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We study the effects of Archimedes number Ar and volume fraction φ in
three-dimensional, high concentration and monodispersed particle suspensions.
Simulations were conducted using the immersed boundary method with direct forcing for
triply periodic cases and with Ar = 21–23 600 and φ = 0.22–0.43. We find that cluster
formation is strongly dependent on the Archimedes number but weakly dependent on the
volume fraction for concentrated suspensions. Particles in low Ar cases are characterized
by less frequent but long-lived clusters, resulting in higher hindered settling, while high
Ar cases consist of more frequent but short-lived clusters, leading to reduced hindered
settling. By quantifying the effects of collisions on the hydrodynamic fluctuations, we
show that the lifespan of clusters for the low Ar cases is longer because particles are
subject to appreciable wake interactions without collisions. On the other hand, clusters
for high Ar cases are broken before being subject to appreciable wake interactions due
to frequent collisions, leading to a shorter cluster lifespan. The results imply that there
exists an Ar for particles in fluidized bed reactors that can reduce short circuiting due to
clustering and enhance performance by maximizing flow–particle interactions. This result
is consistent with existing reactor studies demonstrating that optimal particle diameters
and Ar values correspond to cases with short-lived clusters, although more thorough
experimental studies are needed.

Key words: fluidized beds, particle/fluid flow

1. Introduction

Sedimentation/suspension and fluidization are found in many natural and industrial
systems such as wastewater treatment, chemical processes and sediment transport.

† Email address for correspondence: yaoyinuo@stanford.edu
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In wastewater treatment, sedimentation is used to separate, through settling, both grit and
organic particles (Burton et al. 2013; Scherson, Woo & Criddle 2014) and fluidized-bed
reactors are widely used in treating both industrial and domestic wastewater (Shin et al.
2014; McCarty 2018; Shin & Bae 2018). More recently, fluidized particles have been used
to reduce biological membrane fouling (Shin et al. 2016). In these applications, predicting
the settling velocity in sedimentation or upflow velocity in fluidization provides valuable
information for system design and operation.

Over the years, the general consensus has been to use a power-law model that relates
the volume fraction φ to the velocity of interest Ũ (settling velocity in sedimentation and
upflow velocity in fluidization) (Richardson & Zaki 1954; Garside & Al-Dibouni 1977;
Di Felice 1995; Yin & Koch 2007; Willen & Prosperetti 2019). The power law has been
widely verified to be of the form

Ũ
w∗ = (1 − φ)n, (1.1)

where Ũ is the hindered settling velocity, w∗ is the reference terminal velocity of a single
particle in the domain of interest and n is the expansion index or power-law exponent
(Richardson & Zaki 1954; Garside & Al-Dibouni 1977). In early studies, the main focus
was to accurately model n as a function of the terminal Reynolds number in the domain
of interest Re∗

t = w∗dp/νf , where dp is the particle diameter and νf is the fluid kinematic
viscosity. Defining Ut as the terminal velocity of a single particle in a finite-sized domain
and Ut,∞ as that in an infinitely large domain, a stepwise relationship between n and
Ret,∞ = Ut,∞dp/νf was proposed by Richardson & Zaki (1954) by using experimental
data with concentrated volume fraction (φ > 0.05) as

n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4.65, Ret,∞ < 0.2,

4.35Re−0.03
t,∞ , 0.2 � Ret,∞ < 1,

4.45Re−0.1
t,∞ , 1 � Ret,∞ < 500,

2.39, Ret,∞ � 500.

(1.2)

Garside & Al-Dibouni (1977) improved the relationship with a continuous sigmoid
function proposed to relate the expansion exponent n to Ret = Utdp/νf as

n = 5.1 + 0.27Re0.9
t

1 + 0.1Re0.9
t

, (1.3)

which was found to improve the accuracy of the power law by 20 %–30 % (Yin & Koch
2007). As Ret and Ret,∞ → 0, n → 4.65 in (1.2) and 5.1 in (1.3).

Batchelor (1972), on the other hand, predicted the theoretical hindered settling velocity
of monodispersed particles for a dilute suspension in viscous flow and showed that n would
be 6.5 for small Péclet number and 5.5 for large Péclet number suspensions (Batchelor &
Wen 1982), where the Péclet number is a ratio of the relative effects of gravity to Brownian
diffusion. Di Felice (1999) discovered that n is the same in both dilute and concentrated
suspension in the viscous regime (Ret � 1) which is supported by computing n in the limit
of large Péclet number in (1.3). However, n becomes approximately 1.5 times smaller in
concentrated suspensions for intermediate terminal Reynolds numbers, leading to a lower
hindered settling velocity in concentrated suspensions. This indicates a deceleration as
the volume fraction transitions from dilute to concentrated suspensions. If there was no
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deceleration in the concentrated regime, n would be the same for both regimes over all
Reynolds numbers. To address this discrepancy in the hindered settling velocity, many
researchers (Di Felice 1995, 1999; Yin & Koch 2007; Hamid, Molina & Yamamoto 2014;
Zaidi, Tsuji & Tanaka 2015; Willen & Prosperetti 2019) proposed to include a prefactor k
that typically ranges from 0.8 to 0.9 and proposed the modified power law

Ũ
w∗ = k(1 − φ)n. (1.4)

In addition, as Ret increases, the prefactor k for the power-law model that is satisfied
for both the dilute and concentrated suspensions also decreases (Yin & Koch 2007).
Some studies also suggest k in the range 0.8–0.9 for concentrated suspensions (φ > 0.05)
(Chong, Ratkowsky & Epstein 1979; Di Felice 1995). Di Felice (1995) conjectured that
this discrepancy might be correlated to the size of particles.

Many studies have shown that particles tend to form clusters in dilute suspensions (Li
et al. 1991; Uhlmann & Doychev 2014; Capecelatro, Desjardins & Fox 2015; Fullmer &
Hrenya 2017). The first mechanism is cluster-induced turbulence (known as CIT) which
occurs when the system has a mass loading ψ � 1, where ψ is defined as

ψ = s
φ

1 − φ
, (1.5)

where s = ρp/ρf is the particle to fluid density ratio and ρp and ρf are the respective
particle and fluid densities. In most experiments conducted to correlate n and k to Ret
(Richardson & Zaki 1954; Garside & Al-Dibouni 1977; Yin & Koch 2007; Willen &
Prosperetti 2019), s ∼ O(0.1–1), and hence cluster-induced turbulence is unlikely to occur.
Another cluster formation mechanism is wake interaction. Wake interactions are observed
when the Archimedes number Ar or Galilei number Ga exceed some threshold (Uhlmann
& Doychev 2014) where Ar and Ga are defined as

Ar = Ga2 = g(s − 1)d3
p

ν2
f

, (1.6)

where and g is the gravitational acceleration. Most of the studies on particle clustering
focus on dilute instead of concentrated suspensions. To date, no explanations have been
provided to address the deviation of k from unity in concentrated suspensions. Therefore,
a better understanding of the mechanisms governing and affecting k is required. For the
remainder of this paper, the reference velocity in (1.1) and (1.4) will be denoted as Ut, the
settling velocity of a single particle in the domain of interest, since the simulations are
conducted in periodic domains without wall effects.

While sedimentation and fluidization can be studied with experiments or simulations,
the advantage of experiments is the ability to test a large number of different particle
parameters which is beneficial for establishing a relationship between Ret and n. However,
the main disadvantage of experiments is the difficulty in tracking individual particle
information over time, leading to challenges in understanding both the fluid microstructure
and microscopic particle behaviour. High-fidelity particle resolved simulations (PRS)
simulate the movement of particles over time by resolving the flow around each
particle, enabling accurate quantification of fluid–particle interactions. Therefore, tracking
information of individual particles over time is possible, which enables the examination of
microstructure and improves understanding of the mechanisms governing particle motion.
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To understand the dependence of the prefactor k on different non-dimensional
parameters, a formal dimensional analysis is conducted. We consider a case when a
cloud of particles is settling or fluidized with volume fraction φ in a periodic domain
of horizontal extent L. The hindered/superficial velocity is related to six dimensional
parameters and the non-dimensional volume fraction φ with

Ũ = f (dp, νf , ρf , ρp, g, L, φ). (1.7)

Dimensional analysis results in a total of four dimensionless groups. Choosing ρp, νf and
dp to non-dimensionalize the other parameters results in the functional relationship

Rep = f (φ,Ar, s, dp/L), (1.8)

where the particle Reynolds number is defined as

Rep = Ũdp

νf
. (1.9)

For the range of density ratios of interest, we will show that the results weakly depend on
s. Furthermore, in a sufficiently large periodic domain, the dependence on dp/L vanishes.
Therefore, the only parameters governing the particle Reynolds number are φ and Ar,
implying

Rep = f (φ,Ar). (1.10)

Therefore, we expect any non-dimensional parameter, including the prefactor k in (1.4), to
depend on just two non-dimensional parameters. Since the literature suggests that the term
(1 − φ)n in (1.4) largely captures the effects of φ, we can further assume that k depends
primarily on one parameter, namely Ar.

In this paper, we use PRS of monodispersed particle suspensions to understand the
effects of the Archimedes number and particle density ratio on the hindered settling
velocity. A series of simulations are analysed to understand the relationship between
Ar and the prefactor k in (1.4), and we explain the results in the context of detailed
fluid-particle physics.

2. Numerical methodology and simulation set-up

2.1. Equations and discretizations
The governing Navier–Stokes equations are solved in a three-dimensional cubic domain
containing an array of uniform spherical particles. To enforce no-slip boundary conditions
on the particle surfaces, a source term, f IBM , based on the direct-forcing immersed
boundary method (IBM) method is added to the incompressible Navier–Stokes equation
to give

∂u
∂t

+ u · ∇u = −∇p + νf ∇2u + f IBM, (2.1)

subject to continuity, ∇ · u = 0, where u is the velocity vector and p is the pressure
normalized by the fluid density, ρf . These equations are discretized on a uniform collocated
Cartesian grid. A fractional step method (Zang, Street & Koseff 1994) is used to couple
the momentum and pressure. The advection term is discretized with the explicit, three-step
Runge–Kutta scheme described in Rai & Moin (1991). The viscous term is discretized
with the implicit Crank–Nicolson scheme to eliminate the associated stability constraint.
The linear systems arising from the implicit discretization of the viscous terms and the
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pressure Poisson equation are solved using the HYPRE library (Chow, Cleary & Falgout
1998; Falgout & Yang 2002). To solve the interactions between the fluid and the particles,
the direct forcing approach first proposed by Uhlmann (2005) and improved by Kempe
& Fröhlich (2012b) is adopted. Since the IBM formulation is unable to resolve the
fluid–particle interactions when the particles are less than two grid cells apart, we follow
the approach by Biegert, Vowinckel & Meiburg (2017) who employ the collision model
proposed by Kempe & Fröhlich (2012a).

2.2. Numerical method validation
To test the methodology, we simulated a single particle settling in a three-dimensional
domain with a quiescent fluid under the influence of gravity and compared the results with
published values. Simulated particle settling is compared with the experimental result of
ten Cate et al. (2002) (figure 1a) in which a particle settles in the negative z-direction
onto a bottom, no-slip wall, with Ret = 12. Particle settling is also compared with the
results of Mordant & Pinton (2000) (figure 1b), in which a particle is allowed to come to
terminal velocity with Ret = 360. The domain sizes are 6.66dp × 6.66dp × 13.33dp for the
wall-bounded case and 7.5dp × 7.5dp × 60dp for the terminal settling case. The boundary
conditions are periodic in all directions for the terminal settling case and periodic in the x-
and y-directions with no-slip top and bottom walls for the wall-bounded cases. In all cases,
a particle is initialized in the horizontal centre and 2dp from the top of the domain with no
vertical velocity in a quiescent fluid. The kinematic viscosity is νf = 1.175 × 10−4 m s−2

for the wall-bounded case and νf = 5.416 × 10−3 m s−2 for the terminal settling case,
and the fluid and particle densities are ρf = 1000 and ρp = 1164 kg m−3 (figure 1a) and
ρf = 1000 and ρp = 2560 kg m−3 (figure 1b). The time-step size is dictated by requiring
a maximum Courant number of Ut�t/h = 0.5, where h = �x = �y = �z is the grid
spacing which is uniform in the x-, y- and z-directions. We perform simulations with
different resolutions to determine the resolution needed to reproduce the published results.
As shown in figure 1, for the wall-bounded case (figure 1a), the particle approaches its
terminal settling velocity but then decelerates upon reaching the wall, while in figure 1(b)
the particle reaches its terminal velocity. In both cases, the settling velocity is normalized
by the reference velocity wt,ref = √

gdp and the time is normalized by the reference time
tt,ref = √

dp/g. The results indicate that our simulations agree with published results when
dp/h = 20–30 grid points are used to resolve the flow around the particles, which is
consistent with previous PRS simulations (Uhlmann 2005; Kempe & Fröhlich 2012b;
Biegert et al. 2017).

To validate the collision model, the simulation results were compared with the
experiments of Gondret, Lance & Petit (2002), in which a particle bounces off the wall
of a tank. The experiments focus on the effect of the Stokes number on the maximum
height of the particle after bouncing, where the Stokes number is defined as

Stval = ρpdpuin

9ρf νf
, (2.2)

where uin is the impact velocity. The parameters used in the simulations were identical to
Biegert et al. (2017), and we simulate Stval = 27 (figure 2a) and Stval = 152 (figure 2b).
The domain sizes in these simulations are 13.33dp × 13.33dp × 26.66dp for figure 2(a)
and 6.67dp × 6.67dp × 66.7dp for figure 2(b), and dp/h = 19.2 grid points are used to
resolve the particle diameter. The boundary conditions on the sidewalls are periodic with
no-slip conditions on the top and bottom boundaries. Simulations are initialized with the
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Figure 1. Time series of the simulated settling velocity Ut of a single particle with (a) Ret = 12 and
(b) Ret = 360 and different grid resolutions h used to resolve the particle diameter dp, compared with published
results.
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Gondret et al.

(a) (b)

Figure 2. Simulated height of the centre of a particle (ζn) bouncing off of a wall with (a) Stval = 27 and
(b) Stval = 152 compared with published values. The minimum distance from the wall is ζmin.

particle at rest in a quiescent fluid with kinematic viscosity νf = 1.036 × 10−4 m s−2 for
figure 2(a) and νf = 1.070 × 10−5 m s−2 for figure 2(b) and density ratio s = 8.083 for
figure 2(a) and s = 8.342 for figure 2(b). Before reaching a distance ζn = dp/2 from the
wall, the particle velocity is prescribed as the velocity in the z-direction

u(t) = −uin(1 − e−40t). (2.3)

The prescribed particle velocity is then removed when ζn < dp/2, whereupon the particle
is subject to velocity interactions with the fluid and wall. To account for lubrication
effects, the collision model proposed by Biegert et al. (2017) requires a parameter
dictating the minimum spacing between the particle and wall, setting the maximum
lubrication force. Figure 2 shows the effect of different minimum spacing parameters
and demonstrates that our results match the experiments when ζmin = 2.5 × 10−3rp,
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z

yx

L = 10dp L = 10dp

L = 10dp

g

Figure 3. Initial particle positions in the periodic simulation domain with Np = 817 particles and a volume
fraction φ = 0.43.

where rp is the particle radius. We use this minimum distance in the collision model for
all simulations in this paper.

2.3. Simulation set-up for particle clustering
Three-dimensional simulations are conducted in a cubic, triply periodic domain, as shown
in figure 3. The particles have a uniform diameter dp = 2 mm and density ρp that is varied
to give different values of s, and the fluid has a density ρf = 998.21 kg m−3. The grid
spacing is uniform in all directions and given by �x = �y = �z = h = dp/25.6, which
is sufficient to resolve the flow–particle interactions as demonstrated in § 2.2. The cubic
domain has a side length L = 10dp, giving a three-dimensional grid with 256 × 256 × 256
grid points. Yin & Koch (2007) showed that accurate PRS of particle suspensions with low
Ret can be achieved with a cubic domain with L ≈ 10dp by applying a correction based
on the structural factor (see § 3.3). The time step is determined based on the advection
and diffusion Courant number which are defined as Cadv = Ũ�t/h and Cdiff = νf�t/h2,
respectively, resulting in a maximum Courant number Cmax = max(Cadv,Cdiff ) = 0.25.

Based on the dimensional analysis, the prefactor k is primarily a function of Ar, hence
the parameter of interest is Ar as defined in (1.6). To fit n and k using (1.4), simulations
were conducted with three volume fractions φ = 0.22, 0.30, 0.43, five Archimedes
numbers Ar = 21, 100, 1000, 7413, 23 600 and three density ratios s = 1.3, 2.46, 6. To
obtain the desired volume fraction φ, we compute the number of particles Np with fixed L
and dp.

The desired values of Ar are achieved by varying the ratio of (s − 1)/ν2
f such that Np =

434, 581, 817 for φ = 0.22, 0.30, 0.43. A total of 33 simulations were conducted as shown
in table 1. All simulations are initialized with particles equally spaced in the domain (see
figure 3) and the flow is initialized as static in all directions. The gravitational force leads
to the settling and random motion of the particles until statistical equilibrium is reached,
at which time the dynamics are independent of the initial particle distribution.

Defining the ensemble average over all particles with 〈{·}〉, figure 4 shows that the
magnitude of the instantaneous ensemble settling velocity 〈Uz〉 initially increases with
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Ar = 21 Ar = 100 Ar = 1000 Ar = 7413 Ar = 23 600

s 1.30, 2.46, 6.00 1.30 1.30 1.30, 2.46, 6.00 1.30, 2.46, 6.00
Np 434, 581, 817
φ 0.22, 0.30, 0.43
Cases varying s and φ 9 3 3 9 9
Total no. of cases 33

Table 1. Summary of parameters used in the simulations. Each column represents parameters with different
s while varying νf = [g(s − 1)d3

p/Ar]1/2 to ensure the desired Ar. Simulations with each Ar and s were
conducted three times with different φ by varying Np. The particle diameter and fluid density are held fixed at
dp = 0.002 m and ρf = 998.21 kg m−3, and the domain size is fixed at L = 10 dp.

0

–0.05

–0.10

–0.15

–0.20

–0.25

–0.30

–0.35

–0.40

0 50 100 150 200 250 300

twt/dp

〈U
z〉(

t)/
w

t

Figure 4. Time series of the ensemble settling velocity 〈Uz〉 normalized by Ut for Ar = 7413, s = 1.3 and
φ = 0.43.

time as particles rearrange and settle. It eventually reaches statistical equilibrium once
the average drag force in the vertical balances the weight of the particles. We compute
the settling velocity of a single particle in an infinitely large domain, Ut that satisfies the
expression (Yin & Koch 2007)

Ar =
⎧⎨⎩18Ret

[
1 + 0.1315Re(0.82−0.05 log10 Ret)

t

]
, 0.01 < �t < 20,

18Ret
[
1 + 0.1935Re0.6305

t
]
, 20 < Ret < 260.

(2.4)

Various researchers have shown that equation (2.4) has an error ranging from 2 % to 4 %
when compared with simulations of single particle settling in a periodic domain with dp/L
ranging from 0.1 to 0.05. Yin & Koch (2007) have shown that as the size of domain L
increases and dp/L decreases, Ut converges to the value calculated with (2.4). Therefore,
dp/L = 0.1 is sufficient to obtain results with error less than 4 %. Simulations are run for
tmax = 200–500τT to obtain statistically converged results, where τT = dp/Ut is defined as
the particle turnover time. Time-average statistics are denoted by the overbar and computed
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Figure 5. Two-point autocorrelation of Eulerian velocity fluctuations as a function of rz for Ar = (a) 21 and
(b) 23 600.

over 50τT such that

{·} = 1
50τT

∫ tmax

ti
{·} dt, (2.5)

where ti = tmax − 50τT . Using these definitions, the time-averaged ensemble settling
velocity is given by 〈Uz〉, which we refer to as the hindered settling velocity Ũ in what
follows.

2.4. Evaluation of domain size
To evaluate the appropriateness of the domain size, we compute the two-point
autocorrelation of Eulerian velocity fluctuations as

Ruiui(rj) = 〈u′
i(x0,j)u′

i(x0,j + rj)〉
〈u′

i(x0,j)u′
i(x0,j)〉 , (2.6)

where x0,j is a reference point in the domain, i and j = x, y, z and u′
i = ui − 〈ui〉 is the

Eulerian velocity fluctuation and 〈ui〉 is the Eulerian spatially averaged velocity in all
directions. Due to periodicity in all directions, we compute the two-point autocorrelation
for half of the domain. Figure 5 shows the two-point autocorrelation as a function of z
Ruiui(rz) for cases with Ar = 21 and 23 600. Overall, due to the presence of a mean flow
in the z-direction, the decorrelation lengths are larger for fluctuations in uz than for ux and
uy. As Ar increases, the decorrelation length decreases because the velocity fluctuations
are more restricted to be local. For Ar = 21 in the Stokes regime, Ruzuz(rz) decreases and
converges to approximately 0.05, indicating nearly complete decorrelation. A similar trend
is observed in the simulation by Uhlmann & Doychev (2014) with dilute suspensions of
larger Ar particles. The authors conclude that a further increase in domain size would
not fully decorrelate the Eulerian velocity fluctuations. For the case of Ar = 23 600, the
decorrelation lengths are approximately 2 and 3dp for the respective transverse (x- and
y-directions) and axial directions. With this analysis, we conclude that the domain size in
this study is sufficient for complete decorrelation for high Ar cases and nearly complete for
low Ar cases. For low Ar cases, given the current trend where the slope of the two-point
autocorrelation function is approximately zero, a further increase in domain size is unlikely
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to completely decorrelate the Eulerian velocity fluctuations. Nevertheless, the largest
magnitude of the two-point autocorrelation Ruzuz(rz) is no bigger than approximately 0.05
for the case with the smallest value of Ar in this study.

3. Results and discussion

3.1. Power-law behaviour and effect of Archimedes number on k
For the cases with Ar = 21, Ret ≈ 1 results in Stokes law behaviour in which the finite
periodic domain affects hindered settling velocity Ũ. To correct the error associated with
the finite domain size associated with Stokes flow, Yin & Koch (2007) used a correction
method that relates the unbounded mean hindered settling velocity to the domain size with

Ũ =

⎧⎪⎨⎪⎩
〈Uz〉 + 1.7601S0

|F|
3πdpρf ν

∗
f

(π

6

)1/3
(

dp

L

)
, Ar � 21,

〈Uz〉, Ar > 21,

(3.1)

where 〈Uz〉 is the hindered settling velocity in the bounded domain, S0 is the structure
factor in an unbounded suspension in the limit of zero wavenumber, F = (ρp − ρf )πd3

pg/6
is the buoyancy force of a single particle and ν∗

f is the apparent dynamic viscosity that can
be approximated as (Ladd 1989)

ν∗
f = νf (1 + 2.5φ + 5φ2). (3.2)

Here, S0 is estimated using the Carnahan–Stirling approximation as

S0 = (1 − φ)4

1 + 4φ + 4φ2 − 4φ3 + φ4 (3.3)

which is applicable for φ > 0.05 (Yin & Koch 2007).
Table 2 and figure 6 show the least squares fit of the normalized average hindered

settling velocity U∗ = 〈Uz〉/Ut to the power law given by (1.4). Also shown are results
of fluidization in a doubly periodic domain with Np = 2000 particles and Ar = 23 600 but
with six values of φ (details in the Appendix). Since the regression of these results overlaps
those in this paper, we are confident that three values of φ is sufficient to regress for k. In
addition, each regression gives n and k values that fit equation (1.4) with coefficients of
determination R2 = 1.0. The fitted values of n are consistent with the predictions from
(1.2) and (1.3). Since the effects of the density ratio s on n and k are negligible, from now
on we report on results with s = 1.3 and ignore results with s = 2.46 and 6.0.

When plotted as a function of Ar as in figure 7, the magnitude of k decreases as
Ar increases, indicating overprediction of Ũ with the original power-law equation (1.1).
Therefore, a prefactor k < 1 is needed to correct this overprediction. This result agrees
with Di Felice & Parodi (1996) and Chong et al. (1979) that the prefactor k should be
included even for concentrated particle suspensions and also suggests that the mechanism
leading to the overprediction is stronger for higher values of Ar. An exponential function
of the form of k = k0 exp(−αAr), where k0 and α are fitted parameters, is used to fit the
data shown in figure 7. After regression, the relationship between k and Ar fits the relation

k = 0.89 exp
(

− Ar
105

)
, (3.4)

with a coefficient of determination R2 = 0.86. As Ar → 0, k → 0.89. We note that
(3.4) is only valid for the range of Ar that we study (21 � Ar � 2360) and, while it
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Ar s n k nrz nga

21 1.30 4.63 ± 0.08 0.88 ± exp(0.03) 4.44 4.87
21 2.46 4.60 ± 0.02 0.88 ± exp(0.08) 4.44 4.87
21 6.00 4.62 ± 0.01 0.89 ± exp(0.005) 4.44 4.87
100 1.30 4.31 ± 0.01 0.87 ± exp(0.003) 3.87 4.48
1000 1.30 3.46 ± 0.06 0.81 ± exp(0.02) 3.25 3.59
7413 1.30 3.01 ± 0.05 0.78 ± exp(0.02) 2.83 3.04
7413 2.46 3.02 ± 0.08 0.79 ± exp(0.03) 2.83 3.04
7413 6.00 3.04 ± 0.05 0.80 ± exp(0.03) 2.83 3.04
23 600 1.30 2.80 ± 0.05 0.72 ± exp(0.02) 2.39 2.73
23 600 2.46 2.77 ± 0.04 0.72 ± exp(0.02) 2.39 2.73
23 600 6.00 2.78 ± 0.02 0.73 ± exp(0.01) 2.39 2.73

Table 2. Fitted expansion exponent, n, and prefactor, k, along with 95 % confidence intervals that provide the
best fits to equation (1.4). All fits have R2 = 1.0.

0.30

0.20

0.10

0.09

0.08

0.07

0.50 0.60 0.70 0.80

1 – φ

U
∗  =

 〈U
z〉/

U
t

Ar = 21

Ar = 100

Ar = 1000

Ar = 7413

Ar = 23 600

Ar = 23 600

(Fluidization)

Figure 6. Normalized hindered settling velocity u∗ as a function of porosity 1 − φ for different Archimedes
numbers Ar. Since the effect of the density ratio s = ρp/ρf is negligible, we only show results for s = 1.3. The
dashed line is a regression based on six values of φ from simulations described in the Appendix.

reproduces the Ar → 0 limit, it should not be used to interpret the Ar → ∞ limit.
According to Di Felice (1999), the relationship between hindered settling and the volume
fraction can be accounted for by two sets of parameters for dilute and concentrated
suspension, respectively. Comparing with concentrated suspensions, n is higher to account
for acceleration (Batchelor 1972, 1988) and k = 1 is used to recover Ut as φ → 0 in
dilute suspensions. In our work, since (1.4) fits with φ > 0.05, k /= 1 and decreases as Ar
decreases to account for lower hindered settling. This result agrees with various researchers
(Di Felice & Parodi 1996; Yin & Koch 2007; Willen & Prosperetti 2019). As Ar → ∞
(turbulent regime), the effects of Ar and φ on n and k are less well studied. Kowe et al.
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Willen et al. (2019)

Yin et al. (2007)

Zaidi et al. (2015)

Present work (Fluidization)

Present work (Suspension)

Figure 7. Prefactor k as a function of Ar from various publications and the present work along with the
best-fit curve given by (3.4).

(1988) suggests that n → 1.5 as Ar → ∞, although more work is required to understand
the effects on k.

3.2. Particle velocity fluctuations
We hypothesize that the lower hindered settling velocity at high Ar indicated by smaller k
is due to weaker particle clustering effects. Uhlmann & Doychev (2014) demonstrated the
important effects of long-lived clusters for higher hindered settling velocity u at moderate
Ar with low φ. In our simulations, clusters persist for longer periods for lower Ar, implying
that clustering will likely have more of an impact for low Ar cases. On the other hand,
particles collide more often and clusters are easily broken for higher Ar, implying that
collisions will likely have more of an impact for high Ar.

To understand the details of the particle motions, we computed the variance of the
vertical velocity fluctuation as

〈U′2
z 〉 = 〈(Uz,n − 〈Uz〉)2〉, (3.5)

where Uz,n is the vertical velocity of particle n = 1, . . . ,Np. Figure 8 shows the variance
of the vertical velocity fluctuations normalized by the square of the hindered settling
velocity 〈Uz〉2 as a function of Ar for different φ. In general, as Ar increases, the
normalized velocity fluctuation variance decreases possibly due to decreased wake
interactions between particles at higher Ar. At high Ar, the effects of collisions (see § 3.5)
dominate over the hydrodynamic forces, hence reducing the effect of wake interactions
and normalized vertical velocity fluctuation variance. Interestingly, the lowest velocity
fluctuation variance occurs when φ = 0.43 and Ar = 21, while this value of φ produces
the largest variance when Ar > 1000.
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Figure 8. Normalized vertical velocity fluctuation variance 〈(U′
z)

2〉/〈(Uz)2〉 as a function of Ar for
different φ.

3.3. Frequency spectrum of particle velocity fluctuations
As discussed in § 3.2, the largest normalized vertical velocity fluctuation variance is
observed at the lowest value of Ar = 21. Uhlmann & Doychev (2014) discovered that
clustering results in significant velocity fluctuations in dilute suspensions. Here, we
compute the normalized ensemble-averaged frequency spectrum Ê( f ) = E( f )/w2

ref as the
square of Fourier coefficients of the particle vertical velocity fluctuations as a function of
the normalized frequency f̂ = fdp/wref , where the reference velocity wref is defined as

wref =
√
(s − 1)gdp. (3.6)

Figure 9 shows the normalized frequency spectra with different Ar for φ = 0.23. Similar
trends are observed for φ = 0.30 and 0.43 (not shown). We also include the simulation of a
fluidized bed with Ar = 23 600 to demonstrate the independence of domain size. Details of
this set-up can be found in the Appendix. The trends of these two cases with Ar = 23 600
are almost identical except for the magnitude of the spectra even though the length of the
fluidized bed (solid black line) is five times higher than the length of the domain in this
paper, hence indicating that the spectra are weakly dependent on the domain size.

The spectra for all values of Ar are approximately constant at low frequencies. The
range of frequencies for constant spectra is proportional to Ar while the magnitude
of the constant spectra is inversely proportional to Ar. Both observations are likely
due to the dependence of the terminal velocity Ut on Ar. The magnitude of particle
velocity fluctuations increases with increasing Ar resulting in greater constant spectrum
magnitudes. As the terminal velocity increases with increasing Ar, the normalized domain
frequency f̂res = Utdp/Lwref also increases, resulting in a wider frequency range for
constant spectra. Eventually, the spectra decrease and diverge from one another when
f̂t � f̂res following an approximate −10/3 slope for all Ar cases, indicating a power-law
relation between the spectra and frequencies.

920 A40-13

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

ta
nf

or
d 

Li
br

ar
ie

s,
 o

n 
15

 Ju
n 

20
21

 a
t 1

8:
58

:1
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
47

0

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.470


Y. Yao, C.S. Criddle and O.B. Fringer

10–2

10–2 10–1 100 101 102 103

10–4

10–6

10–8

10–10 Ar = 21

Ar = 100

Ar = 1000

Ar = 7413

Ar = 23 600

Slope = –10/3

Ar = 23 600

(Fluidization)

10–12

10–14

10–16

10–18

f̂  = fdp/Wref

E(
f)

 =
 E

(
f)

/W
re

f2

Figure 9. Normalized frequency spectra Ê( f ) as a function of normalized vertical particle velocity
fluctuation frequency f̂ for different Ar and φ = 0.23.

Spectral slopes have been discussed in the context of Eulerian velocity fluctuations
in bubbly flows, for which slopes ranging from −8/3 to −3 have been found (Lance
& Bataille 1991; Rensen, Luther & Lohse 2005; Riboux, Risso & Legendre 2010; Lai
& Socolofsky 2019; Bordoloi et al. 2020), and in gas–solid fluidized beds, for which
the spectral slopes of pressure fluctuations range from −4 to −2 (Johnsson et al. 2000;
van Ommen et al. 2011; van der Schaaf et al. 2002). While the slope of −10/3 in our
simulations is in the range of spectral slopes in the literature, at this time we do not
have a physical explanation for this slope given that it represents the Lagrangian particle
velocity fluctuations and there are distinct differences between the physical properties of
our flow and those that have been published. Nevertheless, it is instructive to compare
the spectra from the simulations with this seemingly universal slope of −10/3 in order
to understand how the spectra are modified by clustering. Specifically, when we compare
the simulated spectra in figure 9 with the −10/3 slope (black dashed line), two humps
are identified for low Ar cases (Ar = 21–1000) while only one hump exists for high
Ar cases (Ar > 1000). The frequency range of the low-frequency hump decreases as Ar
increases while the frequency range of the high-frequency hump increases as Ar increases.
Each hump in the spectrum can be interpreted as an accumulation of energy due to
frequent particle velocity fluctuations, indicating dominant time scales or frequencies.
We hypothesize that these two time scales or frequencies are associated with short-
and long-lived clusters. It is likely that the low Ar cases are dominated by long-lived
clusters given the larger magnitude of the spectra while the high Ar cases are dominated
by short-lived clusters (detailed discussion in § 3.5). Hence, these long-lived clusters
behave as a single, larger particle and induce stronger velocity fluctuations (Nicolai et al.
1995).
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3.4. The effects of Archimedes number on the lifespan and tendency of clustering
To establish a link between the humps observed in the frequency spectra and particle
clustering, Voronoï tessellation is used to directly quantify the lifespan and frequency of
clusters. In Voronoï tessellation, the domain is decomposed into Voronoï cells in which
the centroid of each cell coincides with the centre of a particle. By definition, all points
within a Voronoï cell are closer to the centroid of that cell than any other cell. One
advantage of the Voronoï tessellation is that an a priori length scale is not required,
thus reducing the ambiguity in the analysis. Following Uhlmann & Doychev (2014), we
define the approximate probability density function (p.d.f.) of quantities associated with
randomly arranged particles (Ferenc & Néda 2007) as

fd(X ) = ((3d + 1)/2)(3d+1)/2

Γ ((3d + 1)/2)
X (3d−1)/2 exp

(
−3d + 1

2
X

)
, (3.7)

where X is the random variable representing either the instantaneous Voronoï volume
or aspect ratio, d = 3 is the dimension of the Voronoï tessellation and Γ is the gamma
function. Figure 10(a) shows the distribution of instantaneous Voronoï volumes V
normalized by the ensemble- and time-averaged Voronoï volume 〈V̄ 〉 for different φ
with Ar = 21. Compared with the distribution of randomly arranged particles fd(V ), an
increase in φ results in a decrease in the width of the p.d.f., indicating a more ordered
arrangement. Comparison with different Ar for the same φ shows that the effect of
Ar (not shown) is negligible, indicating that the distribution of instantaneous V /〈V̄ 〉
depends primarily on φ. We analysed the geometry of the Voronoï cells by computing
the instantaneous aspect ratio of the ith Voronoï cell

Ai = max(�x,i, �y,i)

�z,i
, (3.8)

where �x,i, �y,i and �z,i are the largest separation distances between two vertices in the
respective x-, y- and z-directions. Figure 10(b) compares the p.d.f. of Ai for the cases
in this work with the expected p.d.f. from a random arrangement. The probability of
observing large Ai decreases as φ increases, indicating a more ordered arrangement
due to squeezed/elongated Voronoï cells. This indicates that the particles prefer a
vertical arrangement over a horizontal arrangement because of shielding by the upstream
particles which reduces the hydrodynamic forces experienced by the downstream particles.
However, in the horizontal direction, the shielding effect from the upstream particles is
much weaker because the direction of the flow is perpendicular to the arrangement, hence
particles are less likely to be aligned horizontally. The vertical-alignment preferences have
been observed in all cases simulated which suggests that instantaneous vertical alignment
does not induce observable effects on the hindered settling velocity.

To quantify temporal effects, we compute the clustering frequency and lifespan. A
cluster is defined as a Voronoï volume satisfying Vi < Vc,lower and voids as Vi > Vc,upper
where Vc,lower and Vc,upper are the lower and upper bounds defined by the intersection
of the simulated p.d.f.s with the randomly arranged p.d.f. given by (3.7). Qualitatively,
all simulated cases contain significant numbers of clusters and voids, although more
quantitative aspects of clusters concern their lifespan and frequency. More frequent,
long-lived clusters can induce appreciable acceleration because clusters can behave as a
particle with large inertial effects. To compare the lifespan of clusters across the range
of simulated Ar, we utilized the reference time scale tref = dp/wref and computed a
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Figure 10. Probability density function of (a) normalized Voronoï volume Vi/〈V̄ 〉 and (b) normalized
Voronoï aspect ratio Ai/〈 ¯A 〉 as a function of φ for Ar = 21.

clustering frequency

fcluster =
Np∑
i=1

1R−
(
1Vi<ε(V

t+1
i )− 1Vi<ε(V

t
i )

)
, (3.9)

where V̂i
t

is the normalized Voronoï volume at time t and 1A(X) is the indicator function

1A(X) =
{

1 X ∈ A,
0 X /∈ A.

(3.10)

As such, 1Vi<ε(V
t+1

i )− 1Vi<ε(V
t

i ) = 1 when a particle leaves the cluster, 0 when a
particle neither enters nor leaves the cluster and −1 when it enters the cluster. Figure 11(a)
shows the normalized clustering frequency f̂cluster = fclustertref as a function of Ar.
Comparing cases with the same φ, as Ar increases, f̂cluster also increases probably because
strong velocity fluctuations at higher Ar increase the probability of particles coming into
contact with one another (Uhlmann & Doychev 2014), resulting in more clusters. For cases
with the same Ar, as φ increases, the normalized clustering frequency decreases because
more frequent collisions are likely to break apart clusters. Defining the lifespan of clusters
as

τclu =
∑Np,Nt

i,t 1Vi<ε(V
t

i )

fcluster
, (3.11)

figure 11(b) shows the normalized average cluster lifespan τ̂clu = τclu/tref as a function
of Ar and shows that as Ar increases, τ̂clu significantly decreases. This is probably due
to collisions that break apart clusters. Interestingly, taking the inverse of τ̂clu gives a
normalized frequency that falls into the middle of the low-frequency hump for low Ar
cases (Ar = 21–1000) and tail of high-frequency hump for high Ar cases in figure 9. This
again suggests the humps are due to the particle velocity fluctuations induced by both
short- and long-lived clusters. Figure 12 shows the relationship between the normalized
Voronoï volumes and the normalized lifespan of clusters. As Ar increases, the slope of
dependence decreases drastically, indicating weaker dependence of the lifespan on the
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Figure 11. (a) Clustering frequency fcluster and (b) normalized cluster lifespan τclu/tref as a function of Ar for
different φ.
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Figure 12. Normalized cluster lifespan τclu/tref as a function of normalized Voronoï volume Vi/〈V 〉 for
different Ar and φ: (a) φ = 0.23, (b) φ = 0.3 and (c) φ = 0.43.

Voronoï volumes. As φ increases, the dependence of the cluster lifespan on the normalized
volumes also increases. Combining the results from the normalized lifespan of clusters
and clustering frequency, we show that as Ar increases, the decreased cluster lifespan is
accompanied by a significant increase in the clustering frequency which indicates that low
Ar is characterized by fewer but longer-lived clusters while high Ar is characterized by
more short-lived clusters. Overall, due to a significant number of long-lived clusters in
low-Ar particle suspensions, an appreciable increase in the hindered settling velocity is
observed, hence resulting in higher k. In contrast, in high-Ar particle suspensions, a large
number of short-lived clusters is insufficient to induce appreciable particle acceleration,
leading to a lower k.

3.5. Effect of collisions and hydrodynamic forces on clustering
In a concentrated suspension, there are two primary types of interactions, namely
fluid–particle interactions induced by hydrodynamic forces and particle–particle
interactions induced by collisions. As shown by Esteghamatian et al. (2017), the primary
role of collisions in concentrated suspensions is to transfer momentum from the axial
direction to the transverse direction and induce stronger velocity fluctuations in the
transverse directions.
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Following Esteghamatian et al. (2017) and Nicolai et al. (1995), we computed the
autocorrelation of the instantaneous particle velocity fluctuation as

RUiUi(τ ) = 〈U′
i,n(t0)U

′
i,n(t0 + τ)〉 (3.12)

along with the normalized value

̂RUiUi(τ ) = RUiUi(τ )

〈U′
i,n(t0)U

′
i,n(t0)〉

, (3.13)

where the fluctuating particle velocity of particle n = 1, . . . ,Np is defined as U′
i,n =

Ui,n − 〈Ū〉i, t0 is a chosen time and i = x, y or z. Here, the overbar is the time-averaging
operator defined in (2.5) and the angle bracket 〈·〉 indicates an ensemble average over all
particles. The autocorrelation time scale of the velocity fluctuations is given by

Ti = lim
τ→∞

∫
̂RUiUi(τ ) dτ (3.14)

and the self-diffusivity is

Di = lim
τ→∞

∫
RUiUi(τ ) dτ, (3.15)

where i = x, y or z.
To quantify the effects of collisions, time- and ensemble-averaged effective collision

frequency 〈fc〉eff are computed. A collision between two particles occurs when the
separation distance between the particles’ centres is less than the particle diameter dp.
As a result, the collision frequency is a monotonically decreasing function of the volume
fraction because the likelihood of a collision decreases as the mean separation distance
between particles increases. However, this approach leads to overestimation of effective
collisions (Ozel et al. 2017). Restricting collisions to those with appreciable normal contact
velocities is achieved by defining the collision Stokes number

Stimp = Uimpρpdp

9ρf νf
, (3.16)

where Uimp is the normal component of the relative particle velocities contacting one
another. If the number of times a particle n collides with another particle during a
simulation time step nt with Stimp > Stthresh (where Stthresh is the threshold Stokes number,
defined below) is given by Ñnt

c,n, then the time- and ensemble-averaged collision frequency
is given by

〈fc〉eff = 1
Np(tmax − t0)

nt,max∑
l=nt,0

Np∑
n=1

Ñl
c,n, (3.17)

where nt,0 = t0/�t and nt,max = tmax/�t.
The threshold Stokes number is then determined by computing a threshold collision

velocity with an empirical function relating the restitution coefficient to the Stokes number.
If the vertical velocity of a particle before being subject to lubrication and contact forces
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Figure 13. The restitution coefficient ε as a function of St0 and Stimp.

is Ut,0, then the restitution coefficient is given by as

ε = Ur

Ut,0
= εmax exp

(
− 30

St0

)
, (3.18)

where Ur is the rebound velocity of a particle after collision and εmax ≈ 0.91 is the
maximum restitution coefficient when St0 → ∞, and

St0 = Ut,0dpρp

9ρf νf
(3.19)

is the Stokes number based on Ut,0. Figure 13 shows the effect of St0 on ε, demonstrating
that a collision is only effective when an appreciable Ur can be achieved for ε > 0. We
rearranged (3.18) to relate Stimp to ε by using the dry restitution coefficient edry = Ur/Uimp
such that

Stimp = 30ε
edry(log ε − log εmax)

, (3.20)

where Uimp is the precollision impact velocity. Figure 13 shows the effect of Stimp on ε.
In this paper, we define Stthresh = 0.22 as the Stokes number at which ε = 0.025, which
represents the value of ε at which Stimp is exceeded by 95 % of all values of Stimp in
figure 13.

To compare the effects of hydrodynamic and collision forces, we computed the ratio
of the hydrodynamic fluctuation length scale to the mean free path between collisions
λhydro,i/λcol,i, where

λhydro,i =
√

DiTi, (3.21a)

λcol,i =
√

Di/〈fc〉eff , (3.21b)

where i = x, y and z. The mean free path between collisions, λcol,i, quantifies the average
distance the particles travel between collisions, while the hydrodynamic fluctuation
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Figure 14. The ratio of vertical hydrodynamic fluctuation length scale λhydro,z to the vertical mean free path
between collisions λcol,z as a function of volume fraction φ for different Ar.

length scale, λhydro,i, measures the distance over which the particle velocity fluctuations
are still correlated. Figure 14 shows the ratio λhydro,z/λcol,z that quantifies the relative
effects of hydrodynamic to collision forces. Similar trends are observed for the x-
and y-direction (not shown). Since λhydro,z/λcol,z ≈ 0 for Ar = 21 and 100, the mean
free path is close to infinitely large, indicating a dominance of hydrodynamic forces
without effective particle–particle collisions. Since 0 � λhydro,z/λcol,z � 1 for Ar =
1000, the mean free path is much larger than the hydrodynamic fluctuation length
scale, still allowing particles to be influenced by appreciable hydrodynamic forces with
few particle–particle collisions. Since λhydro,z/λcol,z � 1 for Ar = 7413 and 23 600, the
mean free path is shorter than the hydrodynamic fluctuation length scale, indicating a
dominance of particle collisions, hence particles collide before experiencing appreciable
wake interactions induced by hydrodynamic fluctuations. In general, as Ar increases,
λhydro,z/λcol,z increases significantly indicating λcol,z decreases at a rate much faster than
the decrease in λhydro,z. As a result, the effects of collisions are more significant and
dominate over the hydrodynamic forces for high Ar cases, preventing particles from
experiencing appreciable wake interactions. Similarly, λhydro,z/λcol,z increases slightly
with an increase in φ, indicating a weak dependence on the volume fraction. As reported
by Uhlmann & Doychev (2014), particles cluster and accelerate when they experience
appreciable fluctuations induced by wake interactions or the ‘drafting–kissing–tumbling’
effect from interacting particles. In our simulations, particles tend to cluster because of
the particle velocity fluctuations and wake interactions at all values of Ar. However,
for low Ar cases, clusters are less likely to break up because of insignificant
collisions, resulting in long-lived clusters and higher hindered settling or a larger
value of k. For high Ar cases, clusters are likely to break up because of strong
collisions, leading to short-lived clusters, therefore lower hindered settling and a smaller
value of k.
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4. Summary and conclusion

We studied the effects of particle properties on the hindered settling velocity in PRS
simulations of three-dimensional, triply periodic, monodispersed particle suspensions.
The primary parameter of interest is the Archimedes number Ar which is varied by varying
the fluid kinematic viscosity νf and particle-fluid density ratio s. Analysis of various
statistics provided insights into the effects of particle clustering on hindered settling.
By plotting the prefactor k obtained from the literature over our simulation results as
a function of Ar, we demonstrate that k converges to 0.89 for concentrated suspension
as Ar → 0 and decreases as Ar increases according to an exponential function (3.4),
indicating smaller hindered settling for high Ar. We found that the normalized particle
velocity fluctuation variance decreases as Ar increases, indicating that particles experience
less wake interactions and less ‘drafting-kissing-tumbling’ effects. Frequency spectra
demonstrated two humps at low and high frequency for low Ar and one hump at high
frequency for high Ar. These humps indicate an accumulation of energy and are likely due
to the existence of two types of short- and long-lived particle clusters.

To understand the existence of clustering, we employed Voronoï tessellation to compute
the simulated p.d.f. of normalized Voronoï volumes. By comparing the simulated p.d.f.
with the p.d.f. of randomly arranged particles, we found that both short- and long-lived
clusters exist for all Ar cases with different volume fractions φ with the particles favouring
vertical alignment, leading to a reduced instantaneous aspect ratio of the normalized
Voronoï volumes. The simulated p.d.f.s also suggest that φ has stronger effects on the
particle arrangement as compared with Ar which more strongly affects particle clustering.
By analysing the normalized lifespan and normalized frequency of clusters, we show that
the normalized lifespan of clusters decreases with increasing Ar and decreasing φ while the
normalized frequency of clusters increases with increasing Ar and decreasing φ. Both the
normalized lifespan and normalized frequency strongly depend on Ar and weakly on φ.
By analysing the normalized lifespan of clusters as a function of the normalized Voronoï
volume, we found that large clusters have longer lifespans for all Ar cases, although the
increase in the lifespan is much higher for low Ar cases. Furthermore, the inverses of
the cluster lifespans for all Ar cases fall within the dominant humps in the corresponding
frequency spectra which indicates energy accumulation is indeed due to particle clustering.
This shows that low Ar and high φ cases are characterized by less frequent and long-lived
clusters while high Ar and low φ cases are characterized by more frequent, short-lived
clusters.

By quantifying the effects of hydrodynamic forces relative to collision forces with the
ratio of the mean free path between collisions λcol,z to the hydrodynamic fluctuation
length scale λhydro,z, we showed that the effects of collisions increase at a rate much
faster than the increase in the effects of hydrodynamic fluctuations with increasing Ar,
while the effect of φ was weak. For Ar = 21 and 100, λhydro,z/λcol,z ≈ 0, indicating
that collisions are insignificant and particles can freely experience wake interactions and
‘drafting–kissing–tumbling’ effects, resulting in higher hindered settling and a value of
k. When Ar = 1000, 0 < λhydro,z/λcol,z � 1, the effects of collisions become stronger
although particles still experience appreciable wake interactions with less frequent
collisions. When Ar = 7413 and 23 600, λhydro,z/λcol,z > 1, indicating that the effects of
collisions dominate over the hydrodynamic fluctuations. The particles in this regime rarely
experience wake interactions because of frequent collisions, resulting in lower hindered
settling and a lower value of k.

In application of fluidized-bed reactors for wastewater treatment, flow short circuiting
should be minimized to ensure maximum utilization of particle surfaces for optimal
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microbial growth and biological degradation. Our results imply that flow short circuiting
within fluidized bed reactors is likely to occur when clustering is long-lived. Therefore,
our results suggest that operating fluidized-bed reactors in a regime that has short-lived
clusters, or with particles having Ar > 1000 is likely to reduce flow short circuiting.
Though experimental validation of fluidized-bed reactors is needed, previous fluidized
bed reactor studies have demonstrated that satisfactory treatment performance is achieved
when Ar = 2000–20 000 (Shin et al. 2014). We anticipate that the results of this study
will inform fluidized-bed reactor design for domestic and industrial wastewater treatment
based on Ar, enabling more reliable and energy-efficient operation.
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Appendix. Simulation set-up of a fluidized bed

For the simulation of a fluidized bed, three-dimensional simulations are conducted
with Np = 2000 particles in a rectangular domain. The particles have an Archimedes
number Ar = 23 600. The grid spacing is uniform in the x-, y- and z-directions and
the grid resolution is given by �x = �y = �z = h = dp/25.6. The rectangular domain
has cross-sectional dimension Lx = Ly = 10dp and its length is Lz = 60dp with 256 ×
256 × 1536 grid points. The time-step size is �t = 1.5 × 10−4 s, resulting in a maximum
advection Courant number of 0.5 for the six cases simulated. The cases are run with
periodicity in the x- and y-directions. The pressure is specified at the top boundary as
p = 0, while at the bottom boundary the inflow velocity is specified as uniform and given
by Ũ. The primary parameter of interest is the particle Reynolds number Rep = Ũdp/νf ,
where the average upflow velocity at the inlet, Ũ, is varied to investigate Reynolds
number effects. A total of six simulations were conducted with 0.010 � Ũ � 0.035, giving
20 � Rep � 70.
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