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ABSTRACT: Internal solitary waves in the ocean are characterized by the surface roughness

signature of smooth and rough bands that are observable in synthetic aperture radar satellite

imagery, which is caused by the interaction between surface gravity waves and internal wave-

induced surface currents. In this work, we study the surface signature of an internal wave packet in

deep water over a large range of spatial scales using an improved wave-current interaction model

that supports a moving surface current corresponding to a propagating internal gravity wave. After

validating the model by comparison to previously published numerical results in Hao and Shen

(2020), we investigate a realistic case based on a recent comprehensive field campaign conducted

by Lenain and Pizzo (2021). Distinct surface manifestation caused by internal waves can be

directly observed from the surface waves and the associated surface wave steepness. Consistent

with observations, the surface is relatively rough where the internal wave-induced surface current

is convergent (𝜕𝑈/𝜕𝑥 < 0), while it is relatively smooth where the surface current is divergent

(𝜕𝑈/𝜕𝑥 > 0). The spatial modulation of the surface wave spectrum is rapid as a function of

along-propagation distance, showing a remarkable redistribution of energy under the influence of

the propagating internal wave packet. The directional wavenumber spectra computed in the smooth

and rough regions show that the directional properties of the surface wave spectra are also rapidly

modulated through strong wave-current interactions. Good agreement is found between the model

results and the field observations, demonstrating the robustness of the present model in studying

the impact of internal waves on surface gravity waves.
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SIGNIFICANCE STATEMENT: The purpose of this study is to better understand the physical

processes leading to the bands of rough and smooth surface waves arising from internal gravity

waves. The surface manifestation of internal gravity waves allows them to be measured remotely

via surface imagery which can provide insight into their nonlinear behavior and sources and fate,

which can ultimately inform the local stratification for assimilation into larger-scale models. Our

results highlight the application of wave-current interaction models to the study of the interaction

of surface waves with internal gravity waves and indicate strong modulation of the surface wave

spectra over relatively short time scales despite the long time scales associated with the internal

wave propagation.

1. Introduction

Internal waves are a common feature of coastal and open-ocean waters. As a train of internal

waves propagates, it leaves on the ocean surface a distinct signature of alternating rough and

smooth regions of increased and decreased surface wave steepness. The surface roughness induces

a variation in the strength of radar backscatter signals, such that the signature of internal waves

appears in the form of bright and dark bands when observed using satellite radar imaging (e.g. Bai

et al. 2014; Magalhães and da Silva 2018; Magalhães et al. 2021; Santos-Ferreira et al. 2022). The

surface signature obtained via remote sensing thus enables identification of internal waves over large

regions of the ocean (Helfrich and Melville 2006), particularly internal solitary-like waves with

wave lengths of the order of hundreds of meters. Relative to the background flow, the associated

surface roughness due to nonlinear internal waves causes wind velocity and stress variance in

the marine atmospheric surface layer (Ortiz-Suslow et al. 2019). In spite of its importance, it

remains a challenge to investigate the impact of internal waves on ocean surface waves due to a

lack of effective and accurate quantitative observations of the surface gravity wave field modified

by internal waves.

The fully nonlinear interaction of internal waves and a free surface wave occurs over a broad range

of time and length scales associated with a variety of different forcing mechanisms (Craig et al.

2012). Consequently, the ability to study this process with traditional observational techniques

(e.g., moored water-column measurements or research vessels) is limited due to access and/or

cost. Moreover, considering the fast time scale of surface gravity waves relative to the time scales
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of satellite coverage, the role of satellite remote sensing is limited. Therefore, airborne remote

sensing is a promising technique to directly measure the short surface waves. A comprehensive

field campaign was conducted by Lenain and Pizzo (2021) off the coast of Point Sal, California,

in September 2017 to study the interaction between surface and internal waves. Using a unique

combination of airborne remote sensing observations along with in situ surface and subsurface

measurements, they quantified the rapid modification of the spectral properties of surface waves

over short spatial scales (100 m or less) in internal wave packets and found that the surface waves

are significantly modulated by the surface currents induced by the waves.

Most theoretical studies address the question of the surface signature of an internal wave through

wave-current interaction models, assuming that the surface manifestation is indirectly caused by

the action of a specified current induced by the internal wave. These models are generally based

on ray-tracing theories similar to geometrical optics and widely used in applications to remote

sensing of internal waves, incorporating phase-averaged models based on either a wave energy

balance equation incorporating radiation stresses (e.g. Lewis et al. (1974)), or a wave action

balance equation combined with ray theory (e.g. Bakhanov and Ostrovsky (2002)). However,

these theories have several shortcomings depending on the situation under consideration. First,

phase-averaged theories may lead to singularities because they do not account for bound and

reflected surface waves (Smith 1983, see also the discussions in Hao and Shen 2020), which are

important for complex surface signature formation. Second, there is currently no way to model

the source terms for wave-wave interactions, wave energy input (wind input) or dissipation (wave

breaking). Third, the relaxation assumption (Hughes 1978; Lyzenga and Bennett 1988) that the

current-modulated spectrum only deviates a small amount from the unmodulated spectrum may

not hold for strong nonlinear interactions like those observed by Lenain and Pizzo (2021).

Some of these shortcomings were addressed in two-layer ocean models in which the internal

and surface waves could have substantially different length scales. Craig et al. (2012) studied the

resonant interaction of nonlinear internal waves with the surface modes by coupling a Korteweg–de

Vries (KdV) equation and a Schrödinger equation, finding that the surface signature is generated

by a process analogous to radiative absorption. Similarly, Jiang et al. (2019) investigated the

generation of surface waves at the leading edge of an internal wave and the asymmetric behaviour

of long surface waves with a Boussinesq-type, two-layer model. Using explicit, second-order
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nonlinear evolution equations in Hamiltonian form in a two-layer system, Taklo and Choi (2020)

focused on the surface wave modulation by the group resonance mechanism that corresponds

to near-resonant triad interactions between a long internal wave and short surface waves. To

study the nonlinear interaction between two-dimensional surface and internal waves, a spectral

model was derived by Choi et al. (2021) from an explicit Hamiltonian for a two-layer system

after decomposing the surface and interface motions into the two wave modes through a canonical

transformation. But, in deriving model equations for the case of resonant internal and surface mode

interactions, they assumed that both the surface and internal wave fields were weakly nonlinear

and that the surface wave field was narrow-banded. Therefore, it would be desirable to directly

resolve a wide range of weakly nonlinear wave motions from first principles such that the impact of

internal waves on the surface waves can be accurately described and modelled. Recently, Hao and

Shen (2020) presented the first-ever effort to directly capture the surface roughness signature by

numerically solving a deterministic wave-phase-resolved two-layer model. The wave dynamics of

over four million independent components were resolved, covering the wide range of length scales

between the internal wave and short surface waves. The drawbacks of simplified theories were

avoided, and they found that the formation of the surface wave signature is essentially an energy-

conservative process. The two-layer model was simplified by Hao et al. (2022) where the bottom

boundary conditions for the upper layer were computed from an internal wave solver, providing a

computationally efficient tool for simulating complex surface wave fields in the presence of large

amplitude internal waves.

In the present work, we follow the method of Hao and Shen (2020) but investigate the modification

of a surface wave field in deep water due to a specified internal wave-induced surface current.

Compared to Hao and Shen (2020), our wave-current interaction model is more computationally

efficient because only one set of model equations in Zakharov-form is solved. In addition, the

initialization of our model framework is straightforward because there is no need to construct the

surface elevation and velocity potential with a superposition of the eigenfunctions of the linearized

two-layer system. A wave-current interaction model similar to ours has been presented by a number

of studies, although the surface current is assumed to be stationary (Wu 2004; Wang et al. 2018;

Pan 2020; Ducrozet et al. 2021). The present work considers a propagating surface current such

that the corresponding correction is made in the wave-current interaction terms, and an efficient
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high-order spectral (HOS) method is used to solve the model equations (Klahn et al. 2020). In

addition to the distinct features of the numerical model, this study is unique because, as far as we

are aware, it is the first direct simulation of the interaction of a random surface wave field with

internal waves in which the results are compared to observations in a real, field-scale setting.

The remainder of this paper is organized as follows. In Section 2, we introduce the mathematical

model and the experiment setup. In Section 3, we present an analysis of the surface signature

induced by an internal wave packet. Finally, discussion and conclusions are given in Section 4.

2. Methodology

a. Model Formulation

The model equations for the nonlinear evolution of surface waves in the presence of a propagating

irrotational surface current are presented in this section. Based on the method of variable decom-

position (Pan 2020), the total free surface elevation 𝜂(𝑥, 𝑦, 𝑡) and velocity potential 𝜙(𝑥, 𝑦, 𝑧, 𝑡) are

decomposed into two parts as

𝜂 = 𝜂+𝜂, 𝜙 = 𝜙+𝜙, (1)

where ˜ and ¯ denote the components caused by the irrotational motion of surface wave and surface

current, respectively. From the fully nonlinear kinematic and dynamic boundary conditions, the

model equations in Zakharov form (Zakharov 1968) involving only variables on the water surface

𝑧 = 𝜂 read

𝜂𝑡 +∇𝜂 · ∇Φ̃− (1+∇𝜂 · ∇𝜂) 𝜙𝑧 +𝐹𝑘 = 0, (2)

Φ̃𝑡 +𝑔𝜂+
1
2
[
∇Φ̃ · ∇Φ̃− (1+∇𝜂 · ∇𝜂) 𝜙2

𝑧

]
+𝐹𝑑 = 0, (3)

where the subscripts 𝑡 or 𝑧 denote partial derivatives, ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦) is the horizontal gradient

operator, Φ̃ = 𝜙(𝑥, 𝑦, 𝑧 = 𝜂, 𝑡) is the velocity potential induced by waves at the free surface, and 𝑔

is the gravitational acceleration. Based on a Taylor series expansion and following Pan (2020), a

full derivation of the above model equations is presented in Appendix A with the nonlinear surface
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wave-current interaction terms given by

𝐹𝑘 = ∇𝜂 · U|𝑧=𝜂 −𝜂 𝑊𝑧 |𝑧=𝜂 +∇𝜂 · ∇Φ̃− (2∇𝜂 · ∇𝜂+∇𝜂 · ∇𝜂) 𝜙𝑧, (4)

𝐹𝑑 = ∇Φ̃ · U|𝑧=𝜂 −
(
∇𝜂 · ∇𝜂+ 1

2
∇𝜂 · ∇𝜂

)
𝜙2
𝑧 +𝜂 (𝑊𝑡 +𝑊𝑊𝑧) |𝑧=𝜂 +

1
2
𝜂2

(
𝑊𝑧𝑡 +𝑊2

𝑧

)���
𝑧=𝜂

. (5)

Here, ∇𝜙 = U and 𝜙𝑧 =𝑊 are the components of the time-dependent current at the water surface.

Compared to Ducrozet et al. (2021) where the surface current is assumed to be time-invariant,

correction for a moving current in 𝐹𝑑 is represented by the terms containing time derivatives.

By prescribing the horizontal velocity at the surface due to a propagating internal wave

U(𝑥, 𝑦, 𝑧 = 𝜂, 𝑡), the interaction terms 𝐹𝑘 and 𝐹𝑑 expressed in Equations (4) and (5) can be com-

puted following the description in Appendix A after specifying the corresponding current-induced

surface elevation 𝜂(𝑥, 𝑦, 𝑡) and vertical velocity 𝑊 (𝑥, 𝑦, 𝑧 = 𝜂, 𝑡). In the context of potential flow,

the model Equations (2) and (3) are solved using the HOS method (Dommermuth and Yue 1987)

for the wave motion 𝜂 and Φ̃ from which the total surface elevation and velocity can be computed.

The present wave-current interaction model is validated in Appendix B following Hao and Shen

(2020), where a phase-resolved, two-layer fluid model is used by coupling with the open-source

Dubreil-Jacotin-Long (DJL) equation solver DJLES (Dunphy et al. 2011) for the internal wave-

induced surface current. Contributing to the surface signature formation, asymmetric behaviour

of right-moving and left-moving surface waves is found in the smooth and rough bands from the

wavenumber–frequency slope spectrum calculated in the frame moving with the internal wave.

This finding is similar to the conclusion drawn by Hao and Shen (2020), indicating that the present

wave-current interaction model is capable of simulating the surface signature of internal waves.

b. Numerical Experiment

We study the manifestation of surface gravity waves in response to a specified current, mimicking

the modulation caused by a traveling internal wave. Following the in situ measurements reported

by Lenain and Pizzo (2021), the detailed setup of our numerical model is presented in this section.
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1) Initial random directional wave field

Based on the field observations, the surface wave spectrum consists of wind-generated sea

and a swell. We initialize these two components separately with irregular wave fields. For the

component of wind-generated waves, we generate a modeled spectrum 𝐸𝑤 by directly interpolating

the measured background directional spectrum (figure 9(a) in Lenain and Pizzo (2021)) for high

wave modes with a cut-off wavenumber of 𝑘𝑐 = 0.6 rad m−1. For the component of swell in the

range 𝑘 < 𝑘𝑐, we use the directional Pierson-Moskowitz spectrum (Pierson and Moskowitz 1964)

𝐸𝑠 (𝜔,𝜃) =
𝛼𝑔2

𝜔5 exp

[
−𝛽

(
𝜔

𝜔0

)−4
]
𝐷 (𝜔,𝜃), (6)

where 𝛼 = 0.0081 is the Phillips constant, 𝛽 = 0.74, 𝜔0 = 𝑔/𝑈19 is the spectral maximum, and 𝑈19

is the wind speed at a height of 19.5 m above the sea surface. In Equation (6), we implement the

Mitsuyasu-type spreading function (Goda 1999)

𝐷 (𝜔,𝜃) =


22𝑟−1

𝜋

Γ2 (𝑟 +1)
Γ (2𝑟 +1) cos2𝑟

(
𝜃

2

)
for |𝜃 | ≤ 𝜋/2,

0 otherwise,
(7)

where Γ denotes the gamma function and the spreading parameter 𝑟 depends on the frequency

(Mitsuyasu et al. 1975) as

𝑟 =


𝑟max

(
𝜔/𝜔𝑝

)5 for 𝜔 ≤ 𝜔𝑝,

𝑟max
(
𝜔/𝜔𝑝

)−2.5 for 𝜔 > 𝜔𝑝 .

(8)

For engineering applications, Goda (1975) proposed to use fixed values of the spreading parameter

𝑟max in Equation (8) for wind waves and swell. We take 𝑟max = 25 by assuming that the swell has

a short decay distance, and we assume 𝑈19 = 7.93 m s−1 corresponding to a peak wavenumber of

0.12 rad m−1. In the end, the total directional surface wave spectrum is given by a superposition

of these two components as 𝐸 (𝜔,𝜃) = 𝐸𝑤 +𝐸𝑠.

Similar to the measured background spectrum (Fig. 1(c)), the modeled directional wave spectrum

shown in Fig. 1(a) has two peaks corresponding to swell and wind-generated waves. The peak
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wavenumber of the wind-generated waves is around 𝑘 𝑝 = 1 rad m−1 (corresponding to a peak

wavelength 𝜆𝑝 = 6.3 m) which relates to the peak frequency 𝜔𝑝 through the linear dispersion

relation for waves in deep water, 𝜔2 = 𝑔𝑘 . Following the two-step procedure outlined by Tanaka

(2001), an initial ocean surface wave field for the present model can be generated from the given

spectrum 𝐸 (𝜔,𝜃), and is illustrated in Fig. 1(b). The omnidirectional wave frequency spectrum,

defined as the azimuthally integrated directional spectrum, is given by

Ψ(𝑘) =
∫ 2𝜋

0
𝐸 (𝑘, 𝜃)𝑘d𝜃. (9)

From the comparison of the modeled and measured spectra shown in Fig. 1(d), we find a good

agreement in the high wavenumber range for 𝑘 > 0.2 rad m−1 but with a noticeable difference in

the low wavenumbers. According to Lenain and Pizzo (2021), wave-current interactions occur for

high wavenumbers greater than roughly 𝑘 = 0.6 rad m−1 such that the difference is acceptable for

the purposes of our study.

2) Internal wave-induced surface current

According to Appendix A, the present model requires the horizontal surface current. Although

accurate moored and remote sensing observations are reported in Lenain and Pizzo (2021), the

information of U(𝑥, 𝑦, 𝑧 = 𝜂, 𝑡) cannot be obtained directly. For example, figure 4(b) in Lenain and

Pizzo (2021) shows the measured current velocity but the near surface velocity is absent. Indeed,

the difficulty in obtaining a precise description of the surface current that is induced by the passage

of an internal solitary wave is well known (Craig et al. 2012; Romero et al. 2017).

To model the internal wave-driven current due to the train of internal solitary waves observed

by Lenain and Pizzo (2021), we construct a surface current 𝑈 (𝑥, 𝑦, 𝑧 = 𝜂, 𝑡 = 0) traveling in the

𝑥-direction using the generalized normal distribution

𝑢(𝑥) = 𝑎𝑢𝑠𝑢

2𝑙𝑢Γ(1/𝑠𝑢)
exp

[
−
(
|𝑥− 𝑥𝑢 |

𝑙𝑢

) 𝑠𝑢 ]
, (10)

where 𝑎𝑢 = 14.25 m2 s−1, 𝑙𝑢 = 40 m, 𝑠𝑢 = 2.4, and 𝑥𝑢 are the amplitude, scale, shape, and location

parameters, respectively. By choosing the appropriate values of 𝑥𝑢 and combining multiple 𝑢(𝑥)
with alternating signs, the surface current with three peaks is generated and shown in Fig. 2(a)
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Fig. 1. The initialized random directional wave field. (a) Modeled directional wavenumber spectrum

𝐸 (𝑘𝑥 , 𝑘𝑦). (b) Initial surface wave elevation 𝜂. (c) Directional wavenumber spectrum measured by Lenain and

Pizzo (2021). (d) Comparison of the measured and modeled omnidirectional wave spectra.

where the distance between neighboring peaks is 80 m. The corresponding horizontal gradient is

shown in Fig. 2(b) with a magnitude of roughly 0.01 s−1. Following Lenain and Pizzo (2021), the

constructed surface current has a peak magnitude of 0.2 m s−1 in the direction of and opposing the

dominant propagation direction of the surface waves. Moreover, we assume the surface current

travels with the internal waves with a phase speed of 𝑐𝑠𝑐 = 𝑐𝑖𝑤 = 0.4 m s−1 in Equation (A13),

similar to the value reported in Lenain and Pizzo (2021). After integrating Equation (A14), we

obtain the internal wave-induced surface elevation 𝜂 with a magnitude of roughly 0.01 m shown in

Fig. 2(c). In addition, the corresponding vertical velocity of the surface current is computed with

Equation (A16) and shown in Fig. 2(d) with a magnitude of roughly 10−3 m s−1.
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Fig. 2. Modeled internal wave-driven surface current. (a) Horizontal velocity of the surface current and (b)

its gradient in the 𝑥-direction. (c) Surface elevation induced by the internal waves. (d) Vertical velocity of the

surface current.

3) Treatment of wave breaking

Rather than directly modeling the wave breaking process in a simulation based on the HOS

method, a wave smoothing technique is preferred. The most popular was introduced by Xiao et al.

(2013), who applied a low-pass filter to remove the energy of waves with short wavelengths and

thus model the high-wavenumber dissipation associated with wave breaking. This filter removes

the high wavenumber components of the surface elevation and velocity potential in wavenumber

space. In addition to the low-pass filter, Tian et al. (2010) proposed a wave breaking model by

introducing the concept of an eddy viscosity. When wave breaking occurs in a particular region of

the computational domain, two viscous terms based on the second-order horizontal gradients of the

surface elevation and velocity potential are added to the model equations to account for energy loss.

This treatment of wave breaking is more physical because it is localized and accounts for a single
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wave breaking event. However, its numerical implementation is complicated because it requires

calculation of many unknown coefficients, and it only works for one-dimensional problems.

Following Wu (2004), we use a nine-point smoothing technique to model wave breaking events in

a two-dimensional problem. In physical space at a given point (𝑥𝑖, 𝑦 𝑗 ) affected by a wave breaking

event, the smoothed wave field is given by

𝜑̂
(
𝑥𝑖, 𝑦 𝑗

)
=

1
9

𝑖+1∑︁
𝑚=𝑖−1

𝑗+1∑︁
𝑛= 𝑗−1

𝜑 (𝑥𝑚, 𝑦𝑛) , (11)

where 𝜑 represents the gravity wave elevation 𝜂 or the velocity potential 𝜙. The area influenced by a

wave breaking event is assumed to have a size 𝑙𝑏1× 𝑙𝑏2, and the center point is given by the location

of maximum wave steepness 𝑠 =
√︃
𝜂2
𝑥 +𝜂2

𝑦 exceeding a critical value 𝑠𝑏. Equation (11) amounts to

a convolution of high-frequency components upon breaking. Similar to the filter proposed by Xiao

et al. (2013), the smoothing Equation (11) is also a low-pass filter but is applied to all components

in wavenumber space. At the same time, it is applied locally in physical space such that it can

model the wave breaking more physically. In the present study, we assume 𝑙𝑏1 = 𝑙𝑏2 = 0.1𝜆𝑝 with

a critical steepness 𝑠𝑏 = 0.6 for wave breaking.

4) Numerical configuration

The HOS method is used to simulate the evolution of the surface wave field in deep water

modulated by a propagating surface current. The numerical procedure introduced by Dommermuth

and Yue (1987) is implemented to solve the model equations that are discretized on a uniform

grid in a rectangular domain with periodic boundary conditions. The model equations are then

integrated in time using the classical fourth-order Runge–Kutta method with fixed time step size to

obtain the evolution of the surface wave field. A third-order series expansion is used to model the

modulational instability (Ducrozet et al. 2021). This implies that we take into account the three- and

four-wave nonlinear interactions irrespective of whether they are resonant or non-resonant (Tanaka

2001). With the simplified setup presented in this section, we find that the high-order nonlinearity

results in a heavy-tailed probability density function of the wave displacements. However, the

realistic oceanic conditions measured by Lenain and Pizzo (2021) are less prone to modulational

instability implied from the surface wave spectra. We therefore apply a spatially isotropic Gaussian
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smoothing operator with a standard deviation of 1.0 to the wave-current interaction terms defined

in Equations (4) and (5) during each time step.

We take the computational domain to have dimensions 𝐿𝑥 = 1000 m (𝐿𝑥 ≈ 160𝜆𝑝) and 𝐿𝑦 =

500 m (𝐿𝑦 ≈ 80𝜆𝑝) in the 𝑥- and 𝑦-directions, respectively. After considering the aliasing error,

the computational domain is discretized with 𝑁𝑥 = 3072 and 𝑁𝑦 = 1536 cells in the 𝑥- and 𝑦-

directions, corresponding to approximately 4,700,000 free wave modes and a spatial resolution

of Δ𝑥 = Δ𝑦 ≈ 0.33 m. We use a time step Δ𝑡 = 𝑇𝑝/100, corresponding to a Courant number

𝐶 = (𝜆𝑝/𝑇𝑝)/(Δ𝑥/Δ𝑡) ≈ 0.19. We carry out the simulation for a total time of 𝑇 = 60𝑇𝑝 and the

adjustment scheme of Dommermuth (2000) is applied for natural development of nonlinear self-

wave, wave-wave, and wave-current interactions. This is achieved by multiplying the nonlinear

terms of the model Equations (2) and (3) by the function

𝑅(𝑡) = 1− exp
[
−
(
𝑡

𝑇𝑎

)𝑛]
, (12)

where the adjustment period 𝑇𝑎 = 20𝑇𝑝 and 𝑛 = 4. In our simulation, the initial surface wave field

is statistically homogeneous and the surface signature is found to form gradually and is maintained

throughout the simulation. After roughly 𝑡 = 35𝑇𝑝, the simulation reaches a quasi-stationary state

after which ensemble averaging is applied to the results discussed in what follows.

3. Results

a. Surface Signature of Internal Waves

The surface signature induced by internal waves is distinct and can often be directly observed

from the ocean surface even with the naked eye (Woodson 2018; Lenain and Pizzo 2021). The

instantaneous simulated surface elevation at time 𝑡 = 45𝑇𝑝 is presented in a frame moving with the

internal waves in Fig. 3(a). In the range of 200 m < 𝑥 < 800 m where the internal wave induced

surface current is implemented (Fig. 3(c)), changes to the surface elevation are limited to small

length scales (corresponding to high wavenumber surface wave components). In contrast, longer

waves due to the swell are unchanged (see figure 1 in Lenain and Pizzo (2021)), indicating that the

internal waves primarily interact with the wind-generated waves. The wave steepness is illustrated

in Fig. 3(b) and is used to quantify the roughness of the ocean surface. Pairs of rough and smooth
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Fig. 3. The surface wave manifestation of an internal wave at time 𝑡 = 45𝑇𝑝. (a) The surface elevation and

(b) the corresponding surface wave steepness. (c) Horizontal velocity of the surface current (solid line) and the

time- and laterally-averaged surface slope (dash-dotted line). The areas identified as smooth (S2) and rough (R2)

bands are discussed in Section 3b.

regions where the wave steepness is respectively enhanced and reduced are readily observed. These

correspond to the pairs of bright and dark bands in satellite images.
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In addition to the 𝑥-component velocity of the surface current, the time- and laterally-averaged

surface slope ⟨𝑠⟩ is plotted in Fig. 3(c). Rough surface bands with increased wave steepness

reaching ⟨𝑠⟩ = 0.13 are formed where there is horizontal convergence of surface currents driven

by internal waves (𝜕𝑈/𝜕𝑥 < 0). Adjacent to the rough band are smooth regions where the surface

current is divergent (𝜕𝑈/𝜕𝑥 > 0) and the wave steepness is significantly reduced to ⟨𝑠⟩ = 0.078 (the

background has ⟨𝑠⟩ = 0.1). This finding is consistent with Woodson (2018), in which a smooth

surface occurs on the rising slope of an individual internal wave while a rough surface occurs on

its falling slope. In the next section, wave spectra are compared for the smooth (S2) and rough

(R2) bands having a width of 48 m, as indicated in Fig. 3(c).

b. Modulation of Surface Wave Spectrum

The surface wave field is significantly modulated by the internal wave-driven surface current

according to Lenain and Pizzo (2021). The surface wave spectrogram shown in Fig. 4(b) presents

the spatial evolution of the omnidirectional wave spectrum in a frame moving with the internal

wave as a function of the along-propagation distance, corresponding to the surface elevation

shown in Fig. 3(a). To obtain this figure, the omnidirectional wave spectra are computed in

subdomains with a width of 50 m in the 𝑥-direction. An overlap of 50% is applied to capture

the rapidly evolving spectral properties of the surface waves. The data are then collected in

these subdomains and the omnidirectional spectra are computed following Equation (9) with a

two-dimensional Hanning window. Fig. 4(b) illustrates the strong spatial modulation of surface

conditions by the internal waves, particularly in the high-frequency components for wavenumbers

in the range 0.08− 2.2 rad m−1. Note that the wind-generated waves in our configuration have a

peak wavenumber of roughly 𝑘 𝑝 = 1 rad m−1, and this peak is modulated by the internal waves by

as much as 30% across the internal wave bands. Moreover, there is a significant reduction of the

spectral magnitude in the smooth bands for shorter waves with 𝑘 > 1 rad m−1. The rapid changes

in the surface wave spectrogram at high wavenumbers are consistent with the surface slope signal

shown in Fig. 3.

Another feature that can be inferred from Fig. 4 is that the redistribution of energy under the

influence of the internal wave packet is fast even though the internal waves are traveling much slower

than the surface gravity waves. Surface waves with wavenumbers satisfying 𝑘 < 10 rad m−1 have
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Fig. 4. (a) 𝑥-component of the internal wave-driven surface current. (b) The surface wave spectrogram of the

wavenumber in the direction of internal wave propagation.

wave phase speeds exceeding 1 m s−1, while the internal wave propagates at just 𝑐𝑖𝑤 = 0.4 m s−1.

This strong modulation is highlighted in Fig. 5(a) where the omnidirectional spectra are computed

in the smooth and rough bands marked in Fig. 3(c), along with the initial background spectrum for

reference. The results indicate a good comparison between the modeled results and the observations

for Ψ > 10−3 m3 rad−1. While the energy rapidly decays in the smooth band for wavenumbers in

the range 0.08−4.0 rad m−1, an enhancement in the rough band near the peak of the wind waves

is observed along with a slight frequency shift of 0.2 rad m−1. This means that the ratio of energy

deviation in the rough band is O(1), implying that the surface wave field is strongly modulated by

the presence of the internal waves (Lenain and Pizzo 2021), even though weak modulation is often

assumed in relaxation theories (Alpers 1985; Rascle et al. 2016). Consequently, our numerical

results indicate that the present model based on the HOS method is capable of simulating strong

wave-current interactions. However, despite the rather good agreement for Ψ > 10−3 m3 rad−1, the

simulated wave energy in both the rough and smooth bands is larger compared to the observations

for higher wavenumbers. This is clear in Fig. 5(b) where the results are presented on a logarithmic-
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Fig. 5. Simulated and observed (by Lenain and Pizzo (2021)) omnidirectional spectra in the rough and

smooth bands indicated in Fig. 3(c) on (a) linear and (b) logarithmic scales.

scale, and may be due to complex processes like near-surface flow re-circulation and mixing not

captured by our model based on potential flow theory. Nevertheless, from the perspective of wave

energy, this difference is not significant and our model captures the leading-order effects related to

the strong wave-current interaction in the smooth and rough bands.

In addition to the energy redistribution shown in Fig. 5, the directional properties of the surface

wave spectrum are also rapidly modulated under the influence of the propagating internal wave

packet through wave-current interactions. The directional wavenumber spectra 𝐸 (𝑘𝑥 , 𝑘𝑦) in the

rough and smooth bands indicated in Fig. 3(c) are presented in Fig. 6 and compared to the

corresponding field observations. The simulated spectrum in the smooth band (Fig. 6(a)) has a

rapid increase in angular lobe separation in the 1− 1.2 rad m−1 range, and then a rapid decay in

spectral energy for larger wavenumbers. The field observation in Fig. 6(b) behaves in a similar

manner but more significantly such that the wind-wave peak at 𝑘 = 1 rad m−1 almost disappears.

On the other hand, the simulated spectrum computed in the rough band (Fig. 6(c)) exhibits a

distinguishable bimodal distribution with two peaks corresponding to the swell and wind-generated
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Fig. 6. Directional wavenumber spectra of the surface wave field in the smooth (top row) and rough (bottom

row) bands indicated in Fig. 3(c). Simulations are in the left column while observations of Lenain and Pizzo

(2021) are in the right column. For clarity, all spectra are zoomed in for wavenumbers less than 5 rad m−1.

waves. This shape is close to the initial spectrum shown in Fig. 1(a) though a clear frequency

shift for the wind-generated wave peak and a net decrease in angular separation between energy

lobes as a function of wavenumber is clear. The corresponding field observation in Fig. 6(d) has a

similar feature compared with the background spectrum in Fig. 1(c). However, as indicated by the
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omnidirectional spectra in Fig. 5, the simulated wave energy at high wavenumbers is enhanced to

some degree compared to the observations.

4. Discussion and Conclusions

In this study, we have developed a phase-resolved, wave-current interaction model to simulate

the interaction of a random surface wave field with a surface current that varies in both space and

time. Using the model, we performed a novel direct simulation to capture the signature of surface

roughness induced by a train of internal waves. The model equations are derived based on the

variable decomposition and Taylor series expansion following Pan (2020), while the present work

considers a propagating, spatially varying surface current moving with the internal waves. The

high-order spectral method (Dommermuth and Yue 1987) is used to solve the model equations.

The phase-resolved, wave-current interaction model is demonstrated through a simulation with a

realistic setting derived from airborne remote sensing observations of Lenain and Pizzo (2021).

The surface wave field is initialized with a bimodal spectrum which consists of the measured

wind-generated waves and a modeled swell using the Pierson-Moskowitz spectrum. The modeled

internal wave-driven surface current has a magnitude of 0.2 m s−1 and the wave dynamics of

nearly 4,700,000 independent wave modes are resolved, covering the wide range of length scales

manifested by the surface current and short surface waves.

To validate our model with Hao and Shen (2020) where a phase-resolved two-layer fluid model

is used, an open-source DJL equation solver is coupled with the present wave-current interaction

model for the internal wave-induced surface current. Similar to Hao and Shen (2020), asymmetric

behaviour of right- and left-moving surface waves is found in the smooth and rough bands from the

wavenumber–frequency slope spectrum, indicating that the present wave-current interaction model

is capable of simulating the surface signature of internal waves. After the validation, the present

model is applied to simulate the observations of Lenain and Pizzo (2021), where a good comparison

of omnidirectional spectra between the modeled results and the observations for Ψ > 10−3 m3 rad−1

is obtained. However, the simulated wave energy in both the rough and smooth bands is larger

compared to the observations for higher wavenumbers. Several reasons may contribute to this.

First, the present model is based on potential flow theory in which complex processes like near-

surface flow re-circulation and mixing are not captured which can alter the behavior of surface
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waves. In addition, other factors like bathymetry effects (Chen et al. 2016) or background current

shear (Guyenne 2017) are not considered in the present study, which can affect the propagation of

internal waves and their surface features. Last, there is an uncertainty in the surface current as it

is approximated from observations that do not include the near surface currents and variations of

small length scales (Vrećica et al. 2022).

Results from the direct simulation show that the surface manifestation caused by internal waves

can be directly observed from the surface elevation and the corresponding surface wave steepness.

From the ensemble-averaged surface wave slope, we find that the surface wave field is relatively

smooth on the rising slope of an individual internal wave where the surface currents are divergent,

and it is relatively rough on the falling slope where they are convergent. The surface wave spectro-

gram presents the rapid spatial evolution of the omnidirectional wave spectrum in a frame moving

with the internal wave as a function of along-propagation distance. These omnidirectional spectra

illustrate a rapid redistribution of energy in response to the relatively slowly propagating internal

wave. The corresponding directional wavenumber spectra show that the directional properties of

the surface wave spectra are also rapidly modulated under the influence of the propagating internal

wave packet through strong wave-current interactions. Overall, compared to the observations in

Lenain and Pizzo (2021), our numerical results show that the proposed wave-current interaction

model is capable of capturing the leading-order effects of the internal wave-driven surface currents

on the surface wave spectra.

In summary, we have developed a unique numerical model that allows for the study of the

interaction of random surface waves with an arbitrary surface current through the implementation

of time-varying wave-current interaction terms in the governing surface wave equations. By

imposing a surface current associated with propagating internal waves, the model can be used

to study the impact of the surface convergence or divergence due to an arbitrary internal wave

on the surface waves. The ability to impose an arbitrary surface current allowed us to simulate

the observations of Lenain and Pizzo (2021) in which a train of internal solitary waves modified

the surface waves. To our knowledge, this constitutes the first direct simulation in the literature

of the modulation of a surface wave spectrum by internal wave-driven surface currents in a real,

field-scale setting.
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APPENDIX A

Derivation of the Model Equations

In this study, we are interested in the surface wave-current interaction in deep water. Based

on potential flow theory, the governing equations and the corresponding boundary conditions are

given by

∇2𝜙+𝜙𝑧𝑧 = 0 in −∞ < 𝑧 ≤ 𝜂, (A1)

𝜂𝑡 +∇𝜂 · ∇𝜙−𝜙𝑧 = 0 at 𝑧 = 𝜂, (A2)

𝜙𝑡 +𝑔𝜂+
1
2
∇𝜙 · ∇𝜙+ 1

2
(𝜙𝑧)2 = −𝑃𝑎 at 𝑧 = 𝜂, (A3)

𝜙𝑧 = 0 as 𝑧 →−∞, (A4)

where 𝑃𝑎 is the pressure at the free surface. Based on the variable decomposition in Equation (1),

the total surface elevation 𝜂 and velocity potential 𝜙 are decomposed for a surface wave and a surface

current component. Thus, the nonlinear kinematic (Equation (A2)) and dynamic (Equation (A3))

boundary conditions can be written in the Zakharov form (Pan 2020) as

𝜂𝑡 +∇𝜂 · ∇Φ̃− (1+∇𝜂 · ∇𝜂) 𝜙𝑧 +𝐺𝑘 = 0, (A5)

Φ̃𝑡 +𝑔𝜂+
1
2
[
∇Φ̃ · ∇Φ̃− (1+∇𝜂 · ∇𝜂) 𝜙2

𝑧

]
+𝐺𝑑 = −𝑃𝑎, (A6)

where the additional terms are given by 𝐺𝑘 = (𝜂𝑡 +∇𝜂 ·U−𝑊) |𝑧=𝜂 and 𝐺𝑑 =[
𝜙𝑡 +∇Φ̃ ·U+ (U ·U+𝑊2)/2

] ��
𝑧=𝜂

. These additional terms can be evaluated at 𝑧 = 𝜂 with the
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following relationships

𝜂𝑡 +∇𝜂 · U|𝑧=𝜂 −𝑊 |𝑧=𝜂 = 0, (A7)

𝜙𝑡 +𝑔𝜂+
1
2

U|𝑧=𝜂 · U|𝑧=𝜂 +
1
2

(
𝑊 |𝑧=𝜂

)2
= −𝑃𝑎, (A8)

which are obtained from the kinematic and dynamic boundary conditions when the surface waves

are absent. Following Wu (2004) and Pan (2020), we further assume that the vertical gradient of

horizontal velocity of the surface current U𝑧 is small and thus negligible. Consequently, expanding

𝐺𝑘 and 𝐺𝑑 in Taylor series with respect to the current-induced surface elevation at 𝑧 = 𝜂 gives

𝐺𝑘 = ∇𝜂 · U|𝑧=𝜂 −𝜂 𝑊𝑧 |𝑧=𝜂 +O
(
(𝜂)3

)
, (A9)

𝐺𝑑 = ∇Φ̃ · U|𝑧=𝜂 +𝜂 (𝑊𝑡 +𝑊𝑊𝑧) |𝑧=𝜂 +
1
2
𝜂2

(
𝑊𝑧𝑡 +𝑊2

𝑧

)���
𝑧=𝜂

−𝑔𝜂−𝑃𝑎 +O
(
(𝜂)3

)
, (A10)

such that the model Equations (A5) and (A6) can be approximated as

𝜂𝑡 +∇𝜂 · ∇Φ̃− (1+∇𝜂 · ∇𝜂) 𝜙𝑧 +∇𝜂 · U|𝑧=𝜂 −𝜂 𝑊𝑧 |𝑧=𝜂 = 0, (A11)

Φ̃𝑡 +𝑔𝜂+
1
2
[
∇Φ̃ · ∇Φ̃− (1+∇𝜂 · ∇𝜂) 𝜙2

𝑧

]
+∇Φ̃ · U|𝑧=𝜂 +𝜂 (𝑊𝑡 +𝑊𝑊𝑧) |𝑧=𝜂 +

1
2
𝜂2

(
𝑊𝑧𝑡 +𝑊2

𝑧

)���
𝑧=𝜂

= 0. (A12)

The model Equations (A11) and (A12) are solved by prescribing a surface current U(𝑥, 𝑦, 𝑧 = 𝜂, 𝑡).
In our implementation, we start a simulation with a known surface current at time 𝑡 = 𝑡0. Then, the

current travels in the positive 𝑥-direction by using

𝜑 (𝑡) = F −1 {F [𝜑 (𝑡 = 𝑡0)] exp [−𝑖𝑐𝑠𝑐𝑘𝑥 (𝑡 − 𝑡0)]} , (A13)

where F denotes the Fourier transform, 𝜑 represents a variable related to the surface current, 𝑐𝑠𝑐
is the propagation speed of the current, and 𝑘𝑥 is the wavenumber in the 𝑥-direction.

In order to solve the model Equations (A11) and (A12) with a known surface current U(𝑥, 𝑦, 𝑧 =
𝜂, 𝑡), the information of variables 𝜂, 𝑊 , 𝑊𝑡 , and 𝑊𝑧𝑡 at 𝑧 = 𝜂 are still needed. With 𝑃𝑎 = 0 and

ignoring∇𝑊 (Wu 2004), the current-induced elevation 𝜂 can be obtained by applying the horizontal
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gradient to both sides of Equation (A8), giving

∇𝜂 = −1
𝑔
(U𝑡 +U · ∇U) |𝑧=𝜂 . (A14)

Equation (A14) can be numerically integrated for 𝜂 by using the Fourier transform with the

boundary condition 𝜂(∞) = 0, while U𝑡 is computed using

𝜑𝑡 (𝑡) = F −1 {−𝑖𝑐𝑠𝑐𝑘𝑥F [𝜑 (𝑡)]} . (A15)

Similarly, 𝜂𝑡 is obtained with a known 𝜂. The vertical velocity of the surface current at 𝑧 = 𝜂 is

then evaluated using Equation (A7) with

𝑊 |𝑧=𝜂 = 𝜂𝑡 +∇𝜂 · U|𝑧=𝜂 , (A16)

while the corresponding vertical gradient 𝑊𝑧 |𝑧=𝜂 = − ∇ ·U|𝑧=𝜂 from the Laplace Equation (A1).

Using Equation (A15), we have 𝑊𝑡 |𝑧=𝜂 and 𝑊𝑧𝑡 |𝑧=𝜂 such that our model equations can be solved

with the high-order spectral method introduced by Dommermuth and Yue (1987).

We note that, the model equations presented in this section are consistent with those presented

by Wu (2004), Wang et al. (2018) and Pan (2020) though the latter works consider the interaction

of surface waves with a stationary current and/or different orders of the Taylor series expansions

in Equations (A9) and (A10).

APPENDIX B

Model Validation

In order to avoid the singularity encountered in the traditional wave-current interaction theory,

Hao and Shen (2020) presents the first-ever effort to directly capture the surface roughness signa-

ture induced by ocean internal solitary waves with a deterministic two-layer model for stratified

fluids. By capturing over four million wave components, the simulation simultaneously resolves

the dynamics of the surface and internal waves. The model successfully captures a surface mani-

festation characterized by a rough region followed by a smooth region travelling with an internal

solitary wave.
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Fig. B1. Comparison of the internal wave and the resulting surface current. (a) Profile of the internal wave

denoted by the interface elevation. (b) Profile of the internal wave induced surface current and (c) its horizontal

gradient.

To validate the present model, we carry out a simulation in a two-layer setting similar to the setup

used by Hao and Shen (2020). The mean depth of the upper layer is ℎ𝑢 = 7 m along with a total

depth of 147 m. The computational domain has dimensions of 𝐿𝑥 = 600 m and 𝐿𝑦 = 150 m in the 𝑥-

and 𝑦-direction, respectively. The corresponding grid numbers are 𝑁𝑥 = 4096 and 𝑁𝑦 = 1024 after

considering the aliasing error. The directional JONSWAP wave spectrum (Hasselmann et al. 1973)

is used to initialize the random surface wave with a wind speed of 7 m s−1 at a height of 10 m above

the sea surface and a fetch of 9500 m. The directional spreading of wave energy is achieved with

the spreading function 𝐷 (𝜃) = 2/𝜋 cos2 𝜃. We use the open-source solver DJLES (Dunphy et al.

2011), a MATLAB/Octave package that finds a mode-one solution to the DJL equation, to obtain

the internal wave-driven surface current with a density ratio of 0.997. The computed internal wave

has a speed of 𝑐𝑖𝑤 = 0.52 m s−1 and its interface elevation is compared to Hao (2019) in the frame

moving with the internal wave as shown in Fig. B1(a). The resulting profiles of surface current
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Fig. B2. Wavenumber-frequency slope spectra (normalized by the maximum 𝑆𝑚) of surface waves in the

(a) smooth and (b) rough bands. Here, ℎ𝑢 is the mean depth of the upper layer, and the dashed lines denote the

dispersion relation of the surface waves in the moving frame of reference. The green filled circle denotes the

peak surface wave, while the green crosses denote the maximum frequency of the right-moving surface wave.

and its horizontal gradient are also compared in Fig. B1(b) and (c). From the figure, it is clear that

only a small discrepancy can be found in our model setup compared to Hao and Shen (2020).

The surface wave dynamics are analyzed in a frame moving with the internal wave such that the

data for the smooth or rough band can be extracted from a fixed subdomain where the averaged

slope is correspondingly reduced or enhanced. To better reveal the roughness alternations in the

surface wave field, the integrated wavenumber-frequency slope spectrum, defined as 𝑆(𝑘𝑥 ,𝜔) =∫
𝑆(𝑘𝑥 , 𝑘𝑦,𝜔)d𝑘𝑦, is calculated for the smooth and rough bands as shown in Fig. B2(a) and (b),

respectively. It is clear that both left-moving (region I) and right-moving (region II) surface

waves can be found while the right-moving component is evidently enhanced in the rough band

indicating a strong manifestation of surface roughness. In addition to the contour plot of slope

spectrum in Fig. B2, the dispersion relations of the surface waves in the moving frame of reference

𝜔 = (𝑈𝑟 −𝑐𝑖𝑤)𝑘𝑥 +
√︁
𝑔 |𝑘𝑥 | are also shown. Here,𝑈𝑟 is the surface current at the center of the smooth

or rough band. Clearly, we find that the dispersion relations mark the edges of the slope spectra
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with the maximum frequencies of the right-moving surface wave 𝜔𝑚 = −𝑔/4(𝑈𝑟 − 𝑐𝑖𝑤) which are

denoted by the green crosses. The asymmetric behaviour of right- and left-moving surface waves

are found to contribute to the surface signature formation and features are similar to those shown

in figure 4 of Hao and Shen (2020).
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