There exists a no-delay stationary equilibrium. Furthermore, every stationary

equilibrium is a no-delay equilibrium.
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Characterization of equilibrium Having established the existence of stationary equilibria, I

proceed to the characterization of these equilibria, focusing on results relating to the dimension

and rank of the matrix Γd. The first of these, Proposition 2, tells us that winning coalitions cannot

expand in size if the dimension of the matrix Γ increases. No proposer who under dimension d

proposed a policy to some coalition C would find it profitable, if an additional dimension became

available, to propose a policy to a larger coalition C+ ⊃ C.

Proposition 2. Let d+ > d−. Let C− be an arbitrary coalition of legislators that unanimously

accepts a bill (i.e., is a winning coalition) with positive probability in some equilibrium under the

smaller dimension, d−. Let C+ be any superset of C−. If C+ is not in the set of winning coalitions

in any equilibrium under the smaller dimension d−, then it is also not in the set of winning coalitions

in any equilibrium under the larger dimension d+.

The proof is in Appendix A, but the intuition is straightforward. As this is a zero-sum game,

the proposer’s goal is effectively to minimize the amount distributed to all other legislators, subject

to her proposal being accepted. If it is possible to find a feasible policy vector x that satisfies all

the members of C− when there are d− policy levers available, then x is still available and feasible

when additional levers are added to the formula. The proof shows that all the members of C− must

still be satisfied with x when more dimensions become available, meaning that adding additional

members would only increase the cost to the proposer while gaining her no advantage in getting

the bill passed.

The second result concerns the structure of winning coalitions. If a set of districts are very

similar along the dimensions available, the benefits they receive from any feasible policy will be

correspondingly similar. In turn, these districts will have similar continuation values. This logic

leads to the result of Proposition 3: any matrix of conditioning factors Γ with rank less than size
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of the legislature generates a set of voting blocs whose members cannot be split by any feasible

policy. In equilibrium, these voting blocs vote together in lockstep. As the dimension of the matrix

Γ becomes smaller, the partition becomes more coarse, and the blocs become larger.

Proposition 3. Suppose d = rank (Γd) < n. There exists a partition of N into d subsets {N1, N2, . . . , Nd}

such that all members of each subset always vote together in every equilibrium.

This partitioning result implies that the task of the proposer becomes not assembling individual

members (as in standard legislative bargaining formulations) but assembling voting blocs. More-

over, these blocs are generated endogenously by the observable characteristics of the districts that

members represent. Formulaic allocation generates natural coalition partners and natural enemies,

and may thus serve as an initial spark for the formation of legislative parties.

It is worth noting that this partitioned structure has two significant effects on the task of the

proposer. First, low-dimensional formulas dramatically simplify the task’s complexity, a point to

which I return in the discussion section. To illustrate how dramatic this complexity reduction can

be, consider the two extreme cases. If d = 2, the proposer has only two possible coalitions to choose

from; finding the optimal proposal involves evaluating just two options to decide which can win

at lowest cost. If d = n, on the other hand, under majority rule there are n choose n/2 possible

winning coalitions, which for typical legislative sizes is an enormous number.

Second, the countervailing cost to this complexity reduction is that the value of proposal power

declines as d decreases. The reasons for this are twofold. The first reason is that for small d it will

generally not be possible to zero out the allocation to members outside of the winning coalition;

in an attempt to win support of one voting bloc, another may get something as well, though not

enough to convince its members to vote Yes. The second reason is that fitting together blocs rather

than individuals will tend to lead to oversized coalitions. The final proposition states this formally.
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Proposition 4 tells us that above a threshold value of d, the size of the voting blocs is small enough

that there is always sufficient flexibility to achieve the proposer’s optimum (minimum-winning)

coalition size of q. If d is below this threshold, the partition defined in Proposition 3 is too coarse.

Oversized coalitions can be observed in equilibrium in this case, because the proposer does not have

the flexibility to split up certain voting blocs.

Proposition 4. Let q be the number of yes-votes required for a proposal to pass. If rank(Γd) > n− q
2
,

all coalitions are minimal winning. If rank(Γd) ≤ n− q
2
, there exist equilibria in which non-minimal

winning coalitions occur with positive probability.

Empirical implications: share of budget distributed to no-voters From the propositions

just established, we know that a proposer, when recognized, minimizes the share of the budget paid

to all other members, subject to the constraints that the bill has to expend the entire budget and has

to pass.14 In real data, of course, it is not possible to observe the “proposer” in the Banks-Duggan

sense.

Members’ votes on a bill, however, are observable, which allows us to write a weaker version of

the minimization lemma (A3). Although the proposer’s identity remains unknown, the fact that

the proposer must be a member of the winning coalition ensures that the following statement will

hold regardless of the identity of the proposer: given an observed winning coalition C, the expected

distribution u(x∗) must minimize the aggregate payoff of all members in N − C, subject to the

constraint that the full budget must be spent and all members of C must get at least u(x∗). In

other words, the equilibrium proposal x∗ solves the linear program:

14See Lemma 3 in Appendix A for a formal statement of this property.
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min
x∈Xd

∑
i∈N−C

[Γdx]i (3)

s.t. [Γdx]j ≥ uj(x
∗) ∀j ∈ C

s.t.
∑

k∈N [Γdx]k = B

The equilibrium distribution thus minimizes the share of the budget paid to no-voters, given

the constraints enforced by the winning coalition’s continuation values and the matrix Γd. As

Γd becomes less restrictive - i.e. as rank(Γd) → n - the share of the budget captured by the

winning coalition should approach 1, and no-voters should be increasingly cut out of the equilibrium

distribution.

The result that the equilibrium distribution is the solution to a linear program means that given

a hypothetical Γd, the winning coalition’s optimal allocation to all members outside the coalition

can be computed. Given a set of possible factors on which spending formulas could condition - e.g.,

district population, per-capita income, racial composition, etc. - it is thus possible to estimate the

subset of factors involved in the formula. The estimation procedure works by choosing d to make

the difference between 1) the winning-coalition-optimal allocation to no-voters when proposals are

restricted to condition on no more than d factors, and 2) the actual observed allocation to no-voters,

as small as possible. Details of an estimation routine which applies this principle to estimate d from

appropriations data are reported in Appendix D.

In summary, the model predicts that allocation by formula has substantial consequences for

legislative bargaining outcomes. The lower the dimension of the formula used to allocate appropri-

ations, the more dramatically do the predictions depart from those of the classical model (and the
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closer do they approach observed features of real-world distributive politics). Formulaic allocation

breaks down the individualism of the legislature in a “state of nature.” It leads to the spontaneous

generation of groups of districts who are aligned on some set of dimensions and share a common

interest in moving policy in a particular direction. This change to within-legislature coalition pol-

itics, in turn, leads to changes outside the legislature as well: more universalistic policies that

benefit broader collections of districts, and flows of distributive benefits even to constituents whose

representatives opposed the authorizing legislation.

Results

The model just presented generates several testable predictions. The degree to which these predic-

tions deviate from those of canonical models of bargaining depends entirely on the degree to which

the complexity of the allocating formula, d, is smaller than the critical value n − q/2 defined in

Proposition 4. Hence, the primary goal of the empirical analysis will be to estimate the effective

degree of formula complexity d present in real appropriations legislation, and to assess the ability

of the limited-complexity formula model to explain observed patterns in real spending data.

To that end I analyze a new dataset of US federal outlays covering 31 appropriations bills, the

ultimate distribution of funds to each of the 435 congressional districts resulting from each bill, and

the roll-call vote of each district on each bill. The data sources and collection methods, as well as

summary tables and figures are presented in detail in Appendix E.

I first present some descriptive evidence demonstrating that the broad patterns predicted by the

complexity-constrained model are in fact apparent in the data. Second, I measure the effective d

of appropriations bills in the sample using two distinct approaches: a direct approach consisting of
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reading the text of appropriations formulas included in the authorizing statute and determining the

number of factors conditioned on by inspection, and an indirect approach which infers the effective

d from the observed allocations to districts outside the winning coalition. The two approaches are

complementary, each having relative strengths and weaknesses: the direct approach is more straight-

forward but applicable only at the program rather than bill level and only to the relatively small

minority of programs with explicit statutory formulas. Third, I construct some model fit statistics

and compare the model’s performance with the baseline Baron-Ferejohn model that assumes that

unconstrained redistribution is possible.

Empirical patterns

It is immediately evident from Table 5 that the typical coalition size on the spending bills in the

sample is non-minimal-winning. The smallest margin of victory is the 109th Congress’ Deficit

Reduction Act of 2005, which passed by a margin of 6 votes, and there are a few near-universalistic

coalitions. This fact alone does not constitute strong evidence for the theory, because there are

a number of alternative explanations for large coalitions. Still, it is clear that the simple Baron-

Ferejohn model provides a poor fit to the coalition-size data.15

Existing theories of legislative bargaining - including those that can account for oversized coali-

tions - predict that the winning coalition should capture all of the distributive benefits to be had in

a given bill. Columns (1) - (3) of Table 1 examine this prediction in the data, presenting regression

estimates of the share of the total bill budget received by a district as a function of the district’s

vote.16 All specifications include bill fixed effects, such that comparisons are relative to other dis-

15Knight (2005) draws the same conclusion in the context of estimating a structural model with earmark data
from two transportation-spending bills.

16Table 6 in Appendix E presents bill-by-bill differences in mean receipts among Yes and No voters.
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tricts on the same bill.17 As is clear from Table 6, the total budget expended and average per-district

allocation varies widely by bill, a possibly confounding source of variation; transformation to share

terms makes the levels of the dependent variables comparable across bills.18

The point estimates on voting No in this regression are consistently negative, and approach

conventional levels of significance in some specifications.19 The difference is robust to inclusion of

additional controls for partisanship, ideological distance from the chamber median, an indicator

for being an at-large district, and Senate representation.20 However, the power of the district’s

membership in the winning coalition to predict its share of distributive benefits in all specifications

is very weak, with R2 values on the order of 0.001. The substantive size of the estimate is moderate

- compared to Yes voters on the same bill, No voters receive on average 0.061-0.066 percentage

points less, which is approximately a quarter of the average share of 0.23%.21

The distribution of district-level expenditures for any given bill typically features a point mass

at zero - that is, some subset of districts do not receive any grants authorized by the legislation.22

As it is possible that the credit-claiming benefits of voting for distributive legislation have more to

do with the fact of a federal grant - and the attendant ribbon cutting ceremony photo opportunities

and press releases to local media (Grimmer 2013) - than its absolute or relative dollar amount, I

estimated the same model with a binary dummy for any positive grant amounts on the left-hand

17Table 8 in Appendix G presents the same specifications with district fixed effects.
18Table 9 in Appendix G presents analogous results in absolute-dollar terms.
19To allow for the fact that the variance in shares is correlated within bill, standard errors are clustered at the bill

level in all regressions.
20Party controls are included to account for theoretical expectations about of majority party agenda control (Cox

and McCubbins 2007) or political influence by the executive branch in implementation decisions (Berry, Burden,
and Howell 2010b). The at-large control matters because many programs distribute funds to state agencies with the
stipulation that every state receive some minimum share. For at-large districts, all of this state-level funding, by
definition, ends up in the district, whereas for multi-district states it will be split across districts.

21Shares always add to 1, so the average district share is 1/435, or 0.23%.
22As Stein and Bickers (1997) note, this pattern is even more pronounced at the program level.
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Table 1: Models of District Funding Receipts, 109-111 Congress

Amount Received (% of Bill Total) Any Grants Received

(1) (2) (3) (4) (5) (6)

No Vote on Final Passage −0.064∗ −0.061 −0.066 −0.011 −0.009 −0.011
(0.035) (0.048) (0.049) (0.011) (0.015) (0.015)

Abstain on Final Passage 0.076 0.070 0.071 −0.006 −0.009 −0.009
(0.065) (0.064) (0.065) (0.018) (0.018) (0.018)

Majority Party 0.089 0.096 −0.001 0.004
(0.071) (0.067) (0.030) (0.029)

President’s Party −0.074∗∗ −0.076∗∗ −0.007 −0.012
(0.037) (0.036) (0.021) (0.020)

Ideological Extremity 0.094 0.088 −0.013 −0.009
(0.120) (0.119) (0.033) (0.033)

At-Large District 0.331∗∗ 0.334∗∗ 0.304∗∗∗ 0.306∗∗∗

(0.142) (0.142) (0.062) (0.062)
Senate: Majority Party −0.066∗∗ −0.027∗

(0.034) (0.015)
Senate: President’s Party 0.022 0.033∗∗

(0.033) (0.015)
Senate: Delegation Split −0.038 0.008

(0.036) (0.014)
Fixed Effects: Bill Bill Bill Bill Bill Bill
Number of Bills 31 31 31 31 31 31
F-statistic 0.19 0.89 0.95 428.67 390.08 361.46
N 13,485 13,485 13,485 13,485 13,485 13,485
R2 0.0004 0.002 0.003 0.505 0.511 0.512

∗p < .1; ∗∗p < .05; ∗∗∗p < .01
Cluster-robust standard errors in parentheses (clustered at the bill level). Bill-clustered stan-
dard errors are conservative relative to district-clustered or heteroskedasticity-robust versions.
All right-hand-side variables are binary indicators except for Ideological Extremity, which is
measured as the absolute deviation between the first-dimension DW-NOMINATE score of
the district’s representative and that of the chamber median. Dummies for party alignment
of the district’s Senate delegation are one only if both Senators are in the Senate majority or
the president’s party, respectively. The “Senate Delegation Split” dummy indicates that the
state’s Senate delegation consists of one Democratic and one Republican Senator.
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side. The resulting linear probability models, which model the probability of receiving grant(s) of

any size as a function of the same covariates, are presented in columns (4)-(6) of Table 1. The

results here are similar: the no-vote effect is negative but small. Confidence intervals include zero

in all specifications, and rule out substantively large effects - the lower bound of the confidence

interval on the no-vote effect is negative 3-4%, compared to the baseline probability of about 50%.

In sum, the results here are difficult to reconcile with existing theories of bargaining under

majority rule. While there is some evidence - in the form of negative point estimates - that winning

coalitions attempt to reduce the amount of funds distributed to no-voters, the small substantive

effects indicate that their ability to do so is very limited. Rather than being driven to zero, as

predicted by existing theories, No-voters’ average allocations are roughly three-quarters the size of

their Yes-voting colleagues’, and their probability of receiving a grant of any size is essentially the

same. These patterns are, in contrast, entirely consistent with the theory of bargaining over formulas

developed in the preceding section, provided that the effective formula dimension is sufficiently

constraining. I next seek to measure this degree of constraint directly.

Estimating the dimension of proposals

A relatively small minority (∼ 15%) of programs provided for by the appropriations bills in my

sample have explicit statutory formulas. However, programs with associated statutory formulas

tend to be larger than those without. In FY2011, for example, the average budget of a program

with a statutory formula was $2.6B, compared to an average of $760M for programs without. They

also tend to be more universalistic - in terms of the number of districts who receive direct benefits

from the program - as shown in Appendix E, Figure 6.

For this minority of programs with a statutory formula, it is instructive to consider a direct,
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textual approach to measurement of the formula dimension. For each program that the Catalog of

Federal Domestic Assistance (CFDA) indicated had a statutory formula,23 I located the text of the

formula in either the U.S. Code or the Code of Federal Regulations and recorded the number of

factors referenced in determining the allocation. For instance, one of the simplest allocation formulas

applies to the HIV Emergency Relief Project Grants authorized by the Ryan White HIV/AIDS

Treatment Extension Act of 2009 (abbreviated slightly for clarity):

(A) Subject to the extent of amounts made available in appropriations Acts, a grant made
for purposes of this paragraph to an eligible area shall be made in an amount equal to the
product of (i) an amount equal to the amount available for distribution for the fiscal year
involved; and (ii) the percentage constituted by the ratio of the distribution factor for the
eligible area to the sum of the respective distribution factors for all eligible areas (. . .)

(B) Distribution factor
For purposes of subparagraph (A)(ii), the term distribution factor means an amount equal

to the living cases of HIV/AIDS (reported to and confirmed by the Director of the Centers for
Disease Control and Prevention) in the eligible area involved.

This formula was coded as one-dimensional, as it references only a single factor: the number

of living cases of HIV/AIDS in an area. The number of cases in some local area, relative to the

number of cases in the US as a whole, entirely determines the allocation of HIV Emergency Relief

grants to local health centers.

Quantiles of the distribution of formula dimension across all 80 programs in the sample with

statutory formulas are presented in Table 2.24 The typical formula is very simple: the median

number of factors referenced is 3, and 90% of formula-grant programs have 5 or fewer factors in

their allocation formulas. The outlier program is HUD’s Public Housing Capital Fund (PHCF),

23The “Formula and Matching Requirements” field in the CFDA indicates whether or not a program has a statutory
formula and, typically, references the location in the U.S. Code or the Code of Federal Regulations where the formula
can be found.

24The distribution is shown in histogram form in Appendix E, Figure 5. The full coding of factors referenced in
the formula for each program, with textual references, is available upon request from the author.
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which has distinct sets of weights applicable to local housing agencies with less than 250 or more

than 250 public housing units, each of which includes multiple characteristics of the public housing

stock, such as average age, average number of bedrooms, and so on. HUD also exempts the New

York City and Chicago Housing Authorities from the formula used for other large cities, using a

separate process to determine their allocations. Taken together, there are a total of 40 distinct

weighted factors appearing in the PHCF statutory formula.

10% 25% 50% 75% 90% 95%
1 2 3 4 5 8

Table 2: Quantiles of the distribution of the number of factors referenced in the allocation formula,
among CFDA programs allocated by statutory formula.

With the exception of a few programs like the PHCF, statutory formulas are, by and large,

quite low-dimensional. A typical formula guarantees some minimum percentage to every state

or local agency applying for the program, and allocates the remaining appropriations according

to total population.25 They are also surprisingly durable and persistent over time: four distinct

programs administered by the Department of Education and appropriated for by the 2009 American

Recovery and Reinvestment Act (ARRA) all retain the same statutory formula originating in the

Elementary and Secondary Education Act of 1965, one of the core elements of Lyndon Johnson’s

“Great Society.”

What about the programs without explicit statutory formulas? The remaining 85% of programs

are awarded competitively, according to criteria specified in the authorizing statute but which

grant wide discretion in allocation decisions to the agency operating the program. For example, the

25The Social Security Administration’s State Grants for Protection and Advocacy Services program, FEMA’s
Emergency Management Performance Grants, and the Department of Human Health and Services’ Family Violence
Prevention and Services grants all use this formula, coded as two-dimensional (a constant term plus total population).
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Transportation Investment Generating Economic Recovery (TIGER) discretionary grant program,

also funded by the ARRA, awarded grants according to the following criteria listed in CFDA:

The Primary Selection Criteria include (1) Long-Term Outcomes and (2) Jobs Creation &
Economic Stimulus. The Secondary Selection Criteria include (1) Innovation and (2) Partner-
ship. The Primary selection Criteria were intended to capture the primary objectives of the
TIGER Discretionary Grants provision of the Recovery Act, which include near-term economic
recovery and job creation, maximization of long-term economic benefits and impacts on the
Nation, a region, or a metropolitan area, and assistance for those most affected by the current
economic downturn. The Secondary Selection Criteria were intended to capture the benefits
of new and/or innovative approaches to achieving programmatic objectives.

Direct measurement of the complexity of these non-statutory-formula programs is difficult. The

text of the selection criteria omit legislators’ implicit expectations about the outcomes of agency

rulemaking and grant awarding processes, meaning that purely textual measures, such as counting

the number of distinct criteria referenced, are likely to provide a poor approximation to the effective

dimension of congressional proposals. And, as is evident in the TIGER example, criteria are often

written vaguely enough that many different implementations of varying complexity are plausible,

depending on the agency’s interpretation of the statutory criteria.

An additional complication arises from the fact that the typical appropriations bill authorizes

funding for multiple distinct programs, some of which are allocated by statutory formula and some

of which are not. Figure 4 in Appendix E shows that some large appropriations bills authorize funds

for double-digit numbers of programs; the median bill in the sample authorizes appropriations for

4 distinct programs.

If non-statutory-formula programs look like statutory-formula programs in their complexity, and

if there is no overlap in the sets of factors referenced by each program, then, given the preceding

analysis of statutory formulas the typical appropriations bill allocation complexity would be on
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the order of 12 dimensions. Of course, the differences in budget size and distribution of benefits

between statutory-formula and non-statutory-formula programs are evidence that the two kinds of

programs may not be comparable. And, within the subgroup of statutory-formula programs, some

very common factors, such as total population or per-capita income, show up in the allocation

formula for many different programs. Hence, this back-of-the-envelope estimate is unlikely to be

the right one.

As a consequence of this measurement challenge, I adopt an alternative approach that relies

only on data concerning distributive outcomes to infer the effective dimension of the choice space.

The approach is to ask: supposing that the model presented above is the correct one, what value(s)

of d are most likely to have generated a distribution of spending outcomes like the one we observe

in the data? The overall fit of the model can then be assessed by evaluating how much additional

variation in the data can be explained by the model at the best-fitting value of d, relative to the

baseline (Baron-Ferejohn, d = n) variant.

The method required to implement this approach is described in detail in Appendix D. The

essential component is that the observed distribution of spending under the model is the solution to

the linear program (Equation 4) whose parameters are a function of the policy mapping matrix Γd.

Using this property, it is possible to develop a simulation-based estimator for the effective dimension

of the choice space, d. I can then apply the technique of McFadden (1989) to construct a GMM

objective function and obtain parameter estimates and confidence intervals.

Specifically, there are two moments whose sum of squares the estimator seeks to minimize in

the sample. Each moment is defined at the level of the bill; the optimal choice of d is that which

minimizes the sample-average value of the objective function. The first moment is the difference

between the observed distribution to no-voters and the proposer-optimal distribution, given the
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(b) Objective function values.

Figure 1: Sample average simulated moments and objective function values, as a function of the
dimension of the choice space.

available set of factors on which to condition the spending formula. Figure 1a shows that this

moment is generally increasing in d; the more factors there are available, the easier it is to find an

alternative policy that preserves the winning coalition’s benefit levels while reducing the distribution

outside the winning coalition. When d is highly constrained, proposers have almost no flexibility

and there are essentially no alternatives available that improve the position of the winners at the

expense of the losers; hence this moment approaches zero at the smallest value of d tested, 2.26 As

additional factors are added, the moment rises, with an acceleration occurring around d = 30.

The second moment is the sum of squared residuals in a regression of the non-zero elements of

26I skip the trivial case of d = 1, where there is only one feasible allocation and this moment value is exactly zero.

27



the observed funding distribution on the mapping matrix Γ.27 The logic here is that in the model,

the matrix Γ is the linear mapping from the equilibrium policy vector to the vector of district-level

spending outcomes. That is, variation in outcomes is entirely “explained,” in the linear-regression

sense, by variation in the columns of Γ - the R2 in a regression of district receipts on Γ would be

exactly 1. Of course, in reality a number of reasons - including measurement error, or unexpected

agency implementation decisions that differ from legislators’ expectations - prevent this from holding

exactly. The GMM approach thus tries to get this moment as small as possible, by choosing Γ that

is complex enough to explain a significant fraction of variation in outcomes. Figure 1a shows that

this moment declines as d increases, with most of the gains achieved by around d = 40.

The GMM objective - which weights both moments equally - trades off these two countervailing

pressures. The resulting graph, shown in Figure 1b, thus displays an inverted-U shape with an

interior minimum. The value of d that minimizes the objective function in the sample (the low

point of Figure 1b) is 42. The simulation estimate is thus quite a bit larger than the extrapolation

from the statutory-formula textual evidence presented earlier, suggesting that project grants and

non-formula programs serve to increase congressional proposers’ flexibility relative to formula grants.

Nonetheless, the estimate is still substantially restricted compared to the theoretical upper bound.

The point estimate implies a 90% reduction in degrees of freedom relative to the Baron-Ferejohn

benchmark.

A confidence interval on this estimate can be constructed by bootstrap resampling from the set

of bills. I resample with replacement from the set of bills, and compute the minimizing value of d,

exactly as just described, for each resample. The resulting distribution of estimates is presented in

Appendix G, Figure 8. The central 95% interval of this distribution is [40, 62]; the 90% interval is

27E.g., the Euclidean norm of the orthogonal projection of the vector of district spending outcomes onto Γ.
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[40, 57].

Model fit and implications

In addition to the estimate of formula dimension just described, the bargaining simulation model

yields some informative fit statistics and additional implications. First, the output of the model at

the estimated dimension can be used to infer the share of funds outside the winning coalition that

can be explained by formula constraints - that is, the fraction that the winning coalition could not

have extracted, given the set of factors available. Second, the model yields the set of factors included

in the simulated formula for each bill; by examining all bills in the sample and finding the factors

that repeatedly appear, we can see which district-level attributes appear to be most important for

determining the distribution of federal spending. Finally, the model outputs the proposer’s optimal

allocation to all districts for each bill. By comparing districts’ allocations when they are in the

winning coalition compared to when they are out of it, we can learn about the kinds of districts

who benefit most from formulaic distribution.

Share of funds distributed to no-voters explained The first moment in the GMM objective

used to fit the model is the difference between the observed distribution to no-voters and the

proposer-optimal distribution for a given bill. The theoretical section provides a useful benchmark

for this moment: if the proposer has complete flexibility (d = N , the Baron-Ferejohn case) the

moment equals the total share of the bill budget distributed to members outside the winning

coalition.28 Comparing the moment value at any given d to this maximal case, then, provides

a measure of model fit: the fraction of distributions outside the winning coalition that remain

28In the benchmark case, the winning coalition takes everything; hence, all distributions to members outside the
winning coalition are unexplained.
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unexplained. Subtracting this ratio from one gives the fraction of distributions outside the winning

coalition that are rationalized by the dimensionality restriction. Computing this ratio for each

bill at the estimated value of d reveals that the fit is quite good: the fraction of distributions to

no-voters “explained” ranges from 80.78% (P.L. 109-171) to 99.87% (P.L. 111-212). The average

value across all 31 bills is 97.6%. Hence, even at d = 42 proposers have little available flexibility;

by acting optimally they could reduce the share of funds going outside the winning coalition (and

redistribute those funds to members of the winning coalition) by only about 2.5%.

Conditioning factors As detailed in Appendix D, the simulation selects columns to include in

the mapping matrix Γ from the set of available district-level covariates on a bill-by-bill basis. By

examining the factors included in the simulated formula for many bills, it is possible to get a sense

of the covariates that appear to reliably predict levels of federal spending. Figure 9 in Appendix G

presents the frequency of inclusion for the factors that appear in the simulated formula for at least

half of the bills in the sample.

Examination of the resulting set reveals that measures of household and family size as well

as the income and age distribution are among the most commonly included factors. This is likely

related to the fact that many of the largest programs funded by bills in the sample are means-tested

programs targeted to poor children and the elderly. Moving down the list, the geographic variables

measuring land cover - the type of environments, human or natural, that make up a district’s surface

area - appear frequently, likely related to farming and forestry subsidies that go only to districts

with significant land area dedicated to cultivated crops or forest. Relatedly, the only occupational

variable to make the list is that measuring the fraction of employed residents in farming and fishing

occupations. The remainder of the set consists of measures of housing value, most likely due to

these variables’ predictive value for the allocation of housing subsidies like the Section 8 voucher
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program.

Position-taking and distributive benefits The model also generates some interesting predic-

tions about those districts that benefit most from formulaic allocation. For each bill, the model

outputs the proposer’s optimal distribution to all districts outside of the winning coalition. Using

this information, it is possible to compare districts’ average performance in capturing appropria-

tions when they are part of the winning coalition, to their average performance when they are out

of the winning coalition and the proposer attempts to minimize their allocation given the limited

set of conditioning factors available. The districts for whom this “yea-nay ratio” is highest are those

which benefit most from formulaic allocation, as it is for these districts that the ability of a hostile

majority to cut them out of a distributive deal is most limited.

Figure 2 plots this ratio for each district, against the first-dimension DW-NOMINATE score

of the district’s representative. The denominator of the ratio is the average share of the total bill

budget flowing to a district when that district is in the winning coalition; the numerator is the

average share of the total bill budget that a proposer solving the optimization problem of equation

(4) would have to send to the district when that district is outside of the winning coalition. There

is a clear pattern that more conservative districts have higher ratios; most districts represented by

Republicans have yea-nay ratios close to 1. At the liberal end of the NOMINATE distribution,

however, the ratio drops off fairly steeply. Formulaic spending creates convenient cover for ideologi-

cal conservatives to stake out positions opposed to various federal spending programs - and to back

those positions up with an ideologically consistent roll-call voting record - without suffering the

electorally dangerous consequence of actually denying their constituents access to those programs.

Low-dimensional formulas allow legislators to pander to two different constituencies simultaneously,

potentially engaging in pork-barrel politics while at the same time using their voting record to signal
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ideological purity. The model endogenizes this kind of dual-pandering behavior, as the members

for whom this strategy is feasible are those in districts with attributes that make them hard to cut

out of distributive deals.

Discussion

It is a fact of distributive politics in the US federal context that all funds appropriated by Congress

must pass through the federal bureaucracy before reaching their intended recipient. Before funds

can be distributed, Congress must either assign one of the existing federal agencies to administer

a program, or create a new one. Congress’ instructions to the administering agency regarding the

distribution of funds consist of a set of objective criteria on which bureaucrats may condition the

award of grants, with weights attached indicating the relative importance of each criterion.

This paper has shown that this intermediation - treated as a detail that can be safely abstracted

away in existing theories of distributive politics - is actually essential to understanding the structure,

persistence and size of legislative coalitions on distributive issues. The less complex are the allocation

criteria provided to the bureaucracy, in terms of the number of factors conditioned on, the more

imprecise is the ability of legislative proposers to target funds to particular districts.

As a result, allocation by formulas of limited dimension provides a parsimonious explanation of

multiple features of real distributive politics: oversized coalitions, distribution of funds to districts

whose representatives voted against the authorizing legislation, and the emergence of persistent vot-

ing blocs of districts with common interests. Formulaic allocation also provides cover for legislators

to engage in position-taking No votes without cutting themselves out of the deal, risking the ire

of constituents. This feature is especially valuable for legislators, like those in the US House, who
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Figure 2: A comparison of districts’ relative performance in capturing appropriations when inside
the winning coalition and when outside of it. Each point is a district; the Y-axis gives the ratio
between the average share of the budget allocated to the district when voting Yea and the simulated
proposer-optimal distribution to the district when voting Nay. Both quantities are averages across
all 31 bills in the sample. The X-axis is the average first-dimension DW-NOMINATE score of the
district’s representative in the 109-111th Congresses. The solid blue line is a local-linear smoother;
the dashed black line intersects 1, e.g., the district does equally well when voting Yea as when voting
Nay. The identities of a few outlier districts are labeled.
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must face both ideologically-motivated primary electorates and more pragmatically-minded general

electorates.

Empirically, we have seen that actual allocation formulas, where they can be directly observed,

are in fact quite low-dimensional. In the remaining cases - where program criteria are too vague to

permit explicit measurement from the text of the statute - I applied the model to data on distributive

outcomes to recover an estimate of implicit formula complexity. Usefully, the model nests both the

Baron-Ferejohn model of perfect targeting and the “näıve universalism” hypothesis of perfectly

egalitarian distribution as special cases.29 The data reject both of these polar cases, and support an

intermediate level of the upper bound on formula complexity. The empirical estimate tilts decidedly

towards the lower end of the spectrum of possibilities, however, granting congressional proposers

less than 10% of the conceivable degrees of freedom.

Why would such low-dimensional formulas arise in equilibrium, when members of the legislative

majority clearly have incentives to increase complexity and thereby improve their ability to precisely

target funds? Again, one answer lies in the countervailing incentives of the bureaucrats with whom

legislators must interact.

Bureaucratic agencies are staffed by agents with their own private motivations, which are unlikely

to be purely mercenary (Prendergast 2007). Aligning the missions of federal agencies with the kinds

of broad social missions likely to be present in the population of potential bureaucrats could allow

Congress, a la Besley and Ghatak (2005), to limit the need for high-powered monetary incentives

and may thus reduce the bureaucratic overhead costs involved in redistribution. The trade-off is

that agencies with more universalistic missions are likely to use their budgets in ways that benefit

districts in more universalistic fashion, reducing the opportunity for targeting funds to the majority.

29d = N and d = 1, respectively.
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Some degree of bureaucratic autonomy and professionalization is necessary for such considera-

tions to bind. Hence, we can expect that in past eras with weaker civil service protections and more

direct Congressional control over the bureaucracy, distributive outcomes would tilt more towards

full capture by the winning legislative coalition. Conversely, a strengthening of the bargaining power

of bureaucrats relative to legislators would be expected to shrink the effective formula dimension,

leading to larger coalitions and more funds dispersed outside of the winning coalition.

A second answer is that there may be direct costs to complexity. Returning to the SO2 allowance

example given in the introduction, members of Congress probably had a general sense of what types

of fuels powered the plants of their district’s local electric utility, but it is highly improbable that

they knew the exact operational characteristics of all the generating units operating in their districts.

Moving from a formula involving only the former, general information to one involving the latter,

specific information would have involved real costs in research staff time and in the potential for

errors in prediction.

This complexity reduction benefit is especially pronounced for those legislators involved in draft-

ing a proposal and whipping votes. When the proposal dimension grows large, the number of

possible coalitions to consider quickly becomes astronomical. Limiting proposals to a small set of

formula dimensions, while sacrificing some of the benefits of proposal power, keeps the proposer’s

optimization problem manageable. If legislators are boundedly rational a la Bendor (2010), this

tradeoff may be well worthwhile.
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Appendices

A Proofs

Proof of Proposition 1

Proof. To apply Theorem 1 of Banks-Duggan, we first need to verify three technical conditions:30

1. Explicitly specify the status quo, q as an element in X. I take the status quo to be the zero

vector, which is by definition an element of every Xd.

2. Impose the requirement that the discount rate δi of every individual is identical, e.g. δi = δ ∀i.

3. Define individual i’s payoff from an outcome (x, t) as (1−δt−1)ui(q)+δt−1ui(x) and normalize

ui(q) = 0 for every i. This condition is already satisfied given the definitions q = 0 and

ui,d(x) = (Γdx)i.

And then check that the three main conditions of the theorem are met:

1. Each Xd is nonempty, convex, and compact.

2. The ui,d’s are concave and continuous.

3. For every i there exists some xi ∈ Xd such that ui,d(xi) > 0.

1) 0 ∈ Xd for any B, Γd, so Xd is nonempty. Convexity and compactness follow immediately

from the linear budget constraint and non-negativity constraints that define Xd. 2) Concavity and

continuity are ensured by the linearity of the utility function. 3) The assumptions that B > 0 and

30See the discussion on pp. 85 of Banks and Duggan (2000) for the logic underlying these conditions.
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∃ki s.t. (Γd)i,ki > 0 for all i imply that there is a feasible allocation (0, 0, ..., 0, B/(
∑

i(Γd)i,ki), 0, ..., 0)

- e.g., spending the entire budget on dimension ki and zero on all other dimensions - that gives i

strictly positive utility.

Proof of Proposition 2 To establish this claim, a few definitions are in order. First denote by

S(π∗d) the support of the equilibrium proposal strategy profile π∗d. Then, define for each Xd the set

of decisive coalitions that unanimously accept a proposal in equilibrium with positive probability:

Definition 1. Wd ≡ {C ∈ D : S(π∗d)
⋂
AC,d 6= ∅}

Next, a few lemmas prove useful in establishing the main result. Lemma 1 shows that all

equilibrium proposals must expend the full budget:

Lemma 1. For all x ∈ S(π∗d) and any d, β(x) = B.

Proof. Suppose not, and let i be a member who proposes x with β(x) < B in equilibrium. By

(A1) there exists some basis vector ek and some ε ∈ R++ such that x + εek yields strictly higher

utility for i and weakly higher utility for all other members. This is inconsistent with the sequential

rationality and no-weakly-dominated-voting assumptions.

Lemma 2 requires that the minimum cost of a policy acceptable to some coalition cannot decrease

if additional members are added to the coalition. Furthermore, if there exists a policy such that

all continuation value constraints for a given coalition can be exactly satisfied, the minimum-cost

policy must strictly increase when additional members are added:

Lemma 2. If C ′ ⊂ C, then for any d:

1. minx∈AC,d
β(x) ≥ miny∈AC′,d

β(y).
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2. If ∃ y ∈ Xd with β(y) =
∑

i∈C′

(∑
j ρj
∫
Xd

[Γdz]iπ
∗
j,d(dz)

)
then the inequality is strict.

Proof. C ⊃ C ′ directly implies that AC,d ⊆ AC′,d. The first part of the lemma then follows imme-

diately. To show the second part, note that in stationary equilibrium:

AC,d = {x ∈ Xd : [Γdx]i ≥ vi,d ∀i ∈ C}

Substituting into the definition of β(·) and vi, we have that:

β(x) ≥
∑
i∈C

(∑
j

ρj

∫
Xd

[Γdz]iπ
∗
j,d(dz)

)

β(y) ≥
∑
i∈C′

(∑
j

ρj

∫
Xd

[Γdz]iπ
∗
j,d(dz)

)

The sum defining the lower bound of β(x) is strictly greater than the lower bound of β(y), because

each member’s continuation value must be interior to the set of possible utility values and hence,

if (A1) holds, must be strictly positive. Hence if there is a y that achieves the lower bound,

minx∈AC,d
β(x) > miny∈AC′,d

β(y).

Finally, Lemma 3 shows that we can redefine the objective function of a proposer in terms of

minimizing the amounts distributed to all other members. This property proves useful in generating

necessary conditions for equilibrium.

Lemma 3. Let Zd ≡ {x ∈ Xd : β(x) = B}
⋂
Ad, and define β−i(x) ≡

∑
j 6=i[Γdx]j. When recognized,

a member i proposes some xi ∈ arg minx∈Zd
β−i(x).

Proof. Given Lemma 1, we have that for x ∈ S(π∗i,d), ui(x) = B − β−i(x).
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With the above lemmas in hand, it is now possible to proceed to the proof of the main result in

Proposition 2.

Proposition. Let d+ > d−. If C+ ⊃ C− where C− ∈ Wd−, then C+ /∈ Wd− implies C+ /∈ Wd+.

Proof. Suppose not. Let j be a member who is in C+ but not in C−. Lemma 2 implies minx∈AC+,d−
β−i(x) ≥

miny∈AC−,d−
β−i(y) for i ∈ C−. By Lemma 3, the fact that C+ /∈ Wd− implies the inequality is strict.

This implies that there exists some x ∈ AC−,d−
⋂
{z ∈ Xd− : β(z) = B} which all members of C−

strictly prefer to any element of AC+,d−
⋂
{z ∈ Xd− : β(z) = B}, and therefore to any element of

Aj,d−
⋂
{z ∈ Xd− : β(z) = B}.

Consider some y ∈ Aj,d−
⋂
{z ∈ Xd− : β(z) = B}. Such an element exits by (A1). By the

preceding argument, ∀i ∈ C−, xPiy. Applying the definition of the utility function, we have:

[Γd−(x− y)]i > 0, ∀ i ∈ C−

⇒ [Γd+((x, 0)− (y, 0))]i > 0, ∀ i ∈ C−

Furthermore, β(x) = β(y) = B, so β(x − y) = 0. Now consider any z ∈ S(π∗d+)
⋂
AC+,d+ , which

exists by C+ ∈ Wd+ . Given the definition of the choice spaces, (y, 0) and (x, 0) are in Xd+ . For

any such z, z + ε((x, 0)− (y, 0)) for some small scalar ε is both feasible and strictly preferred by all

members of a decisive coalition, which is inconsistent with equilibrium.

Proof of Proposition 3

Proposition. Suppose d = rank (Γd) < n. There exists a partition of N into d subsets {N1, N2, . . . , Nd}

41



such that all members of each subset always vote together in every equilibrium.

Proof. Let U be the n-dimensional space of utilities for all members of N , endowed with basis

vectors (u1, u2, . . . , un). Define V to be the projection Γdx, x ∈ Xd. V is thus the set of feasible

utility vectors given Γd. By the fundamental theorem of linear algebra, V has dimension d, and

therefore there exists a set of basis vectors (e1, e2, . . . , ed) which span it. V ⊂ U , so (u1, u2, . . . , un)

also span V . Any point v ∈ V can be expressed as:

v =
d∑

k=1

ak(v)ek

or:

v =
n∑

k=1

bk(v)uk

This implies we can find a partition of N into d disjoint subsets {N1, N2, . . . , Nd} (i.e., N =⋃d
k=1 Nk and Nk

⋂
Nl = ∅ for any k 6= l) such that:

ek =
∑
l∈Nk

clul

For some constants cl > 0. Then,

v =
d∑

k=1

ak(v)ek =
d∑

k=1

[
ak(v)

∑
l∈Nk

clul

]
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This implies that for any i, j ∈ Nk:

ui(v) = ak(v)ci

uj(v) = ak(v)cj

In the bargaining model, the claim “i and j always vote together” is equivalent to the statement

ui(v) ≥ vi ⇔ uj(v) ≥ vj. To prove this, note that:

ui(v) ≥ vi ⇒ ak(v)ci ≥
∑
l

ρl

∫
V

[ak(z)ek]i π
∗
d(dz)

Substituting for ak(v), we get:

ci
cj
uj(v) ≥

∑
l

ρl

∫
V

[ak(z)ek]i π
∗
d(dz)

And multiplying through by
cj
ci

gives the necessary equivalence. Reversing the indices proves the

“only if” part of the claim.

Proof of Proposition 4

Proposition. Define q = minD∈D |D|. If rank(Γd) > n − q
2
, all coalitions in Wd are minimal

winning, i.e. C ∈ Wd ⇒ |C| = q. If rank(Γd) ≤ n− q
2
, there exist equilibria in which non-minimal

winning coalitions occur with positive probability.

Proof. Given Proposition 3, it suffices to consider possible combinations of the subsets in the parti-

tion {N1, N2, . . . Nd}. A necessary condition for a non-minimal winning coalition is that the second

smallest subset Nk included in the winning coalition must be at least size two; otherwise all subsets
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in the winning coalition, if recognized, could do strictly better by dropping one of the size-one

groups, and this bill would still have sufficient votes to pass. Constructing a minimal winning

coalition from subsets of size 2 or larger is possible only if there are at least q
2

such subsets. This

implies a maximum total number of subsets of n− q + q
2

= n− q
2
.

B Vote-buying variant

The results of the theoretical section apply equally well to a vote-buying model where a member

with monopoly proposal power attempts to secure passage of a bill by distributing side-payments to

members. Suppose that every member i’s utility value of passing some bill is given by vi. Suppose,

as in the basic model, that the proposer can select a vector x ∈ Xd subject to the budget constraint

B, and members’ utilities from this side-payment are given by Γdx. A member’s total utility is thus

vi + [Γdx]i if the package of bill and side-payments passes, and 0 otherwise.

This model is essentially identical to the bargaining model described in the main text, with

the simplifying feature that the endogenous continuation value in the bargaining model is replaced

with the constant value vi. Propositions 2, 3 and 4 go through unchanged in this setting. With

vi,d = vi (a constant), we have the useful property that if x ∈ AC,d then (x, ε) ∈ AC,d′ for any d′ > d,

any coalition C, and any vector ε. Under the assumption that the proposer attempts to minimize

total side-payments conditional on passing the bill, this property allows us to state the following

additional comparative static on d:

Proposition 5. Let d+ > d−, and choose any x ∈ π∗d−, y ∈ π∗d+. Then β(y) ≤ β(x).

Proof. Given the structure of the choice sets, (x, 0) is available in Xd+ . Further, the property

that continuation values are constant implies that if x ∈ AC,d− then (x, 0) ∈ AC,d+ . So (x, 0) is
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both available, feasible (since β((x, 0)) = β(x) ≤ B by the fact that x ∈ π∗d), and could pass

with the support of a decisive coalition. Under the assumption that the proposer attempts to

minimize total side-payments conditional on passing the bill, y 6= (x, 0) can be chosen only if

β(y) ≤ β((x, 0)) = β(x).

Proposition 5 gives us the intuitive result that the proposer’s cost of passing a bill decreases

when side payments can be more accurately targeted. Cost is minimized when the full utility space

is available, e.g. d ≥ n.

C Predictability of spending program allocations

One possible interpretation of the model is that the elements of the proposal vector represent the

budget allocated to various pre-existing distributive programs whose expected distribution of funds

to districts is predictable and known in advance. This interpretation would be appropriate if the

expenditure profile of each program were stable over time, that is, if the “recurrence rate” (Stein

and Bickers 1997) - the probability that a district which receives benefits from program X in year

Y also receives benefits from program X in year Y + 1 - were high. To assess the validity of this

assumption, figures 3a and 3b show two measures of within-program stability.

Figure 3a plots the distribution of R2 values in regressions of of each district’s allocation from

a given program in year y on the same district’s allocation from the same program in year y − 1.

There is one such regression for each program in the USAspending / CFDA data; the figure plots

the kernel density estimate of the density of R2 values over all programs. For comparison purposes,

the right panel of the figure shows the result of the same computation when the actual program

allocations are replaced with a random baseline in which each program’s allocations are drawn from
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a Bernoulli-exponential mixture distribution with the same expected number of districts benefiting

and same expected per-district benefit level as the actual program. Unsurprisingly, the baseline

values are close to a point mass at 0, whereas a significant mass of the real distribution exceeds

0.75; in other words, there are many programs for which last year’s allocation is a very good

predictor of this year’s.

Figure 3b uses a different measure of predictability that incorporates only the set of districts

benefiting, not the benefit levels, analogous to the “recurrence rate” of Stein and Bickers (1997). For

every program-year, I plot the fraction of districts which are ever (in any year) observed receiving

benefits from that program, which receive benefits from that program in that year. By construction,

this measure ranges from 0 to 1: it equals 1 if and only if the same set of districts benefit from the

program in every year. I take the average of the yearly values within program across all years, and

plot the resulting distribution of (program-level) overlap scores. Again, the actual distribution has

a substantial mass close to 1. Because this measure will be nonzero even for completely random

allocations, for comparison I plot the distribution of overlap scores resulting from the baseline

Bernoulli-exponential mixture distribution with the same expected number of districts benefiting

and same expected per-district benefit level as the actual program.

D Estimation Details

In this section I detail the procedure to estimate the dimension of the choice space, d. The procedure

involves, for each bill in the sample, constructing the mapping matrix Γ for a given dimension,

drawing a large number of possible values of the equilibrium policy vector x∗, and solving the linear

program describing the proposer’s objective (given in equation 4) for each one. I describe each step
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in turn.

D.1 Construction of Γ for each bill

The columns of the matrix Γ are a selection from a set of 160 district-level attributes described

extensively in section E.3; the set includes a variety of demographic, geographic, and economic

characteristics collected by the federal government. For each bill, I rank all 160 attributes according

to the proportion of variance in spending outcomes among districts receiving positive allocations

from that bill that is explained by the attribute. The matrix Γd for bill b, then, contains the d− 1

attributes with greatest explanatory power for bill b plus a column of ones (a constant term).31

I account for the fact that the distribution of outcomes involves a significant fraction of zeros by

using the model presented in Table 1, column (5) to predict a probability pij that district i receives

any grants as a result of bill j. This probability pij then multiplies the i-th row of the matrix Γ for

bill j. I.e., the i-th row of Γ now gives the expected benefit to district i from changes in any of the

formula elements.

D.2 The objective function

Equation (4) suggests a formulation of the objective as a function of the parameter d. At the true

value of Γd, districts outside of the winning coalition get the minimum possible distribution given

Γd and the constraint that all members of the winning coalition must get at least their observed

distribution. To estimate d, then, we should select the value that, on average, yield optimal solutions

that are close to the observed distribution.

31In other words, although the complete set of attributes is common to all bills, the attributes included in Γd for
any given value of d will vary by bill.
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I implement this idea by following the method of simulated moments (MSM) approach of Mc-

Fadden (1989). This approach yields a GMM objective function which is somewhat time-consuming

but straightforward to compute. It involves sampling from the feasible set of policy vectors x given

Γd,
32 solving the linear program of equation (4) for each one, and computing an average deviation

from the observed distribution.

To define the MSM objective function, first define for a given bill b the vector ∆b(Γ) with N

components indexed by i:

∆b
i(Γ) = ubi − ũbi(Γ) (4)

Where ũbi is the optimal allocation to district i in bill b given by the solution to the problem of

eqaution (4); and ubi is the expected allocation to district i that would result from bill b given the

bill’s equilibrium policy vector x∗b . Let lb be a vector that takes value lbi = 0 if i is in the winning

coalition on bill b, and lbi = 1 otherwise. Then, at the true value of Γ,

E[
∑
i

lbi∆
b
i ] = 0 (5)

Hence, we have a moment condition which is zero at the true value of Γ. Because the policy

vector x∗b is unobserved, neither the expected allocation ubi nor the proposer-optimal allocation ũbi

can be observed directly. I construct a simulator for this moment by drawing S values of x∗b from

the feasible set of policy vectors given Γd.
33

“Feasible” here means that the the vector expends the full budget of bill b and gives every

32The feasible set is the set of values of x that, given a mapping matrix Γd, yields non-negative distributions for
every member, and satisfies the overall budget constraint that the bill not expend more than the total observed
amount.

33In the results presented in the following sections, I will set S = 5000.
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district a non-negative expected allocation. The sampling is accomplished by constructing a basis

for the null space of the (1×d) matrix consisting of the column sums of Γ, and sampling, at random,

combinations of the vectors in the basis which are then added to a feasible starting point. I.e., given

some feasible xb,0, I construct a new sample xb,s as:

xb,s = xb,0 + Ωb,dws (6)

Where Ωb,d is a (d × d − 1) matrix whose columns are a basis for the null space of the column

sums matrix for bill b, and ws is a vector of d− 1 weights drawn from a uniform distribution. This

works because the basis vectors in the null space of the column sum matrix are, by construction,

zero-net-cost, and the ranges for the uniform draws can be chosen such that the result respects the

non-negativity constraints for every district. Hence, if xb,0 is feasible, then xb,s is also feasible. This

process is repeated 5000 times to generate 5000 samples of xb,s.

The simulated moment m̂b
1 for each bill b is thus defined by:

m̂b
1 =

∑
i

1

S

S∑
s=1

lbi∆
b
i,s(Γ) (7)

A second moment arises from a condition imposed by the fact that Γ defines a linear mapping

from X to U , which is that the equilibrium distribution must lie in the column space of Γ. In real

data with any amount of measurement error, this condition will never be exactly satisfied unless

d = N . Similar logic to that above implies that we should try to get the distance from the observed

allocation to the column space as small as possible. In other words, we should search for values of

d that could have produced distributions of outcomes similar to the ones we observe in the data.

To achieve this I construct another moment equal to the average difference between the observed
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outcome for district i on bill b and the projection of the vector of outcomes onto the column space

of Γ:

m̂b
2 =

∑
i

ubi − (Γ(Γ′Γ)−1Γ′ub)i (8)

Putting the two components together as m̂b =

m̂b
1

m̂b
2

, we have a total of 2 moments. Since

there is only one parameter (d), the system is overidentified, and estimation must be by GMM. The

GMM objective function is:

QB(d) =

[
1

B

B∑
b=1

m̂b

]′
WB

[
1

B

B∑
b=1

m̂b

]
(9)

Where b indexes bills, B is the total number of bills in the sample, and WB is a 2 × 2 positive

definite weighting matrix. Because the two moments are similarly scaled and I have no a priori

reason to prefer one over the other, I choose WB to be the two-dimensional identity matrix.34 The

objective function is thus just the sum of squares of the sample average moment vector 1
B

∑B
b=1 m̂

b.

One complication to the GMM approach is that the parameter d (the dimension of the choice

space) takes only integer values. Hence, it is inappropriate to use standard gradient- or simplex-

based methods to find the minimum of the objective function. I circumvent this problem by noting

that the possible values of d fall into a finite and known range defined by Proposition 4, namely:

d ∈
{

2, 3, . . . , n− q
2

}
, where q is the minimum coalition size needed to pass a bill. It is, therefore,

possible to simply compute values of the moments, and thus objective function values, for each

candidate value of d. Comparing the function values across candidate values of d and selecting the

34Other reasonable choices choices for WB , such as using an estimate of the inverse covariance matrix of the sample
moments, yield similar results.
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minimum of these yields my estimate of d.

D.3 Estimation of d

As described above, computing a point estimate for d simply requires finding the minimum of

the function value over all values of d computed in the previous section. To construct confidence

intervals, I employed a simple nonparametric bootstrap technique, resampling bills with replacement

and computing the minimizing value of d as described above for each bootstrapped resample. I

repeated this procedure for all 1000 bootstrap resamples, and report the central 95% interval of the

resulting (discrete) distribution as the confidence interval for d.

E Data

Estimating the effective degree of formula complexity d present in real appropriations legislation

requires three distinct data sources. First, spending data on funds appropriated by a legislature

that allows me to identify both the district in which funds are spent and the authorizing legislation.

Second, voting data that reveals each district’s position on each spending bill. And third, observ-

able characteristics of the districts that form the basis of the policy mapping matrix Γ. I focus

on the US House of Representatives and use spending, voting, and characteristic data defined at

the congressional district level. Each of the three categories of data are described in detail below.

E.1 Spending

Spending data comes from the US Department of Treasury’s USAspending.gov, a website established

by the Federal Funding Accountability and Transparency Act of 2006 in order to “give the American
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public access to information on how their tax dollars are being spent.”35 USAspending data covers

federal contract, grant, loan, and other financial assistance awards of more than $25,000, identifying

the amount of the award, the location of the recipient and the place of performance. I downloaded

USAspending data covering fiscal years 2005 through 2011, covering the sessions of the 109th to

111th Congresses.

USAspending records domestic recipients of federal assistance (including loans and cash grants

to individuals and companies as well as assistance to state and local governments) from 195 federal

agencies, covering a total of 639 distinct assistance programs. Critically for my purposes, US-

Aspending provides geographic identifying information, allowing me to determine the congressional

district of each recipient. I use the recipient’s congressional district except where USAspending

identifies the recipient as a state government or state-controlled institution of higher education,

in which case I use the “place of performance” congressional district. This is to ensure that, for

instance, an NSF grant to researchers at the University of Alabama in Huntsville counts for the

district containing Huntsville (AL-05) and not that containing the headquarters of the Alabama

university system in Tuscaloosa (AL-07).36

USAspending also provides two additional identifiers on each grant which prove important: the

federal agency that made the grant, and the specific program under which the grant was made.

The program numbers correspond to programs listed in the Catalog of Federal Domestic Assistance

(CFDA), produced by the US Census department.37 The CFDA contains a field that indicates,

35https://www.usaspending.gov/about/usaspending/Pages/default.aspx
36In cases where USAspending did not provide congressional district information directly, I used the ZIP code

or county of recipient or place of performance to identify the congressional district. As some counties / ZIP codes
cross district boundaries, I used the Census Department’s ZIP- or county-to-district relationship files to allocate
the amounts for these entries according to the fraction of the total population of the ZIP / county living in each
congressional district.

37The CFDA has been used to track the histories of federal spending programs by, among others, Stein and Bickers
(1997) and Berry, Burden, and Howell (2010a).
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for each program, the legislation that authorized the creation of the program. For example, the

CFDA allows me to determine that funding for program 10.025, “Plant and Animal Disease, Pest

Control, and Animal Care,” was authorized by the Plant Protection Act, Public Law 106-224.

Grants made by agencies under program 10.025 subsequent to the passage of 106-224 that show up

in USAspending can therefore be traced back to Public Law 106-224.38 In cases where multiple bills

authorize appropriations for the same program - as occurs when a reauthorization appropriates new

funding for a continuing program established in a previous bill - I attribute all amounts distributed

after the passage of the bill and before the passage of the next bill appropriating for the same

program to the prior bill.

Finally, USAspending classifies expenditures as one of several assistance types. The distribution

of expenditures by assistance type is shown Table 3. The largest category, making up approximately

half of the total expenditures in USAspending, are direct payments to individuals, corporations and

institutions, a category that includes agricultural subsidies like the Dairy Product Price Support

program as well as federal student aid such as the Pell Grant program. The second largest category

are formula grants, which are allocated according to statutory formula and typically, though not

always, directed to state or local governments or non-profit institutions. Block grants, similarly,

are directed to states according to formula but with fewer restrictions on how they may be used

or allocated within the state. Project grants and cooperative agreements are grants for specific,

localized projects - such as investments in new public transportation infrastructure - either allocated

through a competitive application process or “earmarked” for a specific project specified in the

statute. Loans, loan guarantees and insurance make up the remainder.39

38Public Law numbers are sequential; 106-224 indicates the 224th law passed by the 106th Congress.
39As Stein and Bickers (1997) note, there can be huge differences between the potential liability incurred by a

federal loan guarantee and the amount that is actually disbursed; a billion-dollar loan guarantee may ultimately
require no expenditure at all if the debtor does not default. I follow Stein and Bickers (1997) in using the amounts
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Type Total.Allocation ($B) # Programs # Bills
Direct Payment 638.89 69 14
Formula Grant 389.25 118 24
Project Grant 185.64 367 44
Cooperative Agreement 42.59 234 32
Block Grant 33.84 69 19
Other 13.06 39 8
Loans and Loan Guarantees 2.74 20 5
Insurance 0.15 4 3

Table 3: The distribution of federal outlays in the 51 public laws in the sample. Dollar amounts are
in billions. The number of programs and number of bills columns count the number of programs or
bills, respectively, that provide any assistance of the listed type.

I aggregate the spending data by district and authorizing public law, such that each entry in my

final spending dataset contains the total amount spent in a single district during FY2005-2011 that

was authorized by a single law. I include only laws passed by the 109th through 111th Congresses,

for two reasons. One, there was no significant redrawing of districts during this period, such that the

district boundaries in these three Congresses are the same as the districts identified in USAspending.

Two, my spending data covers only 2005-2011 and as such is only likely to be a good measure of

the short-term consequences of recently passed bills.

This initial screen yielded a total of 58 separate bills in this period cited as authorizing spending

on CFDA-listed programs. Of these, I excluded from the sample seven bills that show up in the

USAspending data but that are inappropriate to include. I dropped, for example, defense autho-

rization bills, whose primary distributive consequences do not show up in CFDA-listed programs.

I also dropped several bills with strong ideological content and minor distributive consequences,

including the Emergency Economic Stabilization Act of 2008, the Dodd-Frank Wall Street Reform

Act, and the Children’s Supplemental Health Insurance Reauthorization Act.

Of the remaining 51 bills, I retained those which authorized positive amounts in either the

appropriated rather than the nominal value of the loan, with the result that many loan guarantee programs have
zero expenditure.
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formula grant, direct payment, or block grant categories. The model is most applicable to these

types of spending, which are allocated either by explicit statutory formula or according to well-

defined, objective criteria.40 As Table 4 shows, bills authorizing some of at least one of these types

of spending account for the vast majority of all spending in the data; bills authorizing only project

grants or loans are several orders of magnitude smaller in terms of budgetary impact. However,

I include all spending types (not just formula grants, block grants, and direct payments) in the

calculation of total district-level spending authorized by each bill, for two reasons. One, members

vote on the full package of appropriations authorized by a bill, not separately on the formula and

project grant components; a yes vote on final passage can be interpreted as approval of the bundle

but not necessarily of any of its components individually. Two, to the extent that congressional

leaders can use project grants or other forms of spending to target important swing districts, this

flexibility should appropriately be counted in any estimate of the dimensionality of congressional

proposals. Including only the formula components would tend to bias such estimates downward,

relative to the actual menu of proposals available to congressional leaders.

The final dataset thus defined contains 31 bills, with 435 rows for each bill corresponding to the

total district-level spending that the bill authorized. The bills included in the sample are given in

Table 5. This table shows the number of districts voting yes on each bill, the number of districts

receiving positive spending allocations, as well as the amount of funding received by the district

with the median and highest spending, respectively, that resulted from the bill.

40For example, Pell Grants are available to full-time undergraduate students meeting family income limits, and
milk price support payments are available to owners of dairy cattle.
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Figure 4: The distribution of the number of distinct (CFDA-recognized) programs for which funds
are authorized by bills in the sample.
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Figure 5: Distribution of CFDA programs allocated by statutory formula, by the number of factors
referenced in the allocation formula.
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Figure 6: Kernel density estimate of the number of districts receiving funds from CFDA programs,
among programs with and without statutory formulas.
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Only Specified
Categories

All Spending

Sample N Median Total Median Total
Formula 21 0.30 389.26 3.62 1246.94
Formula + Direct 26 0.44 1028.15 1.91 1249.00
Formula + Direct + Block 31 0.69 1061.99 2.39 1301.83
Others 20 0.08 4.34 0.08 4.33

Table 4: Median and total spending levels among different sample definitions. Dollar amounts are
in millions. ’Formula’ is the set of bills which authorize positive levels of Formula Grants; Formula
+ Direct is the set of bills which authorize positive amounts in either the Formula Grant or Direct
Payment category; Formula + Direct + Block is the set of bills which authorize positive amounts in
either Formula Grant, Direct Payment or Block Grant categories. ’Others’ is the set of bills which
do not meet any of these criteria. The third and fourth columns are the amounts authorized in
the categories used to define the subsets, e.g. only Formula Grants for the Formula Grants sample.
The fifth and sixth columns include all spending types.

E.2 Votes

Roll-call vote data for the 109th, 110th, and 111th Congresses was downloaded from Keith Poole’s

voteview.com. To extract only the votes on the bills in the sample defined in table 5, I consulted the

Library of Congress’ THOMAS database.41 THOMAS’ Bills and Resolutions database provided a

list of all House bills and the last major action on each - including, when applicable, the public law

that the bill ultimately became. Using this database I was able to match, for instance, the 109th

Congress’ H.R.1270 into Public Law 109-6.

I then searched for the house resolution number in the roll-call vote database, and extracted

the appropriate final passage vote. This vector of votes was matched to the corresponding law in

the sample. I coded all yea-voters on a given bill as the winning coalition for that bill, and all

non-yea-voters (i.e. those who voted nay or abstained) as not in the winning coalition. Table 5

provides summary measures of the coalition sizes for each bill.

41http://thomas.loc.gov
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A visual inspection of the data shows that the inverted-U-shaped distribution predicted by

standard vote buying models is difficult to discern, as even very extreme members get significant

distributions of funds in most bills in the sample. Figures 7a and 7b show the allocation of funds

in two example bills, the 110th Congress’ Improving Head Start for School Readiness Act of 2007

(Public Law 110-134) and the 111th Congress’ American Recovery and Reinvestment Act (ARRA,

also known as the Recovery Act, Public Law 111-5). The y-axis measures the share of the bill’s total

expenditures spent in each district; points are individual districts, arranged by DW-NOMINATE

rank from most liberal to most conservative.

The Democratic congressional majority responsible for both 110-134 and 111-5 appears to have

achieved a slight Democratic tilt to the appropriations, with particularly conservative Republican

districts getting below-average shares in both bills. But marginal Democratic districts - the kind

of swing-district votes which the leadership would need to secure to ensure passage of the bill -

do not appear to do any better than the most liberal members of the caucus; if anything, they do

worse. This pattern of results is consistent with the vote-buying variant of the model presented

here: proposers (in this case, the Democratic party leadership) attempt to target funds to marginal

districts, but due to formula restrictions end up buying off inframarginal districts as well.

E.3 Characteristics

To construct the policy mapping matrix Γ, I used data from two primary sources: demographic

data from the US Census, and geographic data from the US Geological Survey (USGS) and the

National Oceanic and Atmospheric Administration (NOAA).

Demographic variables are derived from the the Census Department’s 2010 Census of Popu-

lation and Housing 110-112th Congressional District Summary File, as provided by the National
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(a) Public Law 110-134 (b) Public Law 111-5

Figure 7: Distribution of funds by ideology in two example bills.
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Historical Geographic Information System (NHGIS) (Minnesota Population Center 2011). The cen-

sus variables include information on each district’s urban/rural makeup, age distribution, income

distribution, poverty rates, household composition, occupational and employment distribution, ed-

ucation levels, housing stock, and numerous other factors. The complete set of variables is listed in

Table 7.

Geographic variables came from the GTOPO30 Digital Elevation Model42 and National Land

Cover Database 200643 datasets produced by the USGS, as well as the .25× .25 Unified Precipita-

tion44 dataset produced by NOAA. As these datasets are quite high-resolution, I generated summary

statistics at the congressional district level according to a process described in detail in Appendix

F.

The geographic variables included in the vector of observables for each district are: long-term

average monthly precipitation in each month of the year, percentage of the land area covered by

each of the land cover types defined by the USGS45, percentage of the land area that is impervious

(e.g., developed), percentage of the land area covered by tree canopy, and the mean and standard

deviation of elevation (in meters). Combining these variables with the Census-derived population

and economic variables yields a final set of 160 distinct variables.

F Construction of district geographic characteristics

Estimation of the structural model relies on a set of fixed, known district-level characteristics. The

US government releases a huge amount of geographical data (covering features such as topography,

42http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info
43http://www.mrlc.gov/nlcd06_data.php
44http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html
45For a list of the land cover types, see http://www.mrlc.gov/nlcd06_leg.php

63

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info
http://www.mrlc.gov/nlcd06_data.php
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html
http://www.mrlc.gov/nlcd06_leg.php


land cover, and climate), much of which is likely to provide useful information regarding the relative

benefits of different types of public spending to different congressional districts. However, the

observational unit of the geographical data is not a congressional district; it is typically a grid cell

or point, of which a congressional district may contain very many, or none. As a result it is necessary

to perform some aggregation and/or interpolation to get the data into the required district level

of observation. I describe the process employed for each of the datasets in what follows; all code

used to implement the technique is available from the author’s website. The source datasets are

available freely on the web from the publishing agencies.

F.1 National Land Cover Database 2006

The USGS’ National Land Cover Database (NLCD) is a high-resolution raster dataset which splits

the US up into a very fine grid of cells (pixels) and assigns each pixel to one of 20 land cover

categories, such as urbanized area, farmland, forest, etc.46 Each pixel is 30 meters square, implying

that a large congressional district (such as the single at-large district of Wyoming) might contain on

the order of 10 billion pixels. As the raster datasets are huge image files for which read/write access

is slow, it is computationally prohibitive to read billions of pixels for each congressional district.

Instead, I estimate district-level means with a simple geographically stratified sampling technique.

The method employed is to first construct the rectangular bounding box of each district, using

the 110th Congressional district shapefiles provided by the US Census Bureau. I then uniformly

sample 10,000 latitude/longitude points from within this bounding box, access the pixel at that

location, and add its value to the vector of observations for the district in which the point falls.47

46For a full list of the categories, see http://www.mrlc.gov/nlcd06_leg.php
47This may not be the same as the original district from which the bounding box was constructed, as Congressional

districts are rarely rectangular.
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After repeating this process for each of the 435 Congressional districts (leading to a total sample

of 43,500,000 points), I compute the proportion of observations in each district that fall into each

of the 20 land cover types. The result is a 435 × 20 matrix of estimated proportions, each row of

which sums to 1.

I repeat the identical procedure for the NLCD’s Percent Developed Impervious and Percent

Tree Canopy datasets, again using 10,000 sample points per district. The results are estimates of

the percentage of land in each district that is covered by impervious materials and tree canopy,

respectively.

F.2 GTOPO30

The USGS’s GTOPO30 dataset is a raster dataset containing measurements of elevation, covering

the globe at a resolution of 30 arc-seconds (approximately 900m at the equator). While not as

extreme as the NLCD, the problem of excessive data remains. I use the same technique described

in the previous section to estimate mean elevation for each district. Along with the absolute

elevation, the hilliness of terrain (e.g., the variability of elevation) may also influence what types of

public investments are feasible for a given district. I therefore compute sample standard deviations

of elevation for each district along with the sample mean.

F.3 Unified Precipitation Dataset

NOAA’s Unified Precipitation Dataset contains monthly long-term average rainfall totals (in inches)

for a grid of points covering the US at .25 degrees of latitude / longitude intervals (approximately

27.5 km). This grid spacing is wide enough that the total number of points is manageable to directly

compute district means; however, some small urban districts may not contain any grid points. I
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deal with this problem by overlaying the grid points onto the district shapefile; for any district that

contains one or more grid points, I take the average value of the monthly precipitation variables for

each point that falls within the district. For districts that do not contain any grid points, I take

the value from the grid point that is closest to the district’s geographical centroid.

G Additional tables and model output

This section includes some additional regressions and model output omitted from the main text for

brevity. Table 8 presents models analogous to those in Table 1 but with fixed effects at the district

level. The comparison here is within-district, asking how the same district’s share varies when it is

in the winning coalition compared to when it is out. Table 9 presents models analogous to those in

Tables 1 and 8, but where the left-hand side is the absolute dollar amount of spending authorized by

the bill. Table 10 presents the same analysis as Table 1, but for the Senate: the unit of observation

is the bill-state, and the independent variables of interest are the state’s Senate delegation’s vote

on the authorizing legislation. Results are qualitatively similar to those in the main text for the

House, although the sample size is smaller because the Senate did not record a roll-call vote on final

passage of some of the bills in the sample.

Figure 8 reports the distribution of formula dimension estimates resulting from a bootstrapping

exercise described in the results section. And Figure 9 presents a histogram of the frequency of

inclusion in simulated formulas for the most common district-level factors.
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Figure 8: The bootstrapped distribution of formula dimension estimates. The distribution is con-
structed by resampling with replacement from the set of bills, and computing the minimizing value
of d for each resample.

67



Landcover: Percent Mixed Forest

Landcover: Percent Developed Medium Intensity

Landcover: Percent Developed High Intensity

Income: Percent with income >200k

Imperviousness: Percent Developed Impervious

Housing Units: Percent valued at 300−499k

Housing Units: Percent valued at 200−299k

Age: Percent 0−9

Landcover: Percent Woody Wetlands

Landcover: Percent Shrub / Scrub

Landcover: Percent Pasture/Hay

Landcover: Percent Grassland

Landcover: Percent Evergreen Forest

Landcover: Percent Emergent Herbaceous Wetlands

Landcover: Percent Developed Open Space

Landcover: Percent Developed Low Intensity

Landcover: Percent Deciduous Forest

Landcover: Percent Cultivated Crops

Age: Percent 20−29

Occupation: Percent in farming/fishing occupations

Housing Units: Percent valued at 500−999k

Age: Percent 60−69

Age: Percent 70−79

Income: Percent with income <9k

Housing Units: Percent valued at 50−99k

Citizenship: Percent US−born

Age: Percent 50−59

Age: Percent 30−39

Income: 20th percentile income

Income: 60th percentile income

Household Makeup: Average family size

Income: 40th percentile income

Household Makeup: Average household size
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Figure 9: The district-level covariates most commonly included in simulated formulas over the
sample of appropriations bills. The horizontal axis gives the number of bills in the sample, out of
the set of 31, in which the indicated factor is included in the formula generated by the simulation.
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Congress Public Law Law Name Yea Voters Districts Receiving Funding Median District Receipts Maximum District Receipts
109 58 Energy Policy Act of 2005 275 402 $ 6.2M $ 1.2B
109 59 Safe, Accountable, Flexible, Efficient Transportation Equity

Act: A Legacy for Users
412 388 $ 2M $ 321M

109 171 Deficit Reduction Act of 2005 212 208 $ 0 $ 21M
109 307 Children’s Hospital GME Support Reauthorization Act of

2006
421 54 $ 0 $ 49M

109 347 SAFE Port Act 409 46 $ 0 $ 18M
109 415 Ryan White HIV/AIDS Treatment Modernization Act of 2006 325 259 $ 820K $ 356M
109 482 National Institutes of Health Reform Act of 2006 414 265 $ 222K $ 634M
110 5 Revised Continuing Appropriations Resolution, 2007 286 374 $ 482K $ 49M
110 53 Implementing Recommendations of the 9/11 Commission Act

of 2007
371 176 $ 0 $ 1B

110 134 Improving Head Start for School Readiness Act of 2007 381 417 $ 76M $ 1.5B
110 140 Energy Independence and Security Act of 2007 314 411 $ 4.1M $ 5.9B
110 161 Consolidated Appropriations Act, 2008 272 434 $ 6.3M $ 265M
110 206 Traumatic Brain Injury Act of 2008 392 57 $ 0 $ 546K
110 246 Food, Conservation, and Energy Act of 2008 317 434 $ 5.3M $ 256M
110 252 Supplemental Appropriations Act, 2008 416 265 $ 1.4M $ 59M
110 275 Medicare Improvements for Patients and Providers Act of

2008
383 100 $ 0 $ 84M

110 293 Tom Lantos and Henry J. Hyde United States Global Leader-
ship Against HIV/AIDS, Tuberculosis, and Malaria Reautho-
rization Act of 2008

303 44 $ 0 $ 445M

110 329 Consolidated Security, Disaster Assistance, and Continuing
Appropriations Act, 2009

370 180 $ 0 $ 44M

110 377 Poison Center Support, Enhancement, and Awareness Act of
2008

403 58 $ 0 $ 4.4M

110 411 Native American Housing Assistance and Self-Determination
Reauthorization Act of 2008

333 107 $ 0 $ 576M

111 5 American Recovery and Reinvestment Act of 2009 246 435 $ 1.8B $ 36B
111 8 Omnibus Appropriations Act, 2009 237 425 $ 79M $ 6.9B
111 13 Serve America Act 419 128 $ 0 $ 44M
111 80 Agriculture, Rural Development, Food and Drug Administra-

tion, and Related Agencies Appropriations Act, 2010
263 45 $ 0 $ 30M

111 87 Ryan White HIV/AIDS Treatment Extension Act of 2009 408 283 $ 1.3M $ 380M
111 88 Department of the Interior, Environment, and Related Agen-

cies Appropriations Act, 2010
247 64 $ 0 $ 34M

111 117 Consolidated Appropriations Act, 2010 221 427 $ 3.5M $ 123M
111 152 Health Care and Education Reconciliation Act of 2010 220 100 $ 0 $ 558M
111 212 Supplemental Appropriations Act, 2010 308 6 $ 0 $ 478K
111 296 Healthy, Hunger-Free Kids Act of 2010 264 75 $ 0 $ 2.6B
111 312 Tax Relief, Unemployment Insurance Reauthorization, and

Job Creation Act of 2010
277 44 $ 0 $ 2.3M

Table 5: The sample of spending bills
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Congress Public Law Yea Nay Abstain
109 58 $ 29M $ 48M $ 26M
109 59 $ 9M $ 2.3M $ 4.4M
109 171 $ 869.4K $ 1.3M $ 3M
109 307 $ 1.5M $ 0 $ 1.6M
109 347 $ 131K $ 0 $ 50K
109 415 $ 3.5M $ 12.1M $ 6.6M
109 482 $ 9.8M $ 5.6M $ 9.1M
110 5 $ 2M $ 1.1M $ 1.2M
110 53 $ 13.6M $ 3.2M $ 61.2M
110 134 $ 105M $ 59M $ 144M
110 140 $ 32.5M $ 9.1M $ 14.2M
110 161 $ 12M $ 24M $ 30M
110 206 $ 25K $ 0 $ 28K
110 246 $ 13.7M $ 8.9M $ 10.4M
110 252 $ 2.8M $ 1.9M $ 2.4M
110 275 $ 420K $ 60K $ 146K
110 293 $ 4.2M $ 414.6K $ 0
110 329 $ 816K $ 163K $ 252K
110 377 $ 152K $ 65K $ 202K
110 411 $ 8.6M $ 2.5M $ 22.1M
111 5 $ 2.7B $ 2.3B $ 2.2B
111 8 $ 197M $ 76M $ 133M
111 13 $ 542K $ 145K
111 80 $ 950K $ 372K $ 0
111 87 $ 8.5M $ 1.1M $ 8.4M
111 88 $ 187K $ 124K $ 0
111 117 $ 7.1M $ 4.3M $ 15.8M
111 152 $ 7.3M $ 4.9M $ 4.8M
111 212 $ 1.9K $ 0 $ 14.5K
111 296 $ 28M $ 19M $ 12M
111 312 $ 22K $ 58K $ 0

Table 6: USAspending distributions by vote. The columns labeled Yea, Nay and Abstain give the
average USAspending funds received by districts voting Yea, Nay, or abstaining, respectively, on
the final passage vote of the indicated public law.
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Category Variables
Urbanity Percent urban; Percent suburban; Percent rural
Race Percent white;Percent black;Percent indian;Percent asian;Percent other;Percent mixed;Percent hispanic
Gender Percent male
Age Percent 0-9; Percent 10-19; Percent 20-29; Percent 30-39; Percent 40-49; Percent 50-59; Percent 60-69; Percent

70-79; Percent 80-89
Household Makeup Percent married family households; Percent unmarried family households; Percent single non family house-

holds; Percent joint non family households; Average household size; Average family size
Group Quarters Population Percent of pop. in prison; Percent of pop. in juvenile group housing; Percent of pop. in nursing homes;

Percent of pop. in college dormitories; Percent of pop. in military base housing
Housing Tenure Percent owners; Percent renters
Citizenship Percent US-born; Percent naturalized citizens; Percent noncitizens
Commutes Percent driving to work; Percent carpooling to work; Percent taking transit to work; Percent walking to

work; Percent telecommuting; Percent commutes <15min; Percent commutes 15-30min; Percent commutes
30-45min; Percent commutes 45-90min

Education Percent with no high school; Percent high school dropout; Percent high school graduate, no college; Percent
with some college, no degree; Percent with bachelors degree only; Percent with postgraduate degree

Poverty Percent below poverty line
Employment Percent employed; Percent unemployed
Income Percent with income <9k; Percent with income 10-14k; Percent with income 15-19k; Percent with income

20-24k; Percent with income 25-29k; Percent with income 30-34k; Percent with income 35-39k; Percent with
income 40-44k; Percent with income 45-49k; Percent with income 50-59k; Percent with income 60-74k; Percent
with income 75-99k; Percent with income 100-124k; Percent with income 125-149k; Percent with income 150-
199k; Percent with income >200k; Percent with social security income; Percent with supplemental security
income; Percent receiving public assistance; Percent receiving food stamps; Percent with retirement plan
income; 20th percentile income; 40th percentile income; 60th percentile income; 80th percentile income; 95th
percentile income

Veterans Percent veterans
Occupation Percent in management occupations; Percent in science/engineering occupations; Percent in education occu-

pations; Percent in health occupations; Percent in health support occupations; Percent in protective occu-
pations; Percent in food service occupations; Percent in customer service occupations; Percent in caregiving
occupations; Percent in sales occupations; Percent in administrative occupations; Percent in farming/fishing
occupations; Percent in construction occupations; Percent in maintenance occupations; Percent in production
occupations; Percent in transportation occupations; Percent in moving occupations

Industries Percent in agriculture industry; Percent in mining industry; Percent in construction industry; Percent in
manufacturing industry; Percent in wholesale industry; Percent in retail industry; Percent in transportation
industry; Percent in utilities industry; Percent in information industry; Percent in finance industry; Percent
in real estate industry; Percent in professional services industry; Percent in management industry; Percent
in administrative support industry; Percent in education industry; Percent in health industry; Percent in
entertainment industry; Percent in hospitality industry; Percent in other service industry; Percent in public
administration industry

Housing Units Percent in single family homes; Percent in small multi-unit buildings; Percent in large multi-unit buildings;
Percent in mobile homes; Median year built; Percent with 0 bedrooms; Percent with 1 bedrooms; Percent with
2 bedrooms; Percent with 3 bedrooms; Percent with 4 bedrooms; Percent with 5 or more bedrooms; Percent
valued at 0-50k; Percent valued at 50-99k; Percent valued at 100-149k; Percent valued at 150-199k; Percent
valued at 200-299k; Percent valued at 300-499k; Percent valued at 500-999k; Percent valued at >1m; Percent
vacant housing units

Table 7: District-level census variables included in the set of district attributes in the simulation.
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Table 8: Models of District Funding Receipts, 109-111 Congress

Amount Received (% of Bill Total) Any Grants Received

(1) (2) (3) (4) (5) (6)

No Vote on Final Passage −0.009 −0.017 −0.020 0.087 0.087 0.088
(0.029) (0.040) (0.039) (0.072) (0.085) (0.084)

Abstain on Final Passage 0.108 0.105 0.105 −0.019 −0.020 −0.020
(0.070) (0.068) (0.068) (0.036) (0.037) (0.037)

Majority Party 0.080 0.101 −0.034 −0.038
(0.119) (0.119) (0.054) (0.057)

President’s Party 0.009 0.004 0.028 0.032
(0.043) (0.043) (0.030) (0.025)

Ideological Extremity 0.253 0.269 −0.023 −0.040
(0.253) (0.249) (0.102) (0.101)

At-Large District −0.087∗∗ −0.012
(0.035) (0.034)

Senate: Majority Party 0.031 −0.021
(0.036) (0.040)

Senate: President’s Party −0.065 −0.028
(0.054) (0.075)

Fixed Effects: District District District District District District
Number of Bills 31 31 31 31 31 31
F-statistic 2.42 2.41 2.41 2.27 2.28 2.28
N 13,485 13,485 13,485 13,485 13,485 13,485
R2 0.075 0.075 0.075 0.070 0.071 0.072

∗p < .1; ∗∗p < .05; ∗∗∗p < .01
Cluster-robust standard errors in parentheses (clustered at the bill level). Bill-clustered stan-
dard errors are conservative relative to district-clustered or heteroskedasticity-robust versions.
All right-hand-side variables are binary indicators except for Ideological Extremity, which is
measured as the absolute deviation between the first-dimension DW-NOMINATE score of
the district’s representative and that of the chamber median. Dummies for party alignment
of the district’s Senate delegation are one only if both Senators are in the Senate majority or
the president’s party, respectively. The “Senate Delegation Split” dummy indicates that the
state’s Senate delegation consists of one Democratic and one Republican Senator.
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Table 9: Models of District Funding Receipts, 109-111 Congress

Amount Received ($MM)

(1) (2) (3) (4) (5) (6)

No Vote on Final Passage −28.918 −18.006 −19.976 100.936 130.454 130.291
(21.202) (11.448) (12.860) (101.956) (131.927) (131.822)

Abstain on Final Passage −6.761 −4.603 −4.694 −27.248 −16.575 −16.747
(9.922) (7.498) (7.543) (34.178) (24.290) (24.494)

Majority Party 6.432 8.801 49.211 50.067
(10.433) (8.988) (52.547) (52.341)

President’s Party 8.581 12.916 67.728 66.141
(10.056) (14.053) (66.092) (65.062)

Ideological Extremity −16.808 −21.922 33.568 46.230
(40.760) (45.151) (50.959) (60.044)

At-Large District 99.592 100.156
(83.530) (84.292)

Senate: Majority Party −25.718 17.439
(24.536) (19.179)

Senate: President’s Party −23.299 8.960
(23.716) (8.085)

Senate: Delegation Split −24.164 6.028
(21.093) (12.597)

Fixed Effects: Bill Bill Bill District District District
Number of Bills 31 31 31 31 31 31
F-statistic 225.59 200.8 185.66 0.89 0.96 0.95
N 13,485 13,485 13,485 13,485 13,485 13,485
R2 0.349 0.350 0.350 0.029 0.031 0.031

∗p < .1; ∗∗p < .05; ∗∗∗p < .01
Cluster-robust standard errors in parentheses (clustered at the bill level). Bill-clustered stan-
dard errors are conservative relative to district-clustered or heteroskedasticity-robust versions.
All right-hand-side variables are binary indicators except for Ideological Extremity, which is
measured as the absolute deviation between the first-dimension DW-NOMINATE score of
the district’s representative and that of the chamber median. Dummies for party alignment
of the district’s Senate delegation are one only if both Senators are in the Senate majority or
the president’s party, respectively. The “Senate Delegation Split” dummy indicates that the
state’s Senate delegation consists of one Democratic and one Republican Senator.
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Table 10: Models of District Funding Receipts, 109-111 Congress (Senate)

Amount Received (% of Bill Total) Any Grants Received

(1) (2) (3) (4)

No Vote on Final Passage −0.003 −0.004 0.037 0.054∗

(0.004) (0.004) (0.035) (0.032)
Split on Final Passage −0.001 −0.003 0.025 0.021

(0.006) (0.006) (0.030) (0.027)
Majority Party 0.003 0.018

(0.005) (0.022)
President’s Party −0.004 0.022

(0.004) (0.020)
Split-Party Delegation −0.004 0.031

(0.005) (0.026)
Fixed Effects: Bill Bill Bill Bill
Number of Bills 23 23 23 23
F-statistic 0.01 0.11 46.13 41.06
N 1,150 1,150 1,150 1,150
R2 0.0002 0.003 0.496 0.497

∗p < .1; ∗∗p < .05; ∗∗∗p < .01
Cluster-robust standard errors in parentheses (clustered at the bill level). Bill-clustered stan-
dard errors are conservative relative to district-clustered or heteroskedasticity-robust versions.
All right-hand-side variables are binary indicators. Dummies for party alignment of the dis-
trict’s Senate delegation are one only if both Senators are in the Senate majority or the
president’s party, respectively.
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