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CFD-accelerated bioreactor optimization:
reducing the hydrodynamic parameter space†

Yinuo Yao, *ab Oliver B. Fringer b and Craig S. Criddle a

Optimization of bioreactor design can be experimentally challenging because of the complex interactions

between hydrodynamic and biological processes. A promising prototyping strategy is the use of

computational fluid dynamic (CFD) simulations to identify preferred hydrodynamic parameter spaces. In this

work, we describe CFD simulations of flow in anaerobic fluidized-bed reactors (FBRs), with a focus on bed

expansion and particle size. The results reveal regimes of putative high mass transfer where the diffusion

layer thickness is impacted by a combination of flow velocity and particle collisions. These regimes are

observed when bed expansion is narrowed from 10–70% (typically recommended) to 40–60%. Similarly,

prospects for short circuiting are minimized by constraining the Archimedes number Ar of fluidized particles

to Ar > 1000 (as opposed to the common wisdom that “smaller is better”). When membranes are added to

an FBR design, fluidized particles can effectively scour and clean membranes by constraining Ar to values Ar

> 7000 (a minimum is required). We conclude that CFD can provide valuable insights into reactor design

and operation, reducing the hydrodynamic parameter space that must otherwise be explored by laboratory

and pilot-scale validation thus decreasing time and cost for system optimization.

1 Introduction

Sustainability is a grand challenge for the 21st century.1

Current human civilization is largely supported by linear
economies in which resources are extracted, used, and
discarded at end-of-life. This has created enormous
challenges, increasing the need for circular economies based
upon recycling and reuse.2–5

Microbial processes play an integral role in the removal of
organic carbon and nutrients.6–8 The prevailing technology
first developed at the turn of the 20th century is activated
sludge, a process that has since been modified to enable
nutrient removal. Many emerging technologies cannot cross

the “Valley of Death” because they treat tiny flows (in many
cases, just milliliters per day) while adoption in practical
applications may require treatment of tens of millions of
liters per day. As biological and hydrodynamic complexity
increases, the “Valley of Death” becomes deeper. An example
would be bioelectrochemical processes, such as microbial
fuel cells9 and microbial batteries,10,11 technologies that have
been demonstrated at bench- and, in some cases, pilot-scale
but not full-scale. Academia is a likely source for such
potentially disruptive innovation but lacks access to the
facilities and funding needed for long-term testing at a
meaningful scale. To date, microbially-based technologies
have largely relied upon experiments for optimization, but
such testing is slow and costly. Not surprisingly, practitioners
and utilities tend to innovate incrementally using existing
systems. There is thus a great risk of locking-out innovation.
A pathway for lower cost and more rapid scale-up of
promising technology is needed.

In general, bioreactors can be classified as either
dispersed growth systems, where substrate gradients are
minimal, or attached-growth/floc-based systems, where
appreciable substrate gradients drive diffusion of substrate
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Water impact

Optimization of promising water/wastewater treatment technologies requires significant resources in terms of time, labor and cost due to complex
interactions between flow, microorganisms and reactions. The use of computational fluid dynamic simulations can shrink the possible parameter space,
hence decreasing scale-up optimization costs.
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into floc or attached biofilms as products diffuse out. The
classic dispersed-growth example is activated sludge (AS), a
technology that efficiently removes organic carbon in
wastewater by converting soluble organics into CO2. Active
microbial biomass is concentrated by settling or membrane
separation. These microorganisms are typically present as
discrete cells or as floc within a size range of 2–20 μm.12,13

This size range confers two benefits: (1) the absence of a
significant diffusion layer eliminates mass transfer
limitations, and (2) small particles follow flow trajectories
with negligible disruption of the overall hydrodynamics. The
combined effect of these processes is to weaken the
dependence of biological activity on diffusion within floc or
particles under well-mixed conditions, with minimal energy
consumption and minimal short-circuiting. To achieve
excellent mixing, vigorous bubbling is used for aeration and/
or mechanical mixing. To date, most research has focused on
optimization of process-related parameters such as HRT,
solid retention time (SRT), and on microbial kinetic
parameters with minimal hydrodynamic impacts. By
excluding hydrodynamics in such models, reactor design and
operation are greatly simplified. Examples include, but are
not limited to, prediction of biological activity using ordinary
differential equations rather than partial differential
equations. In contrast to dispersed growth reactions,
attached growth and biofilm reactors are much more
complex and more affected by process hydrodynamics.
Examples would include trickling filters, granular reactors,
fluidized-bed reactors, membrane-aerated reactors, microbial
fuel cells, and microbial batteries. For these examples, well-
mixed conditions do not insure a reduction in the
hydrodynamic parameter space. The parameter space in
complex systems (such as microbial flocs, biofilm-coated
particles and biofilm-coated porous materials, and electrically
conductive sponge) is much larger than in dispersed-growth
reactors, and a thicker diffusion layer can increase mass
transfer limitations. In addition, floc and BC-Ps do not

necessarily follow the flow and flow–particle interactions can
eventually alter the flow trajectories, creating more complex
hydrodynamics. As a result, biological activity and overall
treatment efficiency depend upon local hydrodynamics. To
optimize reactor design and operation, a quantitative
understanding of hydrodynamic-related parameters such as
particle Reynolds number, porosity and Archimedes number
is critical. By including hydrodynamic-related parameters, the
total number of parameters (both hydrodynamic- and
process-related) increases, resulting in drastic increases in
resources in terms of cost and time and the number of
experiments required for optimization. Simultaneously, the
likelihood of obtaining optimal performance diminishes due
to the high dimensional parameter space.

2 Computational fluid dynamics

Computational fluid dynamics (CFD) uses numerical
methods to study problems that involve fluid flows. Over the
past few decades, advances in computational power and
methods have expanded the range of problems that can be
addressed using CFD. A review by Karpinska and
Bridgeman14 has evaluated different strategies and models
for optimization of wastewater treatment. In wastewater
treatment (Fig. 1), CFD can (1) prospectively preview
macroscopic reactor hydrodynamics and (2) retrospectively
improve current design and operation. Studies are carried
out sequentially by first comparing simulations with
experimental results (i.e., historical results from an existing
system in retrospective applications or from a similar system
in prospective applications) then conducting simulations by
varying a parameter of interest. These studies are mostly
conducted at the mesoscale where the size of the
computational domain is on the order of meters and the
shape resembles an industrial reactor. The main
disadvantage of this approach is loss of microscale
information where microscale refers to simulations

Fig. 1 Workflow of CFD-accelerated scale-up. The red boxes indicate conventional CFD applications for reactor optimization. The blue box
highlights iterative and integrative simulation and experiments. Mesoscale refers to simulations where the size of the computational domain is on
the order of meters and the shape resembles an industrial reactor. Microscale refers to simulations at scales much smaller than reactors, on the
order of millimeters or even microns.
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investigating scales that are much smaller than reactors and
in the order of micron or millimeters (i.e., interactions
between small particles on an industrial fluidized-bed
reactor). As such, most research adopting this approach
focuses on macroscopic properties such as flow short-
circuiting, reactor mixing and oxygen transfer efficiency using
commercial software.15–17 For dispersed growth reactors, with
a reduced hydrodynamic parameter space, CFD studies have
focused on aeration and mixing. Another useful CFD
application is disinfection. In this case, short-circuiting is
minimized to enable efficient pathogen removal, a goal that
must be balanced against the need for minimization of
disinfection byproducts.18–20 In these applications, the
simulations are reactor-specific, so the knowledge gained
from one system does not necessarily translate to another.

In more complex reactors (attached-growth or floc-based),
the parameter space increases significantly due to local
interactions between hydrodynamics and biological activity.
Aerobic fluidized bed reactors require aeration and mixing
simulations, but also guidelines on bed expansion, particle
size, and other carrier properties of interest. Focusing on
aeration and mixing alone is unlikely to result in optimized
design and performance. In addition, because most
interactions occur at the microscale, ignoring microscale
properties (e.g., floc diffusion layer or floc–floc interactions)
with a singular focus on macroscopic properties (bed
expansion or mixing) is also unlikely to lead to correct
conclusions. Understanding of systems that have shared
physics can expedite translation across systems. Resources
spent on understanding of one system would benefit other
similar systems. An example is the effect of Archimedes
number (a combination of particle and fluid properties) in
upward flow reactors. A quantitative understanding of this
number would be beneficial to both non-fluidized granular
reactors and fluidized-bed reactors. The focus of this
approach is not to identify the exact values for optimized
parameters but rather to reduce the parameter space within
which optimized parameters fall. By narrowing this space,
reactor-specific experimental studies can be more targeted,
enabling more efficient optimization and scale-up with fewer
resources.

In this paper, we propose a new framework for bioreactor
optimization: a computational strategy in which CFD is used
to understand fundamental interactions involving fluid flow,
particles, microorganisms, membranes, and other porous
materials. We envision that this approach will enable deeper
insight into the underlying physics and accelerated
optimization. We use the staged anaerobic fluidized-bed
membrane bioreactors (SAF-MBR) as a case study to
demonstrate the feasibility and potential of this framework.

3 A case study: staged anaerobic
fluidized-bed membrane bioreactor

The Staged Anaerobic Fluidized-bed Membane Bioreactor
(SAF-MBR) is a recently developed biocarrier-based anaerobic

treatment technology.21,22 Aeration is eliminated because the
active microorganisms are obligate anaerobes that do not
tolerate oxygen. Energy is recovered as methane, enabling net
energy-positive secondary treatment of domestic
wastewater.23 Because they are slow-growing, the anaerobes
also generate fewer biosolids for disposal. These properties
make the SAF-MBR more attractive than conventional aerobic
processes, such as AS.24

The SAF-MBR consists of two reactors in series with a
conventional anaerobic fluidized-bed reactor (AFBR) followed
by an anaerobic membrane bioreactor (AnMBR). AFBRs have
been widely used to treat industrial wastewater where the
chemical oxygen demand (COD) and biochemical oxygen
demand (BOD) are much greater than domestic wastewater.
In SAF-MBR 1.0, the AFBR discharges to a particle-sparged
membrane bioreactor (P-MBR), in which fluidized granular
activated carbon (GAC) functions as both a biocarrier of slow-
growing microorganisms (inside the GAC pores) and as a
scouring agent for cleansing of membranes and prevention
of biofouling.21,22,24,25 This strategy successfully controlled
membrane biofouling in a pilot-scale SAF-MBR,21,26 but also
led to particle abrasion and damage of the polymeric
membranes.27 As noted by Shin et al.,27 the GAC used in the
P-MBR contained two size fractions – one at 1.18–1.4 mm
(29%) and a second at 1.70–4.00 mm (47%). Significant
membrane damage occurred in the lower region of the
membranes, and this damage was attributed to the larger
GAC fraction. In subsequent pilot-scale tests of SAF-MBR
2.0,23 membrane sparging was accomplished with biogas
bubbles rather than solid particles.

The hydrodynamics of fluidized-bed reactors have been
investigated experimentally28,29 and with simulations,30–34

but membrane bioreactor studies of microbial activity have
largely focused on experimental testing.35,36 These studies do
not track particle dynamics at high volume fraction (low
porosity), but instead focus on macroscopic behavior such as
fluidization stability and expansion.37,38 The range of bed
expansion in fluidized beds fluctuates between 20% and 70%
with a qualitative understanding that low expansion leads to
flow short-circuiting and high expansion leads to biofilm
loss. The optimal bed expansion or porosity is thus an open
question. At present, most studies focus on bed expansion
without considering the impacts of particle properties such
as Archimedes Ar (or Galilei Ga) number on the optimal bed
expansion where Ar is defined as

Ar ¼ Ga2 ¼ s − 1ð Þgdp
3

ν2
; (1)

where s = ρp/ρf is particle-fluid density ratio, dp is the clean
particle diameter, g is the gravitational acceleration and ν is
the kinematic viscosity of water. Qualitatively, small particles
are preferred to enable more efficient mass transfer and
enhanced biological activity. Aslam et al.26 studied the effects
of three different particles (PET beads, silica and GAC) on
membrane scouring efficiency and concluded that PET beads
are best.
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3.1 Upflow velocity and porosity

In fluidized-bed reactors, upflow velocity controls bed
expansion and hence porosity. Understanding particle
dynamics as a function of porosity gives important insights
into the biological activity and design and operation of
reactors (Fig. 2). Recently, Yao et al.32 investigated particle
dynamics by varying upflow velocity in simulations of a
monodispersed/single-size fluidized bed with particle
properties similar to those of pilot-scale and lab-scale
reactors.21 Within FBRs, porosity controls both the horizontal
mixing and collisions between particles. Since no horizontal
flow is generated at the inlet, horizontal mixing is mainly due
to momentum transfer from the vertical to horizontal
directions due to particle fluctuations. At low porosity, most
fluctuations are induced by weak collisions. At intermediate
porosity, collisions and hydrodynamic effects become equally
important, leading to an increase in particle velocity
fluctuations and stronger collisions. At high porosity,
hydrodynamic effects dominate, and collisions are diminished.

3.1.1 Hypothetical impacts on biofilm detachment.
Accurate quantification of biofilm detachment rate provides
valuable information in modeling biofilm reactor dynamics,
such as the height of expanded beds and insight into
reaction- and mass-transfer limitations.39 The overall biofilm
detachment rate bt is modeled as a combination of first-order
cell decay and mechanical detachment:

bt = b + bdet, (2)

where b is the first-order cell decay constant and bdet is the
mechanical detachment rate. Typically, b ≪ bdet for most the
engineered applications such that bt ≈ bdet. There are two types
of detachment (continuous and discrete) and three mechanisms
(shear stress, abrasion, and sloughing). The shear stress is due
to flow, while abrasion is due to collisions between particles.
Since sloughing is typically described as a discrete probabilistic
event that might lead to breakup of the entire biofilm,40 most
models do not consider it. Chang et al.41 modeled bdet as

bdet = −3.14 + 0.0335Cp + 19.3Rep,b − 3.46σ, (3)

where Cp is the particle concentration in the fluidized bed,
Rep,b = u0db/ν is the biofilm-covered particle Reynolds
number, u0 is the upflow velocity in the fluidized bed, db is
the diameter of the BC-P and σ is the shear stress. The author
assumed that Cp, Rep,b and σ account for abrasion, turbulence
and shear stress, respectively. The main challenge with this
model is related to decoupling flow (Rep,b) and abrasion
effects (Cp) where both Cp and Rep,b are functions of porosity.

Nicolella et al.42 constructed an empirical model for a
fluidized-bed reactor based on dimensional analysis and
showed that the normalized detachment rate b̂ = dpb̃det/ρfν is
given by

b̂ ¼ 1:95 × 10−10 Re1:49p;c d2:67
* ; (4)

where b̃det is the amount of biofilm detached per unit area
and time, Rep,c = dpu0/ν is the clean particle Reynolds number

Fig. 2 Hypothetical impacts of upflow velocity and porosity on fluidized-bed reactor modeling, design and operation.
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and d* = db/dp is the diameter ratio of a biofilm-covered to a
clean particle. An interpretation of this model is that Rep,c
represents the effects of clean particle-related flow whereas
d* includes the effects of biofilm thickness on the
detachment rate. The effect of flow includes both turbulence
and abrasion as compared to eqn (3).41 Interestingly,
detachment rates that were orders of magnitude higher were
observed for d* = 3 and Rep,c = 2.3–2.7 which cannot be
explained by this model, although one plausible explanation
is that detachment occurs near the inlet where turbulence is
strongest. Overall, this model better parameterizes the
mechanical biofilm detachment rate in the sense that there
is much less cross-correlation between parameters. Instead of
considering both flow and abrasion, Gjaltema et al.43 assume
that abrasion is the only dominant detachment mechanism
in an airlift reactor and used a model to estimate the energy
of abrasion.

All of the above models are unable to decouple flow and
abrasion or are limited to abrasion. By comparing high- and
low-strength FBRs, Shin et al.44 successfully modeled low-
strength FBRs by assuming small bdet. By examining particle
dynamics in a fluidized bed, Yao et al.32 discovered that
collisions dominate over hydrodynamic effects at low
porosity. At intermediate porosity, both collisions and
hydrodynamic effects are important while hydrodynamic
effects dominate at higher porosity. The combination of
effects of wastewater strength and hydrodynamics implies
that the biofilm detachment rate in a fluidized-bed reactor
can be modeled with a stepwise function

bdet ¼
bcol f CCODð Þ; for ε < εc1;

bcol þ bhydro
� �

f CCODð Þ; for εc1 ≤ ε < εc2;

bhydro
� �

f CCODð Þ; for ε ≥ εc2;

8><
>: (5)

where f(CCOD) is a function that relates bdet and chemical
oxygen demand (COD) concentration of wastewater, ε is the
porosity, εc1 and εc2 are critical porosities representing the
boundaries of the different regimes, and bcol and bhydro are
the detachment rates associated with collisional and
hydrodynamic effects. Biofilm detachment is likely
maximized to the coexistence of two different mechanisms at
intermediate Reynolds numbers. Although further
experimental validation is required, observing how particle
dynamics change in fluidized bed simulations provides
insight into biofilm detachment and how detachment rates
might best be modeled. Furthermore, because εc1 and εc2 vary
with particle properties such as diameter and density, a
universal scaling law can be developed that confirms and
generalizes this approach for different particle diameters and
densities.

3.1.2 Hypothetical impacts on mass transfer and
biological activities. Fluidized-bed reactors are known for
their excellent mass transfer rate. When applied for
wastewater treatment, the AFBR can either be mass transfer
limited or reaction rate limited. The latter usually occurs in
shallow and fully-penetrated biofilms where substrates are

metabolized at a much slower rate than diffusion enables.
Buffière et al.35 discovered that the methanogenic step
requires deep biofilms while acidogenesis only requires
shallow biofilms for treatment of high-strength wastewater.
Conflicting results have been reported where increases in
flow rate can either increase45 or decrease46 the mass transfer
rate. Nicolella et al.47,48 discovered that mass transfer of
biofilm-covered particles in airlift reactors is roughly 15%
lower than that of clean particles.

Due to the serial nature of process kinetics, with mass
transfer preceding biochemical kinetics, overall reactions can
be mass transfer-limited when the reaction step is fast or
they can be reaction-limited when the mass transfer step is
slow.35 In AFBRs, the particle Reynolds number based on
superficial velocity leads to collisions and hydrodynamic
effects that control mass transfer. Higher flow rates reduce
the thickness of the diffusion layer thereby enhancing mass
transfer. Similarly, more frequent collisions disrupt the
diffusion layer reducing its thickness in fluidized-bed
electrochemical cells.49 The effect of collisions alone can be
accurately described by the collision pressure which is known
to have a maximum and zeros for both single-particle (ε ≈ 1)
and close-packed reactors (ε ≈ 0.4).43,50 After close
examination of particle dynamics in fluidized bed
simulations, Yao et al.32 suggested that mass transfer is most
likely maximized within the intermediate porosity regime at
which point collisions and hydrodynamic factors are equally
important, leading to optimal biological performance.
Although not yet experimentally validated, pilot- and lab-
scale reactors operated at this intermediate porosity (bed
expansion of 40% to 60%) have achieved optimal treatment
performance.21,23,51

3.1.3 Hypothetical impacts on membrane fouling control.
The primary role of the P-MBR is to retain particulate
biodegradable organic matter in the reactor because more
time is required for hydrolysis. The main challenge is to
prevent membrane biofouling, which can be accomplished
by either particle- or gas-sparging. Particle-sparged operation
enables low energy demand52 but can lead to severe
membrane damage in the lower region of the reactor.53

Moreover, due to non-uniform particle sizes, the fluidized
bed in the P-MBR forms segregated layers of particles with
larger particles (2–4 mm) located at the bottom of the bed.
Yao et al.32 found that the maximum collision frequency is
attained at intermediate porosity for 2 mm particles. Low
porosity is characterized by more frequent weak collisions
while high porosity is dominated by flow rather than
collisions. Comparing the collision frequency as a function of
porosity by Yao et al.32 and the membrane integrity study by
Shin et al.27 with similar particle sizes, the porosity of the
lower region in the pilot-scale P-MBR corresponds to the
region of maximum effective collisions from the simulations.
This result implies that membrane scouring efficiency can be
controlled by varying porosity, therefore the bed expansion.
Maximum membrane scouring is attained at the porosity
with maximum collisions. To avoid membrane damage,

Environmental Science: Water Research & Technology Perspective
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varying the porosity to deviate from the maxima say, by
reducing or increasing it, is likely to eliminate membrane
damage. As discussed below, instead of switching to
alternative membrane fouling control methods, studying the
effects of the Archimedes number enables a retrospective
modification to both new and existing reactors.

3.2 Particle properties and the Archimedes number

In addition to operating parameters such as upflow velocity
and porosity, choosing optimal or appropriate design
parameters (i.e. Archimedes number) is critical (Fig. 3). As
discussed in the previous section, particles with low
Archimedes number are preferred for better mass transfer in
the AFBR. In reality, particles with the same properties are
usually used for the P-MBR. Aslam et al.26 attempted to relate
particle properties such as materials, diameter and density to
membrane scouring efficiency and concluded that larger
particles are better at membrane fouling control. Recently,
Yao et al.33 elucidated the role of the Archimedes number on
particle dynamics in a fluidized bed. The Archimedes
number combines different particle properties into a single
dimensionless number. Based on the simulations, the
normalized particle velocity fluctuation decreases as the
Archimedes number increases, indicating that the particles
experience weaker effects of wake interactions in which the
particle is weakly affected by neighbouring particles. By using
Voronoï tessellation, particle clustering is identified and the
results suggest that Archimedes number has a strong inverse

relationship on particle clustering lifespan such that an
increase in Archimedes number strongly decreases the
lifespan. Therefore, applications with low Archimedes
number are characterized by long-lived clusters while
applications with high Archimedes number are characterized
by short-lived clusters. The mechanism governing the
lifespan of particle clusters is the collision frequency.
Increasing the Archimedes number increases the collision
frequency, creating conditions more favorable for cluster
breakup, leading to short-lived clusters.

3.2.1 Hypothetical impacts on flow short-circuiting. A
common practice in the operation of fluidized-bed reactors
in wastewater treatment is to use small particles that
enhance both mass transfer and surface contact. In analogy
to boundary layer thickness, the diffusion layer thickness
scales as

L∼
ffiffiffiffiffiffiffiffiffi
Ddp

ũ

r
; (6)

where D is the diffusion coefficient of the targeted compound
and ũ is the fluid velocity over the particle. From eqn (6), L
decreases as dp decreases and ũ increases. Therefore, smaller
particles are less likely to be mass-transfer limited due to the
reduced diffusion layer thickness. In practice, particle size is
chosen based on the minimum particle size or Archimedes
number that can be easily retained in the system. However,
contrary to popular opinion, Yao et al.33 found that particles
with Ar < 1000 tend to form prolonged clusters while
particles with Ar ≥ 1000 are more likely to form short-lived

Fig. 3 Hypothetical impacts of particle properties and Archimedes number on fluidized-bed reactor modeling, design and operation.
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clusters. Long-lived clusters tend to behave like a single large
particle, resulting in more fluctuations in particle dynamics.
This result suggests that flow short-circuiting is more likely
to occur when fluid flows over a large particle cluster rather
than each individual particle, resulting in reduced surface
contact and exchange between biofilm and bulk fluid.

3.2.2 Hypothetical impacts on scouring frequency and
membrane lifetime. Besides porosity, particle properties
controlling the Archimedes number can affect membrane
scouring efficiency. As demonstrated in many papers,26,50,54

larger particles (high Archimedes number) tend to result in
more frequent impact collisions that ultimately damage the
membrane over time while small particles (low Archimedes
number) do not induce effective collisions and hence
minimal membrane scouring.33 Therefore, choosing particles
with appropriate Archimedes number is critical. To ensure
effective membrane biofouling control, particles with Ar >

1000 are likely to have effective collisions.33 Therefore, the
minimum Archimedes number for effective membrane
scouring is Ar ≈ 1000. For better scouring efficiency, particles
with higher Archimedes number will be more effective when
there is a risk of membrane damage.

To alleviate membrane damage due to particle scouring,
both the frequency and energy impacts of collisions must be
reduced. This can be achieved by operating the P-MBR at a
porosity that favors weaker collisions. Collision frequency
and strength can both be reduced by changing porosity (both
by increasing and decreasing it). Because the expanded
fluidized particles must be able to access to the entire
membrane module in order to provide effective scouring,
and because the fluidized-bed height is predetermined, the
total mass of particles must change if the upflow velocity
changes. The disadvantage of adding more particles
(reducing porosity) is that this leads to higher headloss and
increased pumping costs. To increase porosity, a higher flow
rate, hence a higher power requirement, is essential. Since
the total headloss is proportional to both the hydrostatic
pressure loss and pipe friction loss, a more detailed analysis
of power requirements is required to determine the optimal
flow rate. As an example, Fig. 4 shows the power requirement

as a function of porosity for different Archimedes numbers
Ar (model details can be found in the ESI†). As shown, when
the recirculation pipe diameter Dpipe > 0.2 m, Dpipe is no
longer an important parameter. For low Ar, the power
requirement is dominated by the static head loss, and the
wastewater must be pumped from the bottom to the top of
the reactor, leading to a monotonically increasing function of
Ar. For high Ar, the power needed to fluidize the particles
exceeds static headloss, leading to a parabolic function of Ar.
Therefore, to reduce high energy collisions, the flow rate
must be reduced for small Ar and can be increased or
decreased for high Ar depending on the power requirements.

4 Conclusion and outlook

Simulations of particle dynamics in fluidized-bed reactors
using CFD suggest that the parameter space for optimal bed
expansion should decrease from 10–70% to 40–60% because
optimal mass transfer is more likely to occur when both
collisional and hydrodynamic forces are comparably
important. To design an efficient fluidized-bed reactor,
particles with Ar > 1000 should be chosen to avoid flow
short-circuiting due to particle clustering. Similarly, particles
with Ar > 1000 or preferably Ar > 7000 are needed to induce
appreciable membrane scouring. The impact of membrane
scouring can be adjusted by varying the porosity or flow rate.

Overall, high-fidelity CFD simulations enable a close
examination of fundamental hydrodynamics within
bioreactors. Although optimal design and operating
conditions cannot be precisely identified, the range of
parameter space requiring experimental testing can be
significantly reduced, and the likelihood that optimal
conditions will be identified is greater. CFD simulations
provide an added tool for study of problems that are difficult
to investigate experimentally. Experiments can both validate
and build upon CFD results to optimize reactor performance.

Although CFD-accelerated strategies have tremendous
potential for acceleration and optimization of wastewater
treatment systems, more work is clearly needed. More
sophisticated computational methods are needed that

Fig. 4 Power requirement as a function of porosity for (a) Ar = 2.3 × 104, (b) Ar = 1.2 × 105 and (c) Ar = 2.3 × 105.

Environmental Science: Water Research & Technology Perspective

Pu
bl

is
he

d 
on

 1
7 

Ja
nu

ar
y 

20
22

. D
ow

nl
oa

de
d 

by
 S

ta
nf

or
d 

L
ib

ra
ri

es
 o

n 
1/

26
/2

02
2 

4:
36

:4
4 

PM
. 

View Article Online

https://doi.org/10.1039/d1ew00666e


Environ. Sci.: Water Res. Technol. This journal is © The Royal Society of Chemistry 2022

incorporate biological reactions. However, the main
challenge in integrating biological reactions is the difference
in timescales. For biological reactions, the timescales are
typically much longer than the time to reach hydrodynamic
steady-state. As a result, the total computational cost
increases significantly, and new methods are needed to
address this challenge.
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