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We present a nonhydrostatic ocean model with an isopycnal (density-following) vertical coordinate sys-
tem. The primary motivation for the model is the proper treatment of nonhydrostatic dispersion and the
formation of nonlinear internal solitary waves. The nonhydrostatic, isopycnal-coordinate formulation
may be preferable to nonhydrostatic formulations in z- and o-coordinates because it improves computa-
tional efficiency by reducing the number of vertical grid points and eliminates spurious diapycnal mixing
and solitary-wave amplitude loss due to numerical diffusion of scalars. The model equations invoke a
mild isopycnal-slope approximation to remove small metric terms associated with diffusion and nonhy-
drostatic pressure from the momentum equations and to reduce the pressure Poisson equation to a sym-
metric linear system. Avoiding this approximation requires a costlier inversion of a non-symmetric linear
system. We demonstrate that the model is capable of simulating nonlinear internal solitary waves for

Keywords:
Nonhydrostatic model
Isopycnal coordinates
Multi-layer model
Internal waves

Solitary waves
Ocean modeling

simplified and physically-realistic ocean-scale problems with a reduced number of layers.
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1. Introduction
1.1. Literature review

Simulating internal waves is one of the most computationally
challenging tasks in ocean modeling. Large-scale processes such
as internal tides can be modeled reasonably well with computa-
tionally-inexpensive hydrostatic models (Kantha and Clayson,
2000). Simulations of nonlinear internal solitary waves, on the
other hand, require computationally-expensive nonhydrostatic
models to represent dispersive behavior. Nonhydrostatic models
can incur an order of magnitude increase in computational time
relative to hydrostatic models due to the elliptic solver for the non-
hydrostatic or dynamic pressure (Fringer et al., 2006). Further-
more, simulations of nonlinear internal solitary waves require
high horizontal grid resolution to ensure that numerically-induced
dispersion’ is small relative to physical dispersion (Vitousek and
Fringer, 2011).

The vertical coordinate system is often reported as the most
important aspect in the design of an ocean model (Griffies et al.,
2000; Chassignet et al., 2000; Willebrand et al., 2001; Chassignet,
2011). The three vertical coordinate systems typically used in ocean
models are: (1) Height or z-coordinates, (2) Terrain-following or
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o-coordinates, and (3) Isopycnal or p-coordinates. Each approach
has numerous advantages and disadvantages as outlined in
Griffies et al. (2000). Existing nonhydrostatic models employ z- or
o-coordinates [e.g. (Mahadevan et al, 1996a,b), MITgcm
(Marshall et al., 1997b,a), SUNTANS (Fringer et al., 2006) for
z-coordinates, POM (Kanarska and Maderich, 2003), BOM
(Heggelund et al., 2004), ROMS (Kanarska et al., 2007), FVCOM
(Lai et al., 2010a) for o-coordinates and ICOM (Ford et al,
2004a,b) for wvertically unstructured coordinates]. z- and
og-coordinate models are capable of representing overturning
motions and eddies (e.g. Kelvin—-Helmholtz, Rayleigh-Taylor, and
other instabilities) that are associated with many small-scale
nonhydrostatic processes. Isopycnal-coordinate models, on the
other hand, cannot represent overturning motions or unstable
stratification. This deficiency leads to the notion that isopycnal
coordinates are not suitable for modeling nonhydrostatic processes
(Adcroft and Hallberg, 2006). Consequently, existing isopycnal
models such as MICOM/HYCOM (Bleck et al., 1992; Bleck, 2002),
HIM (Hallberg, 1995, 1997; Hallberg and Rhines, 1996), POSEIDON
(Schopf and Loughe, 1995), POSUM (Higdon and de Szoeke, 1997;
de Szoeke, 2000) so far exclusively employ the hydrostatic
approximation. While clearly a deficiency of isopycnal models,
the inability to represent unstable stratification is an issue for
hydrostatic and nonhydrostatic isopycnal formulations alike. In this
paper, we do not propose a means for isopycnal-coordinate models
to represent unstable stratification—this task is clearly suited to
z- and o-coordinate models. Instead, the primary motivation
behind the model presented in this paper is the proper treatment
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of dispersion and the formation of nonlinear internal solitary waves
in the context of an isopycnal-coordinate model. Internal solitary
waves are clearly nonhydrostatic and not associated with overturn-
ing motions. Although overturning structures may exist in the
vicinity of internal wave generation sites that might preclude the
use of an isopycnal-coordinate model, a model is not required to
resolve these structures to obtain a good prediction of the internal
wave generation. For example, Klymak and Legg (2010) and Klymak
etal.(2010) developed a simple scheme that faithfully captures dis-
sipation and mixing related to internal wave generation at a ridge
and show that their hydrostatic model was almost identical to the
nonhydrostatic model in predicting the generation dynamics. This
suggests that, while small-scale, nonhydrostatic processes related
to internal wave generation are indeed complex, they can be
parameterized appropriately in large-scale z-, o-, and isopycnal-
coordinate models that do not resolve them. Hence, a nonhydro-
static, isopycnal-coordinate formulation may be suitable for model-
ing internal or interfacial waves.

In the context of internal wave modeling, isopycnal-coordinates
may provide some advantages over z- and o-coordinates. Isopycnal
or density-following coordinates provide natural representations
of (stably) stratified fluids. This reduces the number of vertical grid
points from O(100) in z- and g-coordinate models to O(1) in iso-
pycnal coordinates (Bleck and Boudra, 1981). Ideally, in locations
where the internal wave structure is predominantly mode-1, an
isopycnal model with only two layers may suffice (Simmons
et al.,, 2011). The primary disadvantage of modeling nonhydrostatic
pressure is that it requires solution of a three-dimensional elliptic
(Poisson) equation for the nonhydrostatic pressure which signifi-
cantly increases the computational cost relative to the hydrostatic
model. Solving this elliptic equation requires optimally O(N) oper-
ations (Briggs et al., 2000) where N is the number of grid cells. Iso-
pycnal coordinates can improve the efficiency of nonhydrostatic
methods by reducing the required number of vertical grid points
by an order of magnitude relative to z- and g-coordinate models.
Thus, reducing the number of vertical layers and thus the overall
number of grid cells by an order of magnitude can result in at least
one order of magnitude reduction in computational cost.

Another advantage of isopycnal-coordinates is the reduction or
elimination of spurious diapycnal mixing. Transport in the ocean
predominantly occurs along rather than across isopycnal surfaces
(Iselin, 1939; Montgomery, 1940). In many applications, spurious
diapycnal mixing, arising from numerically-diffusive truncation
error in scalar transport schemes in z- and o-coordinate models
(Fringer et al., 2005), can be larger than physical diapycnal mixing
(Griffies et al., 2000). Isopycnal coordinates, on the other hand, are
not susceptible to spurious diapycnal mixing because the govern-
ing equations are constructed to directly control the amount of dia-
pycnal transport - if any (Bleck and Boudra, 1981; Griffies et al.,
2000). Hence, the problem of energy loss due to spurious diapycnal
mixing that occurs in numerical models during the formation and
propagation of internal solitary waves (Hodges et al., 2006) may be
reduced or eliminated with isopycnal coordinates.

1.2. Outline of the proposed model

Existing approaches for simulating nonhydrostatic internal
waves include z- and o-coordinate models applied at high resolu-
tion in 3-D (Fringer et al., 2006; Vlasenko and Stashchuk, 2007,
Vlasenko et al., 2009; Vlasenko et al., 2010; Lai et al., 2010b;
Zhang et al., 2011; Guo et al., 2011) or 2-D slices (Scotti et al.,
2007; Scotti et al., 2008; Buijsman et al., 2010) or asymptotic/Bous-
sinesq-type approaches using 2-layer (Brandt et al., 1997; Choi and
Camassa, 1999; Lynett and Liu, 2002; de la Fuente et al., 2008;
Steinmoeller et al., 2012) or multi-layer models (Liu and Wang,
2012). Asymptotic or Boussinesq-type approaches do not require

a pressure projection method. Instead, they include higher-order
derivatives to account for the nonlinear and dispersive behavior.
Boussinesq-type models have a limited range of applicability that
is often the weakly nonlinear, weakly nonhydrostatic regime. To
extend this range of applicability, more terms may be included
or advanced formulations may be introduced. However, this can
lead to an unwieldy set of governing equations containing high-
order, mixed time-and-space derivatives.

The formulation presented here is intended to be flexible (using
an arbitrary number of layers) and straightforward (resembling
existing ocean models). The numerical method uses a pressure pro-
jection method which results in an elliptic equation for the
dynamic pressure (as in z- and o-coordinate models). The elliptic
equation in isopycnal coordinates results in a non-symmetric sys-
tem of linear equations. However, by invoking a mild-slope
approximation, the system becomes symmetric and remarkably
similar to the elliptic equation in z-coordinates.

Another significant difference between existing isopycnal mod-
els and the model presented here (besides the treatment of nonhy-
drostatic pressure) is the time-stepping procedure. Most isopycnal
models use mode-splitting to treat fast free-surface gravity waves
(Bleck and Smith, 1990; Higdon and Bennett, 1996; Higdon and de
Szoeke, 1997; Hallberg, 1997). The current model uses an implicit
time-stepping procedure for the free surface following Casulli
(1999) which is common in nonhydrostatic models in z- and o-
coordinates (a list of nonhydrostatic models using implicit time-
stepping procedures is given in Vitousek and Fringer (2013)).
Casulli (1997) developed a hydrostatic, isopycnal model with an
implicit time-stepping procedure for the free surface and layer
heights. In his approach, the gradient of the Montgomery potential
(M), which represents the hydrostatic pressure in isopycnal coordi-
nates, is discretized implicitly. Thus, computing the free-surface
and interface heights requires the inversion of a large (3-D) system
of equations which is comparable in cost to the solution of the
(3-D) elliptic equation for the nonhydrostatic pressure. The current
model is similar to the approach of Casulli (1997). However, we
split the Montgomery potential into barotropic (M®) and
baroclinic (M®®) parts according to

M = pg" (y + p82) = Py (bs + pogi) +M®, (1)
——

—m®bY

where p is the density (p, is the reference density), p;, is the hydro-
static pressure, p, is the surface (atmospheric) pressure, # is the
free-surface height, z is the interface location, and the term pgz
originates from the transformation to isopycnal coordinates.
Because the barotropic and baroclinic portions of the Montgomery
potential represent fast free-surface and slow internal-gravity
waves, they are discretized implicitly and explicitly, respectively.
This discretization requires inversion of a 2-D system in the hori-
zontal to compute the free-surface height as is the case with impli-
cit free-surface models in z- and o-coordinates. The computational
cost of the 2-D inversion for the free-surface height is minimal com-
pared to the 3-D inversion for the nonhydrostatic pressure.

1.3. Use of Lagrangian coordinates for the nonhydrostatic equations

Adcroft and Hallberg (2006) conclude that the nonhydrostatic
projection method and use of Lagrangian vertical coordinates are
mutually exclusive. Their argument is based on how the Lagrangian
algorithm prescribes the material derivative of the (general) vertical
coordinate, , in the continuity equation while in the nonhydrostatic
projection method this term should instead come from the vertical
momentum equation. This leads to a conundrum in which one can-
not simultaneously supply and diagnose a quantity in an equation
(Adcroft and Hallberg, 2006). The present study does not seem lim-
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ited by this issue. When using pure isopycnal coordinates, r = p and
r=p= %—‘t’ = 0 (since density is treated as a materially conserved
quantity). Consequently, i = 0 is prescribed in the continuity equa-
tion and this leads to an evolution equation for the isopycnal layer
heights that is consistent with the material conservation of density.
After the layer heights are evolved, the projection method uses the
vertical velocity from the vertical momentum equation in the diver-
gence-free from of the continuity equation. We note that the two
forms of the continuity equation, namely the layer-height equation
and the divergence-free continuity equation, are, in fact, the same
equation and the condition i = 0 gives rise to the layer-height equa-
tion. After the nonhydrostatic projection step, a final vertical veloc-
ity is computed using the divergence-free form of the continuity
equation. Our interpretation of the Adcroft and Hallberg (2006)
conundrum is that it implies that the vertical velocity computed
with the projection step cannot be consistent with that which is
implied by the material conservation of density in the layer-height
equation. This does not appear to be an issue in our approach nor in
any of the commonly used nonhydrostatic methods, likely because
maintaining absolute consistency is unnecessary, but instead must
be maintained to some order of accuracy. Specifically, when the free
surface is evolved in typical nonhydrostatic models, this implies a
vertical velocity from a discrete kinematic condition which may
not necessarily be the same as that which is computed with the pro-
jection method. As discussed in Section 3.3, the popular approach of
evolving the free-surface using the hydrostatic provisional veloci-
ties rather than the final nonhydrostatic velocities still results in a
method that is second-order accurate (Kang and Fringer, 2005;
Vitousek and Fringer, 2013). This suggests that the effective vertical
velocity arising from applying the kinematic condition to the conti-
nuity equation is relatively unimportant. Further support for the
method developed here comes from the fact that the numerical
algorithm (presented in Section 3) simplifies to popular methods
used in nonhydrostatic z-coordinate models with a free surface
(e.g. Fringer et al., 2006) in the case that only one vertical layer is
used. Recently, Klingbeil and Burchard (2013) extended a general-
ized vertical-coordinate model (GETM) to include the nonhydro-
static pressure without using the projection method, which
improves performance owing to the lack of an elliptic equation for
the nonhydrostatic pressure. Like our method, the approach of
Klingbeil and Burchard (2013) does not suffer from the conundrum
of Adcroft and Hallberg (2006). Therefore, we do not suggest that
our method or that of Klingbeil and Burchard (2013) present solu-
tions to the conundrum, but instead that its potential limitations
can be circumvented.

1.4. Synopsis

The remainder of this paper is divided into five sections. Section
2 presents the derivation of the governing equations in continuous
isopycnal coordinates. Section 3 presents the numerical method
used to solve the governing equations. Section 4 discusses stability
and convergence of the model. Section 5 presents model validation
with several idealized test cases. Finally, Section 6 presents the
conclusions. Lengthy derivations relevant to the model formula-
tion are presented in appendices.

2. Governing equations
2.1. Equations in Cartesian coordinates

The governing equations are the Reynolds-Averaged Navier-
Stokes (RANS) equations with the Boussinesq approximation in a
rotating reference frame. In Cartesian coordinates, the equations
are given by

MO ) — forfwe L OPn_ 0 & 9(, ou
gtV W) v W= TV (V”v””)+az<v”az>’
(2a)
ov __19pm_oq 9(, v
8t+v (uv) + fu= N ay-l-VH (VHVHU)+aZ Voas )

ow :0q J ow
ﬁ‘FV'(uW)ffu—*&+VH'(VHVHW)+&<V1,E), (2¢)

where u = [u, v,w]" is the velocity vector, f = 2Qsin(¢) is the tra-
ditional Coriolis parameter and f = 2Q cos (¢) is the nontraditional
Coriolis parameter (see e.g. White and Bromley, 1995; Marshall
et al., 1997b; Gerkema et al., 2008), where ¢ is the latitude and
Q is the Earth’s angular velocity, p,(z) =ps+ pog&(n—2)+
g[(p—po)dz is the hydrostatic pressure (derived from

integrating the hydrostatic balance %: —pg), where p; is the
atmospheric pressure at the surface, g is gravity, 5 is the free-
surface height, p is the density and p, is the (constant) reference
density, and vy and v, are the horizontal and vertical eddy-
viscosities, respectively. The difference between the nonhydrostatic
equation set and the hydrostatic equation set is the treatment of the
full vertical momentum balance (2c) and the presence of the
nonhydrostatic pressure terms involving q on the right-hand side
(RHS) of the momentum equations (2). The kinematic nonhydro-
static pressure is given by q =p,,/p, in the notation following
Casulli (1999), where p,, is the nonhydrostatic or dynamic pressure
due to the vertical momentum or acceleration of the fluid.
Eq. (2) are subject to the incompressibility constraint

V-u=0 3)
and conservation of density

B_Wv w0, @)
where we ignore diffusion of density although it can be added fol-
lowing the methods in standard isopycnal models (Hallberg,
2000). Diffusion of density leads to p = %%’ # 0 and to the conun-
drum of Adcroft and Hallberg (2006) related to the treatment of
nonhydrostatic pressure. We present possible solutions to this issue
in Section 3.3.

2.2. Mild-slope equations in isopycnal coordinates

The momentum equations in isopycnal coordinates result from
applying the coordinate transformation

2 10 -2 07ra

ox ’ o

2 _ 0

H (5)
21 oo L oo||&l

9z zp ap

0 2z 0

at 00 -5 1 e

(see e.g. Miiller, 2006) to the momentum equations in Cartesian
coordinates (2). Next, as demonstrated in Appendix A, the resulting
equations are subjected to a mild isopycnal-slope approximation to
remove small metric terms associated with diffusion and the
nonhydrostatic pressure from the momentum equations. Neglect-
ing the small metric terms associated with diffusion based on a mild
isopycnal-slope approximation is perhaps unnecessary. Solomon
(1971) and Redi (1982) argued that the representation of diffusion
in an isopycnal coordinate system (i.e. using the diffusion operators
in the equations below without the transformation metric terms) is
preferable to the representation in a Cartesian coordinate system in
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order to faithfully capture the tendency for along-isopycnal mixing
of scalars and momentum (Montgomery, 1940). The mild-slope
equations in isopycnal coordinates are given by

ou oM  0q

§+uH~vHu—f1/+fW:—W—a‘i‘vH‘(‘)HvHu)
1 0 1 ou
+Z%<VUZ%>7 (6a)
ov oM 0oq
§+uH-VHv+fuf—8—y—a—y+vH'(VHVHV)
1 0 1 ov
* 9 0 ) (6
ow z 10q
E+“H'VHW7fu—7Z%+vH'(VHVHW)
1 0 1 ow
+3 55 ("2 7)) °9

where the star (*) notation has been dropped for convenience and
M is the Montgomery Potential given in Eq. (1). The main
difference between the equations in Cartesian coordinates (2)
and isopycnal coordinates (6), besides the appearance of the
Montgomery potential, is the absence of vertical advection of
momentum terms in Eq. (6).

The continuity equation (3) can be written in two different
ways. In existing isopycnal models, the continuity equation is often
written as

oh
o5
where h = prg—/z) = —Apz, is the thickness of an isopycnal layer.
Alternatively, the divergence-free form of the continuity equation
is written as

%(zpu) +a—(§/(z,,v) +g—z: 0. (8)
We note that Eq. (7) is used to evolve the thickness of isopycnal
layers and Eq. (8) is used to calculate the nonhydrostatic pressure
via an elliptic equation that enforces continuity. This procedure is
similar to methods that are typically employed in nonhydrostatic,
z- and o-coordinate models with a free surface and is discussed in
Section 3. The continuity equation (8) is also subject to the mild-
slope approximation as discussed in Appendix A. By invoking this
approximation, the discrete elliptic equation for the nonhydrostatic
pressure reduces to a symmetric, 5-diagonal linear system in
2-D x-z (7-diagonal in 3-D) as demonstrated in Appendix E.
Berntsen and Furnes (2005) invoked a similar approximation by
neglecting metric terms appearing from the transformation to
o-coordinates. Their approximation also results in a 5-diagonal
linear system of equations in 2-D x-z for the nonhydrostatic
pressure and produces simulation results that are nearly identical
to the full (unapproximated) elliptic equation (Keilegavlen and
Berntsen, 2009).

= —Vu - (uyh), (7)

3. Numerical method

The numerical method used to solve the governing equations in
isopycnal coordinates must be capable of handling three specific
numerical challenges: [1] treatment of stiffness caused by fast
free-surface gravity waves, [2] wetting and drying of isopycnal lay-
ers, [3] solution of the nonhydrostatic pressure. As discussed in
Section 3.1, to treat fast free-surface gravity waves, we split the
barotropic and baroclinic parts of the Montgomery potential and
discretize them implicitly and explicitly, respectively. Drying of
isopycnal layers is handled by using upwind or MPDATA schemes

to evolve the layer heights as discussed in Section 3.2. Finally,
the solution procedure for the nonhydrostatic pressure in isopyc-
nal coordinates, as discussed in Section 3.3, is similar to procedures
in z-coordinates (such as Casulli, 1999; Fringer et al., 2006).
For clarity, we present the numerical formulation in 2-D (in an
x-z plane). The method is easily extended to 3-D.

3.1. Discretized momentum equations

The momentum equations (6) are discretized using a second-
order accurate finite-difference method on a staggered C-grid in
which the velocities are defined at cell faces and quantities such
as the layer heights and nonhydrostatic pressure are defined at cell
centers. The model setup and location of the variables of interest
are shown on Fig. 1. In order to discretize the governing equations
in continuous isopycnal coordinates (6) and obtain the model
equations with a discrete number of layers, we have used a sec-
ond-order accurate finite-difference approximation given by

1909  deap— e
g (9)

The layer index, k, increases downward as is conventional in
isopycnal models (Hallberg, 1997; Bleck, 2002). Use of Eq. (9) for
the vertical derivatives and an evolution equation for the layer
height h, makes the numerical method a Lagrangian vertical
direction (LVD) algorithm (Adcroft and Hallberg, 2006; Hallberg
and Adcroft, 2009) and also allows simulation of fluids with
constant density.

Using the spatial discretization above and following existing

nonhydrostatic operator-splitting procedures, the discrete
momentum equations become
* _qn 1 1 x\(+07) o ox (n+07)
i+1k ui+;—.k — g nfi;r o _ 7]§n+ Jim i F(n)fx (T )i+%,k—;— (T )H—%,k-%%
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representing the hydrostatic prediction step, and
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Fig. 1. The isopycnal model setup.
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N+l
W1k+2 Wi,k+;—_ (qC)i.k—(qC)i,k+1

At - n ’

ik+]

(11b)

representing the nonhydrostatic correction step along with the
nonhydrostatic pressure update q:,j% = ocq;f,:% + (4.);- The variables
u* and w*, representing the hydrostatic provisional velocities, are
calculated by including all terms in the governing equations except
the nonhydrostatic correction pressure, q.. In Eq. (10), the super-
scripts enclosed in parenthesis represent

(M = 2B+ DYy 3 (14 20008 + 2 (f (12)
O =3 (1 + OO +5(1 =20 +5 O (13
O =00)ie+ (1= 000k (14)

where superscript n represents the time step in the multistep
scheme and subscripts i’ and k' represent dummy indices which
can become any location on the staggered grid.Here, the terms dis-

cretized with (- ) b and (- ) i Dim in Eqs. (12) and (13), respectively,

represent the exp11c1t and implicit time stepping procedures
described in Durran and Blossey (2012). The explicit (12) and
implicit (13) terms in the momentum equations are weighted using
parameters b and c, respectively. For the explicit portion of the
method, b = 0 corresponds to the second-order Adams-Bashforth
(AB2) method, b=5/6 is the AB3 method, and b=1/2 is the
AX2* method (Durran and Blossey, 2012).0n the other hand, for
the implicit portion of the method, c = 0 corresponds to the trape-
zoidal or Crank-Nicolson (CN) method (Crank and Nicolson, 1947),
c=1/2 is the AM2* method, and c=3/2 is the AI2* method
(Durran and Blossey, 2012).The discretization of ()"*“ given in
Eq.(14) represents the popular semi-implicit time stepping proce-
dure used in Casulli and Cattani (1994). Here, 0 represents the
implicitness parameter, where 0 = 0 is the forward Euler method,
0 =1/2 is the CN method, and 0 = 1 is the backward Euler meth-
od.Finally, the splitting of the governing equations into Egs.(10)
and (11) represents the nonhydrostatic correction method of
Armfield and Street (2000) and Armfield and Street (2003) where
the nonhydrostatic pressure variables are defined at the half time-
steps, n+1. For the nonhydrostatic portion of the method, the
parameter oo = 0 or 1 designates the use of the pressure projection
(1st-order accurate) or pressure correction (2nd-order accurate)
method, respectively (Armfield and Street, 2002; Kang and
Fringer, 2005; Vitousek and Fringer, 2013).

The advection, diffusion, Coriolis, and surface pressure? are dis-
cretized with the explicit method given in Eq. (12). In Eq. (10), Hl k

and G"k+1 represent the terms discretized using the generalized,
explicit AB method (12) and are given by

n _ n n n ra
itk = —Cy (uu%,k) + Dy (UH%J{) +f Viilk - f Wiiik

(M), = (M),

_ l (ps)?Jrl - (ps):1 _

o Ax A , (15a)
ey = ~Con(Wikay) + Da (Wiy) + il (15b)
where M is the baroclinic Montgomery potential which is given by

MY =0, (16)

2 Although the surface pressure is, technically, part of the barotropic pressure or
barotropic Montgomery potential, explicit treatment of this term is common and
sufficient because it does not lead to problem stiffness. In contrast, the gn term in the
barotropic Montgomery potential leads to stiffness associated with fast free-surface
gravity waves and thus requires implicit discretization.

M(bc) o M;{bc) + (pkﬂ — pk)gzk ) (17)

k+1 —
Po

Eq. (17) is a downward recursive relationship that allows the baro-
clinic Montgomery potential to be calculated from the layers above.
In Eq. (17), the interface locations are calculated from an upward
recursive relationship given by

—H, (18)

ZN]ayers =

Z =2z + hy, (19)

where H is the depth to the seabed. Cy() and Dy() represent the
horizontal advection and diffusion operators, respectively. Horizon-
tal advection can be discretized with several different schemes -
the simplest option being the central differencing scheme given

u, —u"
3
] :. n n |—jk i k

Y H(”H%‘k) u1+lk 2Ax
—2u"

+un
i 3k Y L

is given by Dy (u?+%7k) =Vy %, where vy is the horizontal

. For horizontal diffusion the operator

eddy-viscosity, which is assumed to be constant.

The barotropic portion of the Montgomery potential is discret-
ized using the generalized, semi-implicit Adams-Moulton (AM)
method (13) of Durran and Blossey (2012). This method is reminis-
cent of the 0-method of Casulli (1990) and is intended to eliminate
the time step restriction associated with fast free-surface gravity
waves. The generalized, explicit/implicit method used here is pref-
erable to popular methods such as Leapfrog-Trapezoidal® because
it does not require filtering. It is also preferable to AB2(3)-0 method*
which is unstable for stiff problems in the inviscid limit when 0 = 0.5
(Durran, 1991). By using the generalized, explicit/implicit method,
the current model can run stably without horizontal or vertical
viscosity.

Isopycnal or layered models must use implicit discretization for
vertical diffusion of momentum when the isopycnal layers are
allowed to become arbitrarily thin (Hallberg, 2000). Following
Casulli (1997), the viscous boundary condition at the free surface
is specified by applying a wind stress given as

(TX)Hzl/Z = /w(( )?:; - ul,*+%_]), (20a)

(g2 = 2@y = U, ), (20b)
where y,, is the wind stress coefficient and u, is the prescribed
wind speed. The boundary condition at the seabed is specified by
applying the quadratic drag law

(21a)

X\ * *
(T )i+%’NlayeT5+1/2 Cd|uH’z N]ayers ‘ui+%‘Nlayers ’

(T )1+2 Niayers+1/2 — Cd|u;+2 Niayers ‘u?%‘lvlayersv (Zlb)
where C, is the drag coefficient. In Eq. (21a), the term representing
the velocity magnitude is taken at time step n as is common for
implicit discretization of the drag term. This time-lagging approach
removes the need to solve a nonlinear system of equations for the
horizontal velocity. For the vertical momentum equation, there is
no stress applied in the vertical direction at the surface, ‘E?f% =0,

and at the bottom, Tiy1 =0 The shear stress between layers
Niayers 5

in the horizontal momentum equation is given by

p fihb and the trapezoidal method is used
( eqpfrog is Wecﬂ for Héze’i( IICIfTe p (2[253
implititt&zms.

4 AB2 or AB3 is used for the exi)hcft terms and the -method is used for the implicit
terms.
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n n
u1+; k ui+%.l<+1
n
2 h:

i+1k+1

(22b)

In the vertical momentum equation, the shear stress between layers
is given by

(23a)

(23b)

In Egs. (22a) and (23a), the layer height h is taken at time step n to
eliminate the need to solve a fully nonlinear system.

In order to demonstrate the numerical procedure used with
implicit vertical diffusion, it is helpful to use matrix notation. After
substituting Eqs. (22) and (23) and the boundary conditions for the
shear stress, 7, the hydrostatic portion of the discrete momentum
equations (10) can be written in matrix form as

1 At 1 1
Agu, = i~ F(1+08 4, (i — e, (24a)
w; =S, (24b)
. . . T . _ I
where “1+’ = [uw%_l,uH%‘z, W qu NIWS] and w; = [wi‘%,
W5y, Wi, Wiy +l]T are the hydrostatic predictor (*) veloc-
3 k+3 Niayers +3

ities throughout a column of grid points. The equations for “?ﬁl and
2

wi*! based on Eq. (11) are detailed in Section 3.3. Vectors T?+% and S

contain all explicit terms of the momentum equations (10) which
include the AB terms (at time levels n,n — 1, and n — 2) as well as
the explicit parts of the time derivative, semi-implicit free-surface
method (13), 0-method (14), and nonhydrostatic pressure, viz.

1 At
TL 1+— ) (1- ZC)g& iy — VI?)e
C At At 1 1
('/’Hl - ’7: )e+ AtFHl (q:,l CI? 2)
+ At(l - 0)(DA),+_ il (25a)
S =W+ MGG — aAD, (g 1) + At(1 ~ 0)(Dy) W (25b)
where uf " Hl and w, G} are defined similar to u; ' and w; (i.e. they

represent the variables of a column of grld points) and
e=[1,1,..., l]T € RNaves1 3nd D, <ql”’%> _ (qznk —-q; k+l>/h
represents the vertical first derivative. The matrices A and B, given by

Ay =1 AtO(Dp), (26a)

1
i+h

B; =1 — AtO(D),, (26b)

with D, and Dg being tridiagonal matrices of the form

N (Vo) (Vohiy (Vo) (Vo)y
(Da);,y = tridiag {h” 1kh1+lk——. <hn s h"l n "h! 1th_,H_

i+3k-3 itdk it k)
(27a)

(V)i )
+ 1
hk+1h1k+1

represent the implicit discretization of vertical diffusion of momen-
tum. Note that the first and last diagonal elements of the tridiagonal
matrix (27a) must be modified to account for the proper boundary
conditions in Egs. (20) and (21), respectively. When a variable is

(DB)i=tridiag[ o)y ( (Vo)

n
ik+3'ik h; ik+d hl k

Vo) }

1k+1 hx k+1

(27b)

needed that is not located at the position on the grid where it is
defined (such as hy, ;. B i1, OF By y1), then it is approximated with
linear interpolation. Finally, the momentum equations (24) can be
written as

. = 1 At _
u, =T, -5+ oz (i —ni)ey, (282)
w; =§] (28b)
where

ry = ATy, (29a)
&, =Ae (29b)
S =B; 'S}, (29¢)

represent the solutions following the tridiagonal inversion for each
column of grid points in the horizontal.

3.2. Discretized free-surface and layer-height equations

In isopycnal models the layer height continuity equation (7) is
used to evolve both the free surface and the internal interface
(Adcroft and Hallberg, 2006). In the present model, we differentiate
the free surface from internal interfaces. Accordingly, we derive
separate but consistent model equations for the evolution of the
internal layers heights h, and free surface, #, both of which use
the generalized, semi-implicit AM method of Durran and Blossey
(2012).

The layer height continuity equation (7) is discretized with the
generalized semi-implicit AM method and is given by

n+l
h1 k rk _ __( n n+1 _K n+1 Vim* ) (30)
At - 1+l i+1, k i—3k 1—1 k ’
where u“””‘"‘ =31+ ou, +5(1-20uf, +5ur)! following Eq.
2

(13) and usmg the hydrostatic predictor ve10c1ty u* instead of the
final velocity u"*!. Using a first-order upwind approach to calculate
h,f’i%,k and assuming a positive flow direction, Eq. (30) (following the
approach of Stelling and Duinmeijer, 2003) can be written as

(N4+1) 1+ (+1)
o uH%k‘ At o u, ]k‘ Athn
ik — 1- Ax ik T Ax i-1k> (31)
with u "” Jm' > 0. A similar form can be obtained for u ”“ I < 0. As

seen 1n Eq. (31), as long as the advective Courant number

(n+1)

U Dme _ i
i+hk Ax

without any special treatment for wetting and drying (Stelling
and Duinmeijer, 2003). We can apply MPDATA corrections (outlined
in Appendix C) to the first-order upwinding approach to ensure that
the method is second-order accurate in time and space and the
layer heights remain positive.

The equation governing the evolution of the free surface is
derived by summing Eq. (30) over the layer index k. The resulting
free-surface equation is given by

—(o)ig e+ [T )y + @iy = el =R (32)

which is a tridiagonal equation in one horizontal dimension or a
block tridiagonal in 3-D. The coefficients (x1)i,; = 8[3 (1 +¢) arj2 et

Tm* At

<1 then positive water depths are obtained

(h?i% 0@ +1) (where o is the element-wise product) and the right-

hand side R are derived in Appendix B.
Because both the free-surface equation (32) and the sum of
the layer heights given by Eq. (30) provide an estimate of the
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free-surface height, #, these estimates can become inconsistent
over the course of a simulation. Models that use a mode-split
time-stepping procedure are susceptible to this inconsistency, as
discussed at length by Hallberg and Adcroft (2009). In the present
model, consistency between the free-surface equation (32) and
the layer-height equation (30) is ensured as long as the same flux
face heights, hfi%.k, are used in each equation.” However, when using

upwinding or MPDATA for Eq. (30) or solving the free-surface equa-
tion (32) using a non-exact (iterative) method such as conjugate gra-
dients, this is generally not the case. Notice how according to Eqgs.
(30) and (31) we seek to upwind the flux face heights, hfi%_,(, using

(n+1 Im*

the velocity u,, . This velocity and thus h L1 Are unknown® when

the free- surface equatron (32) is solved because the velocity u™Vm

depends on u* which depends on #™! according to Eq. (28a). There
are a few methods that can be used to remove the inconsistency
between the free-surface equation (32) and the layer-height equation
(30). One option is to use an iterative procedure between the free-
surface equation (32) and the layer-height equation (30). The values
of h i1k (based on upwinding of the velocity u ”*1 Jm* can be reused in

the free-surface equation and the entire procedure can be iterated
until convergence is reached. This procedure is outlined in detail in
Section 3.4. In general, we have found that this iterative procedure
converges quite rapidly in O(1) iterations. Other non-iterative
options to remove this inconsistency include: [1] upwind the flux
face heights based on the u" velocity; [2] directly set the free surface
n to > hy — H;, where H; is the still water depth at location i; or [3]
apply a uniform expansion/contraction of the isopycnal layers to fit
the total depth according to hy = <§” )hk (Bleck and Smith, 1990;
Hofmeister et al., 2010). Method [3] is generally the preferred method
used in existing isopycnal models.

3.3. Nonhydrostatic pressure

Eq. (28) provide the hydrostatic predictor portion of the numer-
ical solution. To obtain the nonhydrostatic solution, the hydrostatic
predictor velocities are corrected according to Eq. (11) in order to
satisfy the divergence-free constraint. The nonhydrostatic correc-
tion pressure . is determined from the solution of a Poisson equa-
tion which is derived by substituting the nonhydrostatic correction

velocities, ufiﬁ], and W?;i,, from Eq. (11) into the discrete diver-

gence-free condition which, as derived in Appendix D, is subject
to a mild-slope approximation and is given by

1 n+1 n
+1 n+1 o ont n+1 n+l
AX <h1+2 k=it k - hiy 1l k) W1 =W kT 0. (33)

Substituting (11) into (33) results in a symmetric linear system of
equations for the nonhydrostatic correction pressure g. that is
given by

1 1 1

1 1 1

/’L,n[:r,_(qc)zk 1 + T ;Lnﬂ (qc)r 1.k ’11 I:rJ + A?LI t T )n+l + o n+11 (qc)i,k
i——k k i+5.k

1
el (qc)1+1 k + A, k+_(qc)lk+l
itk

_ M n+
At [ (hH—Z 1+“k -

)

n+1 oy < <
hi-%—,k”p%,k) T Wik = Wik

(34)

5 Naturally, since the free-surface equation is derived from the layer-height
equation.

5 The initial flux face heights, h}. ko and thus o and R in the free-surface equation
(32) are approximated using the upwmded layer heights based on the u"  velocity

n+1

instead of the u i velocity which is calculated later.

In Eq. (34), 2 = Ax/h is the grid leptic ratio or lepticity (Scotti and
Mitran, 2008) of the isopycnal layer. This parameter is a measure
of the ratio of numerical to physical dispersion (Vitousek and
Fringer, 2011) and sets the anisotropy of the elliptic equation
(34). Derivation of the full elliptic equation in isopycnal coordinates
(without the mild-slope approximation) is presented in Appendix E.
Eq. (34) is quite similar to the elliptic equation derived from z-coor-
dinates. The only significant difference is that, here, the coefficients
are based on the time-variable grid aspect-ratio 2 = Ax/h where as
in z-coordinates the grid aspect ratio (Ax/Az) is fixed in time. Since
the condition number of the linear system is related to the grid
aspect ratio (Marshall et al., 1997b; Kramer et al., 2010; Fiebig-
Wittmaack et al., 2011), time variability of the coefficients of Eq.
(34) results in time variability of the condition number of the linear
system. However, we find that popular elliptic solvers, such as pre-
conditioned conjugate gradients or multigrid with semi-coarsening
and line-relaxation’ (Briggs et al., 2000), are suitable to solving Eq.
(34) efficiently.

As discussed previously, Adcroft and Hallberg (2006) conclude
that the nonhydrostatic equations and the LVD approach (using a
prognostic equation for k""" as in Eq. (30)) are mutually exclusive.
The present study is not limited by this issue. As mentioned in Sec-
tion 1.3, the two forms of the continuity equation, the layer-height
equation (30) and the divergence-free equation (33), assume differ-
ent roles in the numerical method. In fact, the numerical method in
the current approach is remarkably similar to nonhydrostatic
methods with a free surface in z-coordinates. Here, the hydrostatic
portion of the method advances the free surface and layer heights
(or the free surface alone when using z-coordinates). Next, the non-
hydrostatic method is used to correct the velocities while holding
the layers fixed. As a result, the final free surface and layer heights
are not consistent with the layer-height continuity equation in
terms of the final velocities (at time n + 1). A “fully” nonhydrostatic
method would require iteration of the elliptic and layer-height
equations. However, holding the free surface fixed during the
nonhydrostatic portion of the pressure correction method in
z-coordinates does not impact the order of accuracy (Armfield
and Street, 2000; Kang and Fringer, 2005; Vitousek and Fringer,
2013). The convergence analysis presented in Section 4.2 demon-
strates that this is also the case when fixing the layer heights during
the nonhydrostatic portion of the method in isopycnal coordinates.

3.4. Solution procedure

The solution procedure for one time step of the present model is
given by:

1. Calculate the explicit portions of the horizontal and vertical
momentum equations, T" and S", using Eq. (25).
2. Solve the implicit vertical diffusion equations (29) to compute

T;L,, e,+l, and S” for each column of grid points in the horizontal

where the tridiagonal matrices A,,; and B;, given Egs. (26a) and

i+)
(26b), respectively, represent implicit discretization of vertical
diffusion.

3. Solve the implicit free-surface equation (32) to obtain the free-
surface height at the next time step, n™+1.

4. Compute the hydrostatic predictor velocities u; 1 and w; using
Eq. (28).

5. Compute the layer heights, h""', using Eq. (30) and (optionally)
the MPDATA procedure described in Appendix C.

6. If an iterative procedure is used to obtain consistency between

n™1 and R, return to step 3, where the o, coefficients in the

~

A method developed for anisotropic problems.
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free-surface equation (32) are updated based on upwinding the
velocities (u™Dm =f(y*, u", u"1)) obtained in step 4. If the iter-
ate values for h""! have converged to some tolerance, continue
to step 7. If a non-iterative procedure is used, set

1 .
R = <'7"’ *”) h*" and continue.

IR

7. Update the interface locations, z (see Fig. 1), and the baroclinic
Montgomery potentials, M®, using Eqs. (19) and (17),
respectively.

8. For the nonhydrostatic method, solve the Poisson equation (34)
for the nonhydrostatic correction pressure (q.), correct the
horizontal predictor (hydrostatic) velocities using the nonhy-
drostatic pressure (11a), and set q**: = q, + og"%. To run the
model in hydrostatic mode, this step is ignored; q. = 0 and
un+l — u*.

9. Finally, compute the vertical velocity by integrating the conti-
nuity equation (33) from the bottom grid cell (where

= 0) upward.

w; 1
i,Njayers+3

4. Stability and convergence
4.1. Stability

The current model is susceptible to both physical and numerical
instabilities. The physical instability is due to the formation of
Kelvin-Helmholtz (KH) billows that may occur when the Richardson
number (Ri) is less than 1/4 (Miles, 1961; Howard, 1961). Numerical
instability, on the other hand, is related to the Courant numbers for
the time stepping of terms such as the baroclinic pressure gradient,
advection of momentum, horizontal viscosity, or updating the layer
heights.

Although nonhydrostatic models using z- and g-coordinates are
capable of resolving KH billows, layered and isopycnal coordinate
formulations are not. The formation of KH instabilities renders
layered models ill-posed and unstable (Grue et al., 1997; Jo and
Choi, 2002; Castro-Diaz et al., 2011; Mandli, 2013). Chumakova
et al. (2009) showed that the condition for instability of the inviscid,
multilayer shallow water (i.e. hydrostatic) equations is Ri < 1/4.
Barad and Fringer (2010) found that KH billows develop on internal
solitary waves when Ri < 0.1. The appearance of KH instabilities in
layered models can be suppressed by adding viscosity (Castro-Diaz
et al., 2011), filtering (Jo and Choi, 2008) or adopting a different
numerical formulation (Choi et al., 2009). The current model does
not take active measures to remove this physical instability.
Instead, the model is typically applied in regimes where Ri > 1/4

and KH billows do not exist. However, in general, we do not attempt
to proactively avoid dynamical situations where KH billows
develop. As is typically the case in hydrostatic isopycnal models,
we have found that the small amount of damping due to viscosity,
drag, and the numerical schemes is usually sufficient to suppress
instability due to the KH mechanism.

The numerical stability of the time-stepping method used in the
current model is investigated in Durran and Blossey (2012). For a
1-D stiff, linear model problem, Durran and Blossey (2012) deter-
mined a maximum Courant number of 0.76 and 0.72 for the
AM2*-AX2* and AI2*-AB3 methods, respectively. We generally find
that the 2-D model is stable for nonlinear simulations when the

internal Courant number, C; = C'Ai‘ < 0.5 where ¢; is the maximum
(mode-1) internal wave speed. We also find that the model is sta-

ble when the horizontal diffusion Courant number

Cy, =21 < 0.25 when using AB3. Additionally, we require that

the horizontal advective Courant number C, :“HA‘ < 1 to ensure
positive layer heights according to Eq. (31). There is no time step
restriction associated with vertical advection since such terms do
not appear in the governing equation (6). In 3-D, the maximum
Courant numbers may be reduced even further. In general, there
is no restriction on the free-surface Courant number since the time
stepping method for the surface gravity-wave terms is A-stable
(Durran and Blossey, 2012).

4.2. Convergence

As mentioned in Section 3.1, the numerical method is second-
order accurate in time, space, and the number of layers. To demon-
strate this convergence rate, the model is run with an idealized,
inviscid two-layer internal seiche in an enclosed domain as the
temporal, horizontal, and vertical model resolution is increased.
In the following convergence tests, the measure of convergence
of the solution is obtained by

Error = solution(At, Ax, or Ah) — solution(At/2,Ax/2, or Ah/2),
(35)

where “solution” means the numerical solution of variables of
interest such as 7, ¢ (the interface displacement), u,w and q at the
final time t,,x With a time step of At, a grid spacing of Ax, or a layer
spacing of Ah, respectively.

For the convergence study and the following numerical
experiments, we use the AM2*-AB3 numerical method, for which
c¢=1/2 and b =5/6 (Durran and Blossey, 2012). The convergence
analysis shown in Fig. 2 is performed for the evolution of an

||Error],
&

—e—¢m
——n[m]
—4—u[ms’]
— & —wms
-10| —X—q[m?s ] 1
T Gy M7
- = =0t
o(at?)

107" 10
At[s]

10’ 10

A x [m] Ah[m]

Fig. 2. The temporal, horizontal, and vertical resolution convergence analysis in panels A, B, and C, respectively. The convergence analysis shows that the method converges

with second-order accuracy in both time and space.
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Fig. 3. Initial density configurations (in kg m~?) for a free-surface seiche (panels A,B,C), a 2-layer internal seiche (panels D,E,F), and a continuously-stratified internal seiche
with a tanh density profile (panels G,H,I). In Sections 5.1-5.3, we use smaller wave amplitudes than shown here so that linear theory is valid.

internal seiche initialized with a cosine wave of the form
& =2z +H/2 = a;cos(mx/L) (z; is the location of the internal inter-
face, H is the depth, and L is the domain length) with upper- and
lower-layer densities given by p, =1000kgm~> and p, =
1001 kg m~3, respectively. The problem setup is similar to the
configuration shown in Fig. 3D. We use the pressure correction
method, « = 1, and an iterative procedure for the free surface with
MPDATA.

The temporal convergence experiment, shown in Fig. 2A, is run
with @; =1 m, L = 1000 m, and H = 100 m and with N, = 128 grid
points in the horizontal and 2 layers in the vertical for various time
step sizes At = [, ,4,1,3] s with tpa = 50 s. As shown in Fig. 2A,
the numerical solution gives O(At?) convergence with refinement
of the time step size, At, as expected. In Fig. 2A, the first-order con-
vergence rate of the nonhydrostatic pressure, g, arises because the
nonhydrostatic pressure is defined at time n+1 (Armfield and
Street, 2003; Fringer et al., 2006). If this pressure is extrapolated
to the final time fmax = NmaxAt USING Geyrap = %q"max*% - %q"max*%_s_
O(At?), then O(At?) convergence is achieved as demonstrated by
the slope of qeyy,, In Fig. 2A.

The horizontal grid refinement convergence experiment, shown
in Fig. 2B, is run with ¢;=1m, L =100m, and H = 100 m and a
small fixed time step of At = 0.01 s for 100 time steps. The model
is run with 2 vertical layers and a variable number of horizontal grid
points Ny = [4,8,16,32,64,128]. Because the model uses a
staggered grid, variables located at cell centers such as # are inter-
polated to the location x = 0 using AB2, 17,_q) = 317, — 311, + O(AX?).
As shown in Fig. 2B, the numerical solution gives O(Ax?) conver-
gence with refinement of the horizontal grid spacing, Ax, as expected.

The vertical layer refinement convergence experiment, shown
in Fig. 2C, is run with ¢; =1m, L =100 m, and H = 100 m and a
small fixed time step of At = 0.01 s for 100 time steps. The model
is run with a fixed horizontal resolution of N, = 512 and variable
number of layers Nijyers = [2,4,8,16,32]. We note that although
the model may have more than two layers, the density only
changes across the density interface at mid-depth. The density of
the upper half of the layers is p; = 1000 kg m~3 and the density
of the lower half of the layers is p, = 1001 kg m~3. The variables
of interest are interpolated to the location of the free surface # or
internal interface ¢ at the final time ty,.x with a vertical layer reso-
lution of Ah = H/Njayers. As shown in Fig. 2C, the numerical solution

gives O(Ahz) convergence with refinement of the layer heights,
Ah, as expected.

5. Numerical experiments

In this section, numerical experiments are conducted to verify
the model. The test cases employed here are: (1) free-surface, (2)
two-layer, and (3) continuously stratified seiches in enclosed
domains; the formation of internal solitary waves (4) following
KdV theory, (5) following Vitousek and Fringer (2011), and (6) fol-
lowing the laboratory experiments of Horn et al. (2001); (7) inter-
nal wave generation over a ridge in the South China Sea after
Buijsman et al. (2010); (8) the formation of internal wave beams
generated from oscillatory flow over a sill [see e.g. Kundu, 1990].

All of the numerical experiments use the AM2*-AB3 numerical
method (for which ¢=1/2 and b=5/6 (Durran and Blossey,
2012)), the pressure correction method (o = 1), the iterative proce-
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Table 1
Dispersion relations for numerical experiments in Sections 5.1-5.3.

r
Stanh

9)

Section Sieche test case ¢ (wave speed) Ch = kﬁmﬂ c(shallow-water limit) Cq= kLim ¢ (deep-water limit)
5.1 Free-surface % tanh (kH) gH \/%

5.2 Two-layer internal 2 2 q

53 Continuously stratified fi(kd,) /¥f,-(k6p) 55,

dure for the free surface and the first-order upwind method to
compute the flux-face heights unless stated otherwise. All of the
numerical experiments are run without surface pressure, p, =0,

or Coriolis force, f =f = 0.
5.1. Free-surface seiche

In Sections 5.1-5.3, the (inviscid) isopycnal model is validated
against linear gravity-wave theory. The dispersion relations used
in the numerical experiments in Sections 5.1-5.3 are listed in
Table 1.

In Table 1, k = 27/, is the wavenumber where A, = 2L is the
fundamental wavelength in an enclosed domain of length L, H is
the depth, g is gravity, g’ = %g is the reduced gravity, kH — 0
is the (hydrostatic) shallow-water limit, kH — oo is the (nonhydro-

static) deep-water limit, and f;(ks,) = (1+ ké,,/Z)’] accounts for
the effect of the finite-thickness interface (Kundu, 1990) where
d, is the pycnocline thickness as discussed in Section 5.3.

In Sections 5.1-5.3, the modeled wave speeds are determined
by estimating the period of oscillation, Tyogeleq, from the simulation
start time to the time of the next maximum in the free surface or
isopycnal at x = 0 and then calculating the wave speed based on
Cmodeled = Wmodeled /k = zn/(lchodeled)'

In Table 1, the ratio of the hydrostatic wave speed to the theo-
retical (nonhydrostatic) wave speed for a free-surface seiche is
given by

Ch kH
‘¢~ \/tanh(kH)y (36)

In this numerical experiment, we compare the wave speeds of the
nonhydrostatic and hydrostatic models to the theoretical wave
speed. Eq. (36) shows that the hydrostatic model always overpre-
dicts the wave speed except in the limit that kH — 0. In this numer-
ical experiment, we also compare depth-profiles of the horizontal
and vertical velocity in the nonhydrostatic and hydrostatic models
to linear theory. The analytical solutions for the horizontal and ver-
tical velocity of a nonhydrostatic free-surface seiche are given by

k cosh (k(z+H))

U= 08 " cosh (kH)

sin (kx) sin (wt), (37a)

W —agk sinh (k(z+ H))

@ cosh (kH) % (kx) sin (wt),

(37b)
where a is the initial amplitude of the free-surface seiche with ana-
lytical solution # = acos (kx) cos (wt). The corresponding analytical
solutions for the horizontal and vertical velocity profiles of a hydro-
static free-surface seiche are given by

u= ag% sin (kx) sin (wt), (38a)

w= —ag% (k(z + H)) cos (kx) sin (wt), (38b)

which can be found by taking Eq. (37) in the limit that kH — 0.

The initial configuration of this numerical experiment is
depicted in Fig. 3(A-C), but with varying domain sizes, number
of layers, and a smaller seiche amplitude.® We note that the densi-
ties of each layer do not necessarily need to change from one layer to
the next as in the case of a free-surface seiche. The model is initial-
ized with a cosine wave of the form # = a cos (mx/L) where the seiche
amplitude is given by a = 0.1 m and the depth is given by H =10 m
on a grid with N, = 64 grid points in the horizontal and a varying
number of layers in the vertical each with density p, = 1000 kg m—3.
To change the degree of nonhydrostasy, kH, the model is run with
varying domain lengths while holding the depth fixed. The model
is run with a free-surface Courant number C =< =1 for 1.5 seiche
periods, tmax = 1.5T where T = 27t/ w.

The modeled wave speeds for the nonhydrostatic and hydro-
static models normalized by the theoretical wave speed agree with
the relationships given by c,,/c =1 and Eq. (36), respectively, as
shown in Fig. 4A. This indicates that the model achieves the correct
dispersive behavior. When the nonhydrostasy parameter kH is
small, the hydrostatic and nonhydrostatic models are similar.
However, when there is an appreciable degree of nonhydrostasy,
the hydrostatic model overpredicts the true wave speed. Fig. 4A
also demonstrates how the number of isopycnal layers affects
the dispersive properties of the model. The effect of the nonhydro-
static pressure is to introduce depth-variability in the velocity field

that decays like k™'. Nonhydrostatic models with a limited number
of layers underpredict the wave speeds, particularly for large val-
ues of kH. However, as layers are added to the nonhydrostatic
model, the modeled wave speeds converge rapidly to the theory.
For problems with low to moderate kH, a nonhydrostatic model
with two layers is sufficient to accurately capture the dispersion
(Stelling and Zijlema, 2003; Zijlema and Stelling, 2005). On the
other hand, hydrostatic waves are non-dispersive and induce hor-
izontal velocities that are depth-invariant (see Eq. (38a)). Conse-
quently, the wave speeds in the hydrostatic model are
uninfluenced by the number of layers.

The test case for the velocity profiles of a free-surface seiche uses
the same parameters as above except with H = 16 m, L = 10 m, and
Niayers = 20 which are chosen so that the experiment is strongly
nonhydrostatic. Fig. 5A shows the normalized horizontal velocity
profiles for the nonhydrostatic and hydrostatic models at location
x = L/2 as compared to the theoretical profiles given in Eqgs. (37a)
and (38a), respectively, at time t = T/4. Likewise, Fig. 5B shows
the normalized vertical velocity profiles from the nonhydrostatic
and hydrostatic model at location x =0 as compared to the
theoretical profiles given in Eqs. (37b) and (38b), respectively, at
time t =T/4. In each case the model accurately reproduces the
theoretical behavior. The most significant difference between the
hydrostatic and nonhydrostatic velocity profiles is the depth-
variation of the horizontal velocity. As seen in Fig. 5A, the
hydrostatic horizontal velocity profile does not vary with depth.
In contrast, the nonhydrostatic horizontal velocity profile decays
rapidly with depth from its maximum value at the free surface.

8 Note: the seiche amplitude is chosen to be small to minimize the free-surface
nonlinearity, 6 = a/H, so that linear wave theory is valid.
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5.2. Two-layer internal seiche

In this test case, the (inviscid) isopycnal model is validated

against linear theory describing internal gravity waves in a two-

layer system. From Table 1, the ratio of the hydrostatic wave speed
to the theoretical wave speed for a two-layer seiche is given by

Ch kH/2
¢ \tanh(kH/2)

Eq. (39) exhibits similar behavior to that of the free-surface seiche,
(36), but differs in that the nonhydrostasy parameter is effectively

(39)
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halved for the internal seiche because the interface is located in the
middle of water column which is effectively half as deep. In this test
case, we also compare depth profiles of the horizontal and vertical
velocity from the nonhydrostatic and hydrostatic models to theory
which is computed with the first-mode linearized eigenfunction
analysis of Fringer and Street (2003).

The initial configuration of this numerical experiment on the
behavior of a two-layer internal seiche is shown in Fig. 3(D-F),
but with varying domain sizes, number of layers, and a smaller
constant seiche amplitude. The model is initialized with an internal
cosine wave of the form z; = —H/2 + acos (nx/L), where a = 0.1 m
and H = 10 m on a grid with N, = 64 grid points in the horizontal
and a varying number of layers in the vertical. We note that
although the model may have more than two layers, the density
only changes across the density interface at mid-depth. The
density in the upper half of the layers is p, = 1000 kg m~—3 and
the density in the lower half of the layers is p, = 1010 kg m—3. To
change the degree of nonhydrostasy, kH, the model is again run
with varying domain lengths as in the free-surface seiche test case.

As shown in Fig. 4B, the model achieves the correct dispersive
behavior. The model of the two-layer internal seiche behaves in a
very similar manner to the model of the free-surface seiche in
terms of its performance as a function of kH and the improvement
of the dispersive properties as layers are added.

The test case for the velocity profile for the two-layer internal
seiche uses the same parameters as above except with H =16 m,
L =10 m, and Njayers = 40 which are chosen so that the experiment
is strongly nonhydrostatic. Fig. 5C and D show the horizontal and
vertical velocity profiles normalized by their respective maxima
at locations x = L/2 and x = 0, respectively, at time t = T/4. In each
case the model accurately reproduces the theoretical behavior. As
seen in Fig. 5C, the hydrostatic horizontal velocity profile does
not vary with depth above and below the interface. In contrast,
the nonhydrostatic horizontal velocity profile decays rapidly away
from its maximum value at the interface. Thus the ability of the
nonhydrostatic model to accurately reproduce the modal solution,
particularly one that is strongly nonhydrostatic, depends on the
number of model layers used to represent the vertical variability
of the solution even in regions of constant density.

5.3. Continuously-stratified internal seiche

In this test case, the (inviscid) isopycnal model is validated
against linear theory describing internal gravity waves in a contin-
uously-stratified system. From Table 1, the ratio of the hydrostatic
wave speed to the theoretical wave speed, c;/c, for a continuously-
stratified internal seiche is identical to Eq. (39). The theoretical
wave speed ratio for a continuously-stratified internal seiche is
identical to the theoretical wave speed ratio for a 2-layer internal
seiche since the influence of the finite thickness interface (given
in Table 1) is removed during the normalization. As in the previous
test case, we compare depth-profiles of the horizontal and vertical
velocity in the nonhydrostatic and hydrostatic models to theory
from the first-mode linearized eigenfunction analysis of Fringer
and Street (2003).

The initial configuration of this numerical experiment on the
behavior of a continuously-stratified internal seiche is shown in
Fig. 3(G-I), but with varying domain sizes, number of layers, and
a smaller constant seiche amplitude. The model parameters are
identical to those in the two-layer seiche case, with the exception
of the density profile. The density in this case is given by

2tanh ™' o

p(x,z,t—O)—p0+;Ap{1—tanh < 5 (z+H/2—é)>}
14

(40)

where the depth is H=10m, o5 = 0.99 [see Fringer and Street,
2003], 6, =1m, p, = 1000 kg m~3, and the density difference is
given by Ap/p,=0.01. The interface height ¢ = a;cos(kx) and
a; =0.1m as in the previous test case. The isopycnal layers are
initialized to density contours that are linearly spaced in density
space. Using this approach, the layers are localized at the stratified
interface as shown in Fig. 3H. This approach resolves the stratifica-
tion, but does not resolve the vertical variability caused by the
nonhydrostatic effects (since no additional layers are present away
from the interface). Thus we also consider a so-called “hybrid”
approach, where layers are added to resolve the stratified interface
as well as the velocity profile in regions above and below the
interface as shown in Fig. 31

Fig. 4C demonstrates that the model achieves the correct dis-
persive behavior. Interestingly, as demonstrated in Fig. 4C, adding
layers to improve the representation of the stratification alone
does not improve the dispersive properties. Additional layers are
needed throughout the water column to improve the representa-
tion of the nonhydrostatic velocity profile with depth. The hybrid
approach, which adds such layers, improves the dispersive
characteristics.

The test case to compute the velocity profile of the continu-
ously-stratified internal seiche uses the same parameters as the
two-layer velocity profile test case (Section 5.2) except with 100
layers® in the hybrid configuration. Fig. 5E and F show the horizontal
and vertical velocity profiles normalized by their respective maxima
at locations x = L/2 and x = 0, respectively, at time t = T/4. A similar
test case for the velocity profile of an internal seiche is given in
Fringer et al. (2006), where the velocity profiles are computed using
the first-mode linearized eigenfunction analysis of Fringer and Street
(2003). The eigenfunction analysis requires the wave frequency as
input. In panels E and F of Fig. 5, the wave frequency is computed
both from the asymptotic theory in Table 1 (where w = ck) and from
the model (Wmogeleq)- These are denoted as “NH Theory 1” and “NH
Theory 2”, respectively, in Fig. 5E and F. As expected, the modal solu-
tion using the wave frequency of the model more closely follows the
modeled velocity profiles owing to errors in the asymptotic theory
which is only valid in the limit of small kd,. As seen in Fig. 5E and
F, the hydrostatic and nonhydrostatic velocity profiles are well-rep-
resented using the model. In this case, the hydrostatic velocity pro-
file has a smooth variation near the stratified interface (as in Fig. 5E)
unlike the velocity profile for the two-layer stratification which is
discontinuous across the interface (as in Fig. 5C).

In summary of the results in Sections 5.1-5.3, we find that

1. Nonhydrostatic dispersion gives rise to depth-dependence
even in unstratified regions. Therefore, nonhydrostatic mod-
els require multiple layers to resolve both the vertical depen-
dence of the velocity field and the dispersive properties,
especially for large values of kH.

2. The horizontal velocity in unstratified regions does not vary
with the vertical coordinate for hydrostatic models and thus
adding layers in such regions does not affect the velocity pro-
files or the dispersive properties.

3. In weakly nonhydrostatic regimes for which kH < 1, the
depth-dependence and dispersion are minimal. Thus, in this
regime, a model with a limited number of layers may suffice.

5.4. Internal solitary waves: comparison of isopycnal model to KdV
theory

In this test case, we compare the widths of solitary waves
formed using the current model to Korteweg and de-Vries (1895)

9 Note that we use 100 layers for graphical representation. The analytical solution
may be well represented using fewer layers.
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(KdV) and extended KdV (eKdV) theory. The well-known solitary-
wave solution to the KdV equation is

¢ = agsech? <X ~ Cit),
Ly

(41)

where the length scale of solitary waves in a two-layer system is
given by

4 (hihy)?

Lo= § (h] — hz)a7

(42)
where a is the amplitude of the solitary wave and h; and h, are the
depths of the upper and lower layers, respectively (Bogucki and
Garrett, 1993). After normalizing and rearranging, we can write

Eq. (42) as
h] _ h] 3 h] -1 a
nn—zdz(“(h—) ):7 )

which relates the magnitude of nonlinearity a/h; to the wave aspect
ratio hy /Lo. The eKdV theory includes cubic nonlinearity and results
in expressions similar to (41) and (42) although slightly more com-
plicated as given in Helfrich and Melville (2006).

The simulations in this numerical experiment are performed in
a domain of length Ly = 125 km and depth H = 2000 m with a two-
layer stratification where p; = p, = 999.5 kg m~3 is the density of
the upper layer, and p, = p, + Ap = 1000.5 kg m~2 is the density
of the lower layer. The simulations are performed in an enclosed
domain with an initial isopycnal displacement of

2
0)=2z +h; = —a;sech? {<X> },
L,

with hy = 500 m and L, = 2Ly, and varying initial amplitudes a;. The
initial wave of depression evolves rapidly into a solitary wave of
width given closely by Ly with a small train of trailing waves. The
model is discretized with 2, 4, and 10 vertical layers each with
N, = 1000 grid points in the horizontal. The model is inviscid and
is run with a free-surface Courant number of 20 which corresponds
to a time step of 17.85s.

Fig. 6 shows h;/Ly vs. a/h; of the leading solitary waves (at
t =16.29 h) for the isopycnal models with 2, 4, and 10 layers in
panels A, B, and C, respectively. The computed solitary wave ampli-
tude a and width L, are determined following the procedure used
in Vitousek and Fringer (2011). The modeling results are compared

xt (44)
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to broaden and develop flat crests as the waves become more non-
linear (Helfrich and Melville, 2006). Fig. 6 demonstrates that for
weakly nonlinear (a/h; < 1), weakly nonhydrostatic (h;/Ly < 1)
waves, the model can reproduce solitary waves consistent with
theory. However, for waves with an appreciable degree of nonlin-
earity (a/h; > 0.15), the KdV theories are not valid; they underpre-
dict the solitary wave widths (or equivalently overpredict h;/Lo
relative to the modeling results). As shown in Fig. 6, the eKdV the-
ory captures the broadening of solitary waves (or equivalently
decrease in h;/Ly) as the nonlinearity increases (e.g. for
a/h; > 0.5). However, the eKdV theory still underpredicts the sol-
itary wave widths relative to the current model for high orders
of nonlinearity. The slight mismatch between the model and the
theoretical predictions is not due to model error but instead arises
from the limited range of applicability of the weakly nonlinear,
weakly nonhydrostatic KdV theory. Although in certain dynamical
situations the model can revert to the simple KdV theory, it can
also be applied to situations beyond weakly nonlinear, weakly
nonhydrostatic regimes as demonstrated in the numerical experi-
ments in the next section.

5.5. Internal solitary waves: comparison of isopycnal model to z-level
model

In this test case, we compare formation of nonlinear internal
solitary-like wave trains using the current isopycnal model to the
nonhydrostatic SUNTANS z-level model (Fringer et al., 2006) in a
two-dimensional x-z domain. The parameters for this test case fol-
low the numerical experiment in Vitousek and Fringer (2011)
using SUNTANS with 100 layers. This test case was chosen to
approximate the evolution of solitary-like waves in the South
China Sea following Zhang et al. (2011). The simulations are per-
formed in a domain of length L; = 300 km and depth H = 2000 m
that is initialized with approximate two-layer stratification as an
idealized representation of the South China Sea. The initial stratifi-
cation is given by

1 Ap tanh

5 (z—¢(x,t=0)+hy)|,

2tanh ! o
px.z,t=0)=p, {—

14

(45)
where the upper-layer depth is h; = 250 m, o; = 0.99 [see Fringer
and Street, 2003], 5, =200 m, p, = 1000 kg m~3, and the density

difference is given by Ap/p, = 0.001. The initial Gaussian of depres-
sion that evolves into a train of solitary-like waves is given by

to the KdV and eKdV theories. The main difference between the x\ 2
two theories is that the eKdV theory (which is valid for higher  ¢(X,t = 0) = —a;exp *(L*) ; (46)
orders of nonlinearity) captures the tendency for solitary waves ’
2 layers 4 layers 10 layers
O model
eKdV theory
= KdV theory
10"
<|O
=
102 10" 10° 102 10" 10° 102 10" 10°
a’h 1 a’h 1 a/h 1

Fig. 6. The wave aspect ratio h; /L, vs. the magnitude of nonlinearity a/h; of the leading solitary waves computed by the isopycnal model at t = 81.27 h compared to the KdV

and eKdV theories.
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Fig. 7. The formation of internal solitary waves generated from a Gaussian-shaped initial wave of depression computed by the current isopycnal model with 2 and 10 layers
compared to the z-level SUNTANS model with 100 layers following the test case of Vitousek and Fringer (2011). The 2- and 10-layer isopycnal model results are shifted

downward by —700 m and —350 m, respectively, to allow comparison of the models.

with @;=250m and L, =15 km. The boundary conditions are
closed at x = 0 and x = L; and the bottom at z = —H is free-slip with
a free surface at the upper boundary. The model is discretized with
2 and 10 layers in the vertical. The layer heights and densities of the
10-layer model are initialized to follow contour lines of the density
in Eq. (45) which are linearly-spaced in density space. This numer-
ical experiment is also run with 2 and 10 additional hybrid layers
(distributed linearly in physical space in the upper and lower strat-
ified layers) that are added to the simulation to improve the repre-
sentation of the dispersive properties as discussed in Sections 5.1-
5.3. The simulations are performed with N, = 4800 grid points in
the horizontal. The model is run with a free-surface Courant num-
ber of 10 which corresponds to a time step of 17.85 s. There is no
viscosity or drag used in the isopycnal model, although the SUN-
TANS model uses (constant) viscosities of vy =0.1m?s™! and
vw =10 m?s! to stabilize its central-differencing scheme for
momentum advection. No scalar diffusivity is employed in the SUN-
TANS model.

The SUNTANS model requires approximately 2.0s per time
step'® using 16 cores on four quad-core Opteron 2356 QC processors
(Vitousek and Fringer, 2011). The 2-layer isopycnal model with the
same horizontal resolution on the other hand requires approxi-
mately 0.15 s per time step using only one processor. This reduction
in computational time and resources represents more than an order
of magnitude improvement in efficiency. The 10-layer isopycnal
model requires approximately 0.86 s per time step using one proces-
sor and also represents a significant reduction in computational cost.

As shown in Fig. 7, the initial Gaussian wave of depression
steepens into a rank-ordered train of solitary waves. The 2- and
10-layer isopycnal models are shifted downward by —700 m and
—350m to allow comparison of the results. In Fig. 7, the x- and
y-axes are normalized by L, = 1436 m and ay = 220 m, respec-

10 We note that SUNTANS requires a time step of At =5s for these simulations
which leads to a significant increase in computational effort compared to the time
step of At = 17.85 s needed in the isopycnal model.

tively, which represent the final solitary wave length and ampli-
tude scales of the simulations presented in Vitousek and Fringer
(2011). The time scale is normalized by T = Ly/c; = 1028.7 s,
where ¢, =1.396 ms~! is the speed of a mode-1 wave given in
Vitousek and Fringer (2011). Here, we adopt the same normaliza-
tion to facilitate comparison with the results presented in
Vitousek and Fringer (2011).

The speed of the internal waves varies slightly among the differ-
ent models. The wave speed of the SUNTANS model is slightly
reduced due to vertical numerically-induced scalar diffusion of
density which is not present in the isopycnal model. We note that
this scalar diffusion is purely numerical because no scalar diffusiv-
ity is employed. Numerically-induced scalar diffusion reduces the
wave amplitude and thus the wave speed (which is weakly-depen-
dent on amplitude) and also leads to thickening of the density con-
tours in the wake of the leading wave in the wave train. The wave
speed of the 10-layer isopycnal model is slightly slower than the 2-
layer isopycnal model due to the finite-thickness of the interface in
the 10-layer model which reduces the wave speed by a factor of
fi(ks,) as demonstrated in Table 1. Overall, this numerical experi-
ment demonstrates consistency between the number and widths
of modeled solitary waves computed by the nonhydrostatic isopyc-
nal model and the nonhydrostatic z-level model. The hydrostatic
versions of SUNTANS and the current isopycnal model (not shown)
are also remarkably similar.

Finally, we present a convergence study of the solitary wave
widths as a function of grid resolution. This test case follows
Vitousek and Fringer (2011) with the same simulation parameters
as above but with a variable number of horizontal grid points,
N, = [150,300, 600, 1200,2400,4800] and 2 and 10 additional
“hybrid” layers (discussed in Section 5.3) to improve the dispersive
properties. Fig. 8A shows the convergence study presented in
Vitousek and Fringer (2011) using SUNTANS with 100 layers and
Fig. 8B shows the convergence study of the current nonhydrostatic
and hydrostatic isopycnal models with 2 and 10 layers. Fig. 8
shows the normalized length scales (L/Ly) of the leading solitary
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Fig. 8. Convergence of leading solitary wave widths (at time t = 40.4 h) normalized by L, = 1436 m as a function of the grid lepticity 4 = Ax/h;. Panel A shows the results
from the SUNTANS model following Vitousek and Fringer (2011). Panel B shows the results from the isopycnal model with different numbers of layers. For reference the
theoretical convergence relationships for the nonhydrostatic (blue line) and hydrostatic models (red line) given in Eqs. (47) and (48), respectively, are shown. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

wave at the final time step, t = 40.4 h (t/Ts; = 141.5) as a function
of grid lepticity /. = Ax/h;. The procedure to determine solitary
wave length scales is outlined in Vitousek and Fringer (2011). As
demonstrated in Vitousek and Fringer (2011), the normalized
length scales of the nonhydrostatic and hydrostatic models behave
like

L/Lo = \/1+K2? (47)
and
Ly/Lo = 2K, (48)

respectively, as a function of lepticity 4, where K is a constant that
depends on the numerical method and is obtained with a best-fit of
the model results to expressions (47) and (48). Egs. (47) and (48)
arise from the second-order accuracy of the numerical method.
Numerical dispersion, which is proportional to the grid spacing
squared, mimics physical dispersion and directly contributes to
the widths of modeled solitary waves. Fig. 8B demonstrates that
the isopycnal model has very similar convergence behavior to SUN-
TANS with respect to decreasing the grid spacing or grid lepticity. It
is not surprising that the behavior of the two models is similar given
that they employ similar numerical methods (and the same order of
accuracy). However, the isopycnal model requires additional
“hybrid” layers above and below the interface to better resolve
the wave dispersion and thus the solitary wave length scales.
Fig. 8B shows that adding layers above and below the stratification
interface improves the modeled solitary wave widths. By adding 2
hybrid layers (indicated by +2 in Fig. 8) the isopycnal model forms
solitary waves that are approximately 10% larger than SUNTANS. By
adding 10 hybrid layers (indicated by +10 in Fig. 8) the isopycnal
model forms solitary waves that are nearly identical to
SUNTANS.

5.6. Internal solitary waves: comparison of isopycnal model to
laboratory experiments

This test case compares the formation of an internal solitary-
like wave train using the current isopycnal model to the laboratory
experiments in Horn et al. (2001). The laboratory experiments
investigate the formation of solitary waves in an approximately
two-layer density profile with an interface thickness of
3, =0.01m in an enclosed tank of depth H=0.29 m and length
L = 6 m. The internal interface is initialized with a linear tilt which
is given by

(49)

where the wave amplitude is given by a;=[0.01305,0.0261,
0.03915,0.0522,0.0783] m. The model of the laboratory experiments
is run with 2 layers and N, = 256. The density difference in the lab-

oratory experiments is approximately f,—g’ = 0.02 £ 0.002. The model
is run with a slightly lower density difference opr—{]’ =0.0175 because

the finite-thickness interface in the laboratory experiment reduces
the wave speed slightly when compared to the two-layer configura-
tion used in the model with (still-water) layer heights h; = 0.203 m
and h, = 0.087 m. The model is run with a free-surface Courant
number C = 4 for a total time of 400 s. The model uses a drag coeffi-
cient C4 =0.0175 and horizontal and vertical eddy-viscosities of
Vy=1x10°m?2s ! and v, =1 x 10°° m? s~!, respectively. These
parameters are chosen to fit the amplitude of the solitary waves
formed during the laboratory experiment. Fig. 9 shows the results
of the model-predicted time series of the interface displacements
(located at the center of the tank, x = L/2) compared to the labora-
tory experiments of Horn et al. (2001). Panels A,B,C,D,E of Fig. 9
correspond to the increasing initial interface amplitudes of a; =
[0.01305,0.0261,0.03915,0.0522,0.0783] m, respectively. The
agreement between the model and the laboratory experiments is
excellent for the first half of the experiment (¢t < 200 s). However,
for the second half of the experiment there is some mismatch in
the phase and amplitude of the waves. Over the course of a labora-
tory experiment Horn et al. (2001) reported “a gradual thickening
of the density interface over the set, typically from approximately
1 cm-2 cm”. The finite-thickness interface and thickening are partly
responsible for the mismatch with the model (which has a sharp
interface and no interface thickening). Additionally, the model
appears to form slightly wider solitary waves than the laboratory
experiment. This indicates that the dispersive properties of the
waves are not captured exactly in the model because of the two-layer
approximation. Overall, however, the model adequately captures the
formation of solitary waves in the laboratory experiment.

Fig. 10 shows the same numerical experiment as Fig. 9 except
using the developed isopycnal model in hydrostatic mode. The
hydrostatic model in Fig. 10 forms steep bores as opposed to trains
of solitary waves as in Fig. 9. This is particularly visible for the
experiments with larger initial amplitudes. Although nonhydro-
static dispersion does influence the wave speed, the effect is rela-
tively weak. Consequently, the wave speed of the nonhydrostatic
and hydrostatic models are consistent. This is evidenced by the
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Fig. 9. Comparison of nonhydrostatic model-predicted and measured (from Horn et al. (2001)) interface displacement (¢) time series at x = L/2.

remarkably similar timing of the modeled hydrostatic wave fronts
compared to the laboratory experiments. Therefore, a hydrostatic
model may suffice for predicting the arrival time of the initial wave
fronts. However, the significant difference between the hydrostatic
and nonhydrostatic models is the form of the trailing waves. The
hydrostatic model in Fig. 10 has a tendency to form narrow,
numerically-induced!! solitary waves on each wave front. These
numerically-induced solitary waves are, in this case, much narrower
than the waves in the laboratory data because the numerical disper-
sion is much smaller than (the unmodeled) physical dispersion due
to the high grid resolution. The numerical dispersion is smaller than
physical dispersion because the grid lepticity, 1 = ﬁ—:‘ =0.1155 is less
than unity (Vitousek and Fringer, 2011). In summary, these numer-
ical experiments demonstrate the necessity of using nonhydrostatic
models when simulating nonlinear internal solitary waves like those
in the experiments of Horn et al. (2001).

5.7. Internal solitary waves: internal wave generation in the South
China Sea

In this numerical experiment, we investigate the capability to
simulate solitary wave formation in realistic physical domains that
are typically simulated using nonhydrostatic z- or g-coordinate
models. The prospect for simulating complex internal wave gener-
ation with a limited vertical layer structure seems possible due to
the work of Li and Farmer (2011) who successfully applied a fully
nonlinear two-layer model to predict the evolution of the internal
tide in the South China Sea.

1 Generated by dispersive (odd-order) truncation error.

In this test case, we follow the modeling results of Buijsman
et al. (2010) who studied the generation and evolution of nonlinear
internal waves in the South China Sea with a o-coordinate model
using 60 layers. The model is run with bathymetry that approxi-
mates the eastern ridge of the Luzon Strait with a height of
a, = 2600 m in a depth of Hy = 3000 m. Following Buijsman et al.
(2010), the depth profile is given by

X2
H = H, — ayexp (— 2_L§> , (50)
where the bathymetry length scale L, = 12 km. The model domain
and bathymetry are shown in Fig. 11.

A least squares fit to the density profile in Buijsman et al. (2010)
gives

p(2) = po+Ap(1 —exp (z/ho)’ + 512 + 5,2%), (51)

where p,=1024.75kgm3,Ap =5.22kgm3 hy =224 m,p=1.15,
s; =-0.00018m~!, and s, = —3.64 x 108 m2 are the best-fit
parameters. Internal waves are generated from tidal flow in the
Luzon Strait over the bathymetric ridge. To capture this in the
model, the boundary is forced at both sides of the domain by

Upe = Ug Sin (Wpct), (52)

where 1y = 0.134 ms! and oy = 1.41 x 10°* s~! as in case R1 in
Buijsman et al. (2010).

The model is run in hydrostatic and nonhydrostatic mode with
2 and 10 layers. The initial layer configurations are set to best
match the weakly nonlinear and nonhydrostatic behavior of soli-
tary waves in the stratification given by Eq. (51). The still-water
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interface depths in the 10-layer isopycnal model are arbitrarily set
to z=-[0,50,100,250,460,750,1000,1500,2000,2500,3000] m
with density values computed at the vertical center of each layer
using Eq. (51). Following the procedure described in Appendix F,
the still-water internal interface for the 2-layer model is set to
z = —460m and the upper- and lower-layer densities are set to
p; =1028 kgm— and p, = 1030.1967 kg m~3, respectively, in
order to match the mode-1 wave speed of the 10-layer model.

To properly simulate the generation and evolution of internal
waves in the South China Sea, the model is run with a domain
length of L=800km and N =1750 grid points so that
Ax ~h; =460 m and the grid lepticity /= ﬁ—j‘ ~ 1 so that the

numerical dispersion is relatively small according to Vitousek
and Fringer (2011).

The model is run with a horizontal eddy-viscosity of vy =
100 m2s~! and a vertical eddy-viscosity of v, =1 x 107 m2 5!
to characterize unresolved mixing of momentum due to turbulence
in the presence of internal waves and a drag coefficient of
Cy4 = 0.0025. The model uses the QUICK (upwind-biased, 3rd-order
spatially accurate) advection scheme of Leonard (1979) to reduce
spurious, numerically-induced oscillations associated with cen-
tral-differencing methods. The model is run with a free-surface
Courant number of C = 10 which gives a time step of At = 26.5s.
The simulation starts from rest and runs for 10 tidal periods. To
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minimize internal wave reflection from the boundaries, the model
uses sponge layers following Zhang et al. (2011) on each boundary
of the domain. These are implemented by adding a term to the
right-hand side of the horizontal momentum equation of the form

(1), (53)

where s(r) = exp(—4r/Ls) causes the influence of the sponge layer to
decay over the distance Ly = L/20 where r is the distance to the
domain boundary and t; = 65 s is the damping time scale.

Fig. 12 shows the generation and evolution of internal solitary
waves in the nonhydrostatic 2-layer vs. 10-layer model. Panels
A-F depict the interface displacement of the isopycnal initially
located at z= —h; = —460 m at time intervals of 0.75T,. where
The = 27/ Wy The 2- and 10-layer models form trains of nonlinear
internal solitary waves with nearly identical wave speeds,
although the amplitude, length scales, and number of solitary
waves differ between the models. The two-layer model only sup-
ports mode-1 waves whereas the 10-layer model supports higher
modes. Consequently, in the 2-layer model, all of the barotropic-
to-baroclinic energy is converted to mode-1 waves. In the 10-layer
model, energy is converted to higher-mode waves, the effects of
which are clearly visible near the ridge. This results in larger ampli-
tude solitary waves in the 2-layer model relative to the 10-layer
model. Additionally, the solitary wave widths in the 2-layer model

u(x7 Z, t) - ubC(XVZv t) 3
Ts

S(x,z,t) =

are slightly larger than the 10-layer model due to unresolved dis-
persion in models with limited vertical resolution (discussed in
Section 5.5) and the larger dispersion coefficient, €, in the 2-layer
model relative to the 10-layer model (see Appendix F).

Fig. 13 shows the same test case as in Fig. 12 except using the
hydrostatic model. Instead of trains of nonlinear solitary waves,
the 2- and 10-layer models form steep bores with nearly identical
wave speeds. The wave amplitudes differ slightly between the
2- and 10-layer models, as in the nonhydrostatic simulations,
due to the energy conversion to the higher-mode waves supported
by the 10-layer model. Comparing Fig. 13 to Fig. 12, the 2- and 10-
layer hydrostatic models are more similar to each other than the
2- and 10-layer nonhydrostatic models. This result is expected
because of the conclusions presented in Sections 5.1-5.3.
Specifically, there is no difference in the dispersive properties of
the hydrostatic models, i.e. they are both physically nondispersive.
Consequently, there is no depth variability that must be resolved
with additional vertical layers in order to improve the model’s
performance with regard to the mode-1 wave speed and shape.

The model results presented in Figs. 12 and 13 are used to com-
pute the baroclinic energy flux associated with internal waves
which is given by

F=> uMh,, (54)
k
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where uj, = uy —ﬁzkukhk is the baroclinic perturbation veloc-
'k
ity and M}, = 3% (0, — Prm_1)€(Zm_1 — (Z0),,_;) is the perturbation

baroclinic Montgomery potential, and (z,),, represents the inter-
face location for the mth still-water isopycnal (Simmons et al.,
2004; Miao et al., 2011). We note that the nonhydrostatic contri-
butions to the energy flux, Fn, = Y, uiqihk, are negligible for the
simulations presented here. The results for the maximum, tid-
ally-averaged energy flux, Fn.x, and the spatial location, Xpax,
where the maximum occurs, are given in Table 2. F,,x is obtained
by applying a tidally-averaging filter, a moving average of size T,
over the simulation time series and averaging the filtered value
for the last 7 tidal periods (after 3 tidal periods of spin up). As
indicated in Table 2, the maximum energy flux, Fn., for the 2-
layer hydrostatic and nonhydrostatic models are nearly identical
which indicates the relative unimportance of nonhydrostatic
effects as far as the large-scale energetics is concerned. However,
nonhydrostatic effects substantially alter the amplitude and distri-
bution of the solitary waves. The 10-layer hydrostatic and nonhy-
drostatic models are also very similar with approximately 5-10%
relative difference in energy flux between the hydrostatic and
nonhydrostatic models. The locations of the maximum energy flux
also show good agreement—they differ in location by a maximum
of 14 grid points of the total 1750. The values for the energy flux

Table 2
Maximum energy flux (Fn.x) and its location x, for the South China Sea test case.
# of layers nonhydrostatic mode Frmax kW m~1] Xmax [km]
2 Hydrostatic 328.8 29.7
2 Nonhydrostatic 328.4 30.2
10 Hydrostatic 354.4 311
10 Nonhydrostatic 365.6 36.1

reported here are qualitatively similar to the values in Warn-
Varnas et al. (2010).12

As mentioned earlier, the main difference between the internal
waves in the 2-layer vs. multilayer systems is the presence of
higher modes. Fig. 14 shows a Hovmoller diagram for the interface
displacement of the isopycnal initially located at z= —h; =
—460 m for the 2- and 10-layers in panels A and B, respectively.
Hovmoller or “trough-and-ridge” diagrams (Hovmoller, 1949)
depict a particular quantity as a function of x and t. These diagrams
are informative because lines on a Hovmoller diagram correspond
to wave characteristics. Fig. 14 shows the tidal velocity (black solid
line - whose magnitude is shown on the top x-axis), and the
first- (black, dashed line) and second-mode (black, dotted line)

12 values for the energy flux are not reported in Buijsman et al. (2010).
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wave speeds which are given by ¢; =2.86ms ! and c; =
1.52 ms~!, respectively. Fig. 14 A shows how the 2-layer model
only generates mode-1 characteristics. The 10-layer model, on
the other hand, generates mode-1 and higher-mode characteristics
that match both the mode-1 and mode-2 characteristics in
Fig. 14B. The Hovmoller diagram shown in Fig. 14B is qualitatively
similar to the Hovmoller diagram for the o-coordinate model
results presented in Fig. 5 of Buijsman et al. (2010), with respect
to the solitary and higher-mode wave generation.

Overall, the results demonstrate good performance of isopyc-
nal-coordinate models with limited vertical resolution to represent
both the small-scale dynamics (the formation of nonlinear internal
solitary waves) and the large-scale dynamics (the baroclinic energy
flux).

5.8. Internal wave beams

The last test case is the formation of internal wave beams gen-
erated from oscillatory flow over a Gaussian sill. The primary goal
of the developed model is the treatment of internal waves with a
reduced number of vertical layers. However, in this test case, we
demonstrate that the current isopycnal model is also applicable
to modeling continuously stratified environments and internal
wave beams which require O(10-100) layers to be well resolved
in the vertical.

A fluid with constant stratification of

g dp

po 0z

2

(55)

produces internal wave beams radiating with a constant slope given
by

dz

_ _ | F
= tan(p) =

N2 — ?’
[see e.g. Kundu, 1990], where w is the forcing frequency and fis the
Coriolis parameter.

The purpose of this numerical experiment is to demonstrate
that the model is able to correctly capture the internal wave beam
angle and to demonstrate the difference between the nonhydro-
static and hydrostatic beam angles. The nonhydrostatic internal
wave beam angle in the absence of the Coriolis force (f =0) is
given by

(56)

2
¢ =tan™! LN)Z . (57)
1-(w/N)
The hydrostatic beam angle, given by Eq. (57) for w/N <« 1, is
@, =tan™! (@/N). (58)

In this numerical experiment, oscillatory flow over a Gaussian sill
produces a strong signal of internal wave beams. The bathymetry

is given by
x? >
212 )

where the still water depth is Hy = 1000 m, the sill amplitude is
a, =20m and L, = L/100. The domain is given by x € [-L/2,L/2],
where length of the domain, L, is varied according to
L =4H,/tan(@) so that the beams reflect off the surface before
encountering the open boundaries. Tidal forcing at the boundaries
is given by

H = Ho — ay exp ( (59)

Upe = Up Sin (wt), (60)

where ug = 0.01 m s—'. The parameters are chosen to ensure small
values of a,/Ho and upw/L, (Llewellyn Smith and Young, 2002) to
prevent nonlinear processes such as lee waves, higher harmonics,
and associated multiple beams. This numerical experiment is run
with a constant stratification of N = 0.007 s~ which corresponds
to a linearly varying density with % = —0.005 kg m ~* and
0o = 1000 kg m 3. The forcing frequency () of the oscillatory flow
is varied to achieve different values of w/N. The model uses a high
vertical resolution of 100 layers to resolve the higher internal wave
modes which compose the beams. The model also uses sponge
layers following Eq. (53) of length L, =L/10 to absorb waves at
the boundaries with a time scale of 7, = 100. The model is run with
N, = 128 grid points and a time step of At = T,./500 for a total time
of 20 tidal periods (Ty. = 27/w) so that the model has sufficient
time to spin up (i.e. sufficient time for transients to decay and
the beams to develop). Only nonhydrostatic simulations with
/N > 0.8 require extensive spin-up time'’> due to the nearly
vertical energy propagation and slow horizontal velocity of

13 Approximately 10 tidal periods are needed for the higher modes to propagate
over the entire domain and for the beams to develop.
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(nonhydrostatic) high-mode waves. The model is run with a drag
coefficient of C4 = 0.001, a vertical viscosity of v, =1 x 10 m2 s,
and no horizontal viscosity.

Fig. 15 shows the computational domain for the nonhydrostatic
model with /N = 0.8. The figure shows a pseudo-color plot of the
normalized perturbation velocity, u'/uo = (U — unc)/Uo, at peak
flood, t = 19.25T, which illustrates internal wave beams radiating
away from the sill. Also note that, according to theory, the internal
wave phase velocity vector is perpendicular to the beam angle. For
reference, the theoretical nonhydrostatic (thick blue dashed-dot
line) and hydrostatic (thick red dashed line) beam angles are given
by Egs. (57) and (58), respectively.

Fig. 16 shows the theoretical nonhydrostatic and hydrostatic
internal wave beam angles, given by Eqgs. (57) and (58), respec-
tively, compared to the model as a function of w/N. To compute

the beam angle of the model, we determine the location of the
maximum of the (RMS) perturbation velocity averaged over the
last ten tidal periods for each layer in a limited region
(Xmin = 2AX, Xmax = 0.75L, zZpmin = —0.80H, Zmax = —0.15H,) sur-
rounding the beam on the right-half of the sill. A linear least-
squares fit to the (x-z) location of these maxima provides an esti-
mate of the internal wave beam angle produced by the model.

As shown in Fig. 16, the model correctly reproduces the hydro-
static and nonhydrostatic beam angles, which diverge when
w/N z 0.3. For w/N =~ 1, the nonhydrostatic beams become verti-
cal, whereas the hydrostatic beams become nearly 45° (since
tan~' (1) = 45°). Ultimately, this test case demonstrates that the
isopycnal model is capable of resolving internal wave behavior in
smoothly stratified environments (i.e. not composed of a layered
structure).

6. Conclusions

This paper presents a nonhydrostatic ocean model with an iso-
pycnal coordinate system. The governing model equations invoke a
mild-slope approximation to the momentum equation and the
divergence-free condition relating to the nonhydrostatic pressure.
This approximation arises from scaling arguments and is valid for
most oceanic flows of interest. The scaling analysis conducted here
suggests that the nonhydrostatic pressure terms which are often
neglected can be significantly larger than many metric terms that
are often retained (such as those arising from viscosity). The
mild-slope approximation reduces the elliptic equation for the
nonhydrostatic pressure to a symmetric linear system. Ultimately,
metric terms associated with nonhydrostatic pressure can be
retained for flows with steep isopycnal slopes (where z,. = O(1))
at the expense of increased computational cost of solving a non-
symmetric linear system with approximately double the band-
width. Despite the approximations, the framework is in place to
implement the nonhydrostatic pressure into existing isopycnal-
coordinate ocean models. The method presented here is valid for
a 2-D (x-z) system, however the method is easily extended to 3-
D by treating the north-south (») velocity in a similar manner to
the east-west (u) velocity. Overall, the numerical method is sec-
ond-order accurate in time and space and uses an implicit free-sur-
face discretization that is similar to that in existing nonhydrostatic
models using z- or o-coordinates. Although the use of a Lagrangian
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vertical coordinate and a nonhydrostatic projection method was
reported to be mutually exclusive (Adcroft and Hallberg, 2006),
we find that such a numerical formulation is possible at least to
second-order accuracy. It appears that a solution to the conundrum
of Adcroft and Hallberg (2006) may be possible in the context of
numerical formulations of the Navier-Stokes equations in general-
ized vertical coordinates since it is not necessary to maintain abso-
lute consistency between the layer-height continuity equation (7)
and the divergence-free continuity equation (8). Instead, it is only
necessary to obtain consistency between Eqgs. (7) and (8) to a suf-
ficient order of accuracy. In this case, we consider second-order
accuracy to be sufficient because higher-order nonhydrostatic
models are rare.

The numerical method is stable provided the time step satisfies
the internal wave, wetting/drying, and horizontal advection and
diffusion Courant numbers. The main limitation of this model, like
all isopycnal-coordinate models, is the inability to represent unsta-
ble stratification and overturning motions which are effects typi-
cally associated with nonhydrostatic pressure. Overturning
motions typically exist on small scales and, consequently, are often
under-resolved in modeling applications. Parameterization of
overturning motions in the context of isopycnal-coordinate mod-
els, especially in nonhydrostatic formulations such as the current
model, is beyond the scope of this paper. However, this may
provide interesting topics for future research—e.g. How can we
parameterize internal wave breaking in isopycnal models? Can
accounting for nonhydrostatic effects improve such a parameteri-
zation? Despite the limitation of the isopycnal-coordinate frame-
work in that it does not allow for overturning motions, our
model shows that addition of the nonhydrostatic pressure to an
isopycnal-coordinate ocean model allows for computation of non-
hydrostatic internal waves which account for a substantial fraction
of the energy spectrum spanning between the hydrostatic low-fre-
quency motions and the high-frequency overturning motions.

We demonstrate that the model captures dispersive wave prop-
erties and simulates nonlinear internal solitary waves in idealized
test cases and in a realistic oceanographic problem of internal sol-
itary wave generation over a ridge. The model is capable of repre-
senting internal waves with a reduced number of vertical layers
(ideally two). Additional layers may be necessary to capture the
vertical variability of strongly nonhydrostatic flows. Ultimately,
the model may provide an efficient formulation that is well-suited
to simulations of nonhydrostatic internal gravity waves that are
prohibitively expensive using z-level or g-coordinate models.
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Appendix A. Nondimensionalization and coordinate
transformation

The governing equations (2) are nondimensionalized according
to

I p A ph q/: q
poUci’ €*Uc;’

where L is the horizontal length scale, H is the vertical depth scale, T
is the time scale, U is the horizontal velocity scale, W is the vertical
velocity scale, ¢; is the wave speed scale, and € = &, The scale for the
hydrostatic pressure is chosen to achieve a first-order balance
between the unsteady term and the hydrostatic pressure gradient
in the horizontal momentum equations. Likewise, the scale for the
nonhydrostatic pressure is chosen to achieve a first-order balance
between the inertia term and the nonhydrostatic pressure gradient
in the vertical momentum equation. After applying the nondimen-
sionalization, Eq. (2) become
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where F =4 Rey 7“L ,Re, = ”:62%,Ro:f%, and Ro :% are the

Froude, horlzontal and vertical Reynolds, traditional and nontradi-
tional Rossby numbers, respectively. In Eq. (A.1a), we have assumed
a constant horizontal and vertical viscosity for convenience. These
equations are subject to the nondimensional incompressibility con-
straint given by

o N ov N aw
ox oy 07
Applying the nondimensional equivalent of the transformation

rules (5) results in the nondimensional equations in isopycnal
coordinates

=0. (A2)

ou' F
-+ F(u},. - Vyu ——1/+ W
at* (H H* ) R RO
2
oM ,oq¢ F _, , F (1Y U ,Z.0q
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+ i azu, + z;’_*/ @
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where M’ = p}, + 1 p'Z is the nondimensional Montgomery potential.
Eq. (A.3) include all of the metric terms associated with the coordi-
nate transformation. Since z, = O(1), terms containing zj, cannot be
neglected. However, many of the other metric terms can be safely
neglected based on scaling arguments. For example, we can safely
assume that the isopycnal slope terms (2., and z’y,/) are small since
they scale like ¢ where a is the scale for the internal wave amplitude.
We can rewrlte this slope scaling as ¢ =4 ¥ ~ Fe < O(1), since we
have assumed the first-order gravity- wave balance fimt=F These
small nondimensional parameters (z,, ~zy,, < (9(1),62 <0O(1),
ReH < O(1),5; < O(1)) are negligible (i.e. <« 1) when they appear
together in products. Additional support in favor of neglecting these
metric terms is given in Vitousek and Fringer (2011), who showed
that, at coarse resolution, model truncation error from discretization
of the O(1) terms in the governing equations can be larger than
(asymptotically weak) physical terms such as the nonhydrostatic
pressure. Thus, in the current model, we ignore the small metric
terms in Eq. (A.3a) associated with the nonhydrostatic pressure
and viscosity (the terms on the third line of each equation).

Eq. (6) which appear in Section 2.2 are the dimensional version
of Eq. (A.3a) which are subject to the mild-slope approximation
and horizontally and vertically varying viscosities.

Transformed to isopycnal coordinates, the nondimensional
continuity equation (A.2) becomes

7] 7] ow'
— (2, =0, A4
o @)+ g B )+ 55 =0, (A4)
where W' =w' — zZ,u — z;*, v'. Invoking the mild-slope approxima-
tion for the continuity equation reduces Eq. (A.4) to
a ., ., a ., ow'
5 (Zyu') + " (Z, V) + o9 =0, (A.5)

since w = W' + 0z,.,z y .). In contrast to Eq. (A.3a), Eq. (A.4) does
not contain products of small nondimensional parameters. We
can still neglect the isopycnal slope terms in Eq. (A.4) (thus leading
to Eq. (A.5)) because the primary purpose of this form of the conti-
nuity equation is the calculation of the nonhydrostatic pressure q’
through an elliptic equation. Because the nonhydrostatic pressure
gradient in the momentum equations (A.3a) has a small nondimen-
sional coefficient of €2, the isopycnal slope term in Eq. (A.4) can be
safely neglected as if appearing in a product of small parameters.
Further discussion of the mild-slope approximation for the continu-
ity equation (A.4) and (A.5) in discrete form and the resulting sym-
metry of the linear system for the nonhydrostatic pressure are
presented in Appendices D and E, respectively.

Appendix B. Implicit free-surface equation

To derive an implicit equation for the free surface we follow an
approach similar to Casulli (1999) in which the hydrostatic provi-
sional velocities, u;,, ,, are substituted into the free-surface equa-
tion. In this approach, rather than use an equation for the free
surface directly, we derive an equation for the free surface by sum-
ming over the layer-height continuity equation after substitution
of the provisional velocities.

We can write the layer-height continuity equation (30) in
matrix form as

' —h 1 1 n
# i(l + C)AX (h,p o llH] h,;% oui%)
1
—5(1-20 4 (hmo n - hloul )
C
EA—(hmouH] ~h o)), (B.1)

where h; = [hi1, hi, his, ... hig, . . .h,-,Nhym}T, represents the variables
of a column of grid points and the operator o represents an ele-
ment-wise product. To derive an implicit equation for the free sur-
face we substitute the provisional velocities, u; e given in Eq. (28a)
into the layer-height continuity equation (B. 1) resultmg in

1 At
b *g<§(1 +0) E)

x {(hz+l © eH )n1+] - {(h?ﬂ © ez+’) + (hrf% ©
+ (hH/z ° ep.)'i,» +11}

eyt

w L e, o)
1 At (. -
—5 (=20 (b joul, — h,-,%oui,%)
7%%}2( ?+%Oul+’ ~hi 3 ou, 1) (B2)

The free surface can be computed by summing over the layer
heights as »; = Zg‘;{e”hi,k — H; = eh; — H;. Therefore, we multiply
Eq. (B.2) by e” and subtract the depth, H;, from both sides to give

At
’7?” - g(z (1+¢) AX) {(hx+1 °© e1+ )ﬂ?ﬁl

- {(hﬁ% o éi+%) + (hﬁ% ° éi—%)] ntt + (h?q/z o éif%)”l?ff }

= - ! (1+0) & {er (h?% © T?%) - (h?’% ° T?’%)]

2 AX
208t er(w o) —er(w 0w )]
5 e (o) e (i owry)] (B3)

Thus Eq. (B.3) can be simplified further to
—(om) ! = [T )iy + @iy i = )iyt = RY (B4)

which is a tridiagonal equation in one horizontal dimension (i.e. 2-D
x-z) or a block tridiagonal in 3-D. The coefficients are

1 At
oty =g(50 -0 2 ety cep (85)
and the right-hand side is given by
1 At -
RN = =5 (1+0) [ (W o Ty ) — e (B o T7, )]
1 At
—5(1-20 4 [eT (hﬁ% ° u}f‘%) —ef (h?,% ° uﬁ%)]
c At n e n e
-3 Ax {eT (h,-+% ° uH;) —ef (hi% ° ul.f%l)] . (B.6)

Appendix C. MPDATA to compute flux-face heights

The MPDATA method to compute layer heights for volume
fluxes first involves the first-order upwind or donor-cell approach
using

n n (1) ¢ n n (n+1)y+
hl/( - hlk { (h /(7hH~1k UHI k[ )7F< i-1.k> i‘kvui,%yk[ )]7

(1)
where the fluxes are
F( i ?H‘kﬁu,(i?r; [m*) U+ll<h?.k+ Ui:r%.lch?JrLk’ (C2)
and where

1 (n+1) 1+ (n+1)
Uli;l ) (qukl + ‘qukl ‘) (€3)
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and
n+1 m*
U e — g 8 (C.4)
i+1k - AX .

is the advective Courant number. We can correct the numerical dif-
fusion associated with this step by applying an anti-diffusive cor-
rection step using the MPDATA approach of Smolarkiewicz and
Margolin (1998). This correction is given by

n+1 U Dime * * o (T e
hl k= h [ <h1k7 h1+1 ks ,+1 k[ ) - F<hi—1.k7 th’ U,;%_k] >]7
(C5)
where
2
17+ Dime (1) (1) *
U1+2 k - <‘Ui+%.k - <Ui+%,k > )Ai%‘k (CG)
and
Biahic se *
X ik ik if b +hi, #0
A lk = hi+].k+h1.k l+1'k. ik . (C7)
0 otherwise

Using MPDATA ensures second-order accuracy in time and space
while also ensuring positive layer heights.

Appendix D. Divergence-free continuity equation

The continuity equation in continuous isopycnal coordinates in
2-D is given by
9]

ax(zpu) +%(w—zx,u) =0. (D.1)

Discretizing this equation results in

n+1 n+1 n+1 _ o+l
1 Z; i+Lk+) Zl+2 k-1 n+1 i—dk+l Z,ﬂ k=3 ) i1
AX Apk 1+2 k Apk i—fk
nel  qanetl n+1 4l n+1 o nt1
Wz e+t Wl k-3 (ZX‘ )1 k+1ul Jetd (ZX ) —-ut k-3
— =0.
Apy Apy

Factoring the 1/Ap, from this equation and writing z, ., — 2z, =
Zbottom — Ztop = —(Ztop — Zbottom) = —hi, gives the full, divergence-free
continuity equation to be

(hﬂ ]kun+1 _ hn r_1+1 ) +erw—l _ Wp+1

i+4.k 1 KU i-3k ik ik+d
n+1 . nt+1 n+1 on4l )
— B, - @) =o. (D.2)
Z1%
The metric term z,. is calculated as zy. =2 = ‘2 2and f=1o0r0

depending on whether the metric terms are included or not, respec-
tively. We generally use the simplified continuity equation, g =
However, the full continuity equation is required when the isopyc-
nal slopes are significant.

Appendix E. Nonhydrostatic elliptic equation

The full continuity equation in 2-D is given by Eq. (D.2). In this

equation, the velocity ufﬁ, appearing as a product with the slope

term, z,., is undefined at these locations. Hence, we obtain its value
using the following interpolation

1
n+1 _ ° n+l n+1 n+1 n+1
ui,kj:% _4< 1+1k+u +u+1‘kil U 1kj:l>' (E.1)

Substituting Eq. (E.1) into the continuity equation (D.2) gives

n+ n+1 n+ n+1
(hH_ v~ B )
n+1 _ yon+l E n+1 ul n+1 n+1 n+1
+Wzk 1 Wi.k”r% 4(zxi)i,k*l< i+hk +l1 ~Lk +u1+‘ k— +u ~Lk— 1)
/)) n+1 n+1 n+1 n+1
+ 4 (ZX‘)i,k+1 ( i+3k +U; 1k + ul+‘ k+1 + u 1k+1) =0. (E2)

The nonhydrostatic elliptic equation, derived by substituting Eq.
(11) into Eq. (E.2), is then given by

AX hl—l ﬂ
hn“ (qc)i,k—l + Ax Zl ((ZX*)?,ILI- (ZX')zk—]—) (qc)i—l.k
1k——
W h o Ax AP
- 1 1 clik
Ax AR b )
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B
- Z(zx*)gzﬂ%«qc)iﬂ.k—l - (qc)i—l,k—l)
B .
Z(Zx*)1k+1 <(qc)i+1.k+l - (qc)m,kﬂ) =R (E3)
where
. Ax .
ik = Af {Ax (h?+2 KUy~ hzflk i 1.k) T Wiy — Wi,k%}
ﬁ Ax n+1 * * * *
“4At (2 )i,;—% <ui+%,k FU gyt U T ui—%,k—l)

ﬁAX n+1 *
+ZE(ZX‘)i,k+( ik T ULy T U 1k+1+u1——k+1)

Eq. (E.3) constitutes a non-symmetric 9-diagonal matrix in 2-D. We
note that Eq. (E.3) represents the next order asymptotic approxima-
tion to the mild-slope elliptic equation and including the nonhydro-
static metric terms in the momentum equations (A.3a) in the
correction step (11) will result in the full elliptic equation. Eq. (E.3)
can be simplified to a symmetric 5-diagonal matrix in 2-D by
neglecting the terms that appear in products with the isopycnal
slope terms, i.e. f = 0. This approximation is justified by scaling
arguments of the isopycnal slope term and the fact that the nonhy-
drostatic terms scale as €2 in the momentum equation (A.3a) which
leads to a product of small nondimensional parameters. If these
terms were included, it would require extremely high grid resolution
to ensure that the magnitude of the additional terms is larger than
the truncation error associated with discretization of the O(1) terms
(Vitousek and Fringer, 2011). When these approximations are made
B =0 and Eq. (E.3) becomes Eq. (34). This approximation is very
similar to the approximation made in Berntsen and Furnes (2005)
which represents a mild-slope approximation to the nonhydrostatic
elliptic equation in o-coordinates. As shown in Keilegavlen and
Berntsen (2009), simulations using the simplified elliptic equation
of Berntsen and Furnes (2005) produce results that are nearly iden-
tical to simulations using the full elliptic equation in o-coordinates.

Appendix F. Internal wave generation in the South China Sea:
procedure to determine initial layer heights

This appendix describes the procedure to determine the layer
heights and densities in the 2-layer model by matching the
mode-1 wave speed and solitary wave speed with the theoretical
wave speed based on the stratification given in Eq. (51).

Solitary wave behavior is approximately represented by the
KdV equation
¢ o0& ¢ &

g-5-C1—-i-55—

ot o ‘=0 (F1)
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Table F.3
Matching parameters for the 2- and 10-layer models vs. normal model theory.
¢ ms™] 3 s € [m3s1)
Normal mode theory 2.866 —0.0076 294 x10°
10-layer model 2.856 —-0.0076 2.89 x10°
2-layer model 2.856 —0.0076 5.56 x10°

where ¢ is either the interface displacement or mode-1 amplitude.
The solitary wave solution to Eq. (F.1) is given by

¢ = asech? (X — Ct>, (F2)
Ly
where
oa
C=10C "r? (F3)

is the solitary wave speed with c; the linear, mode-1 wave speed
determined from a modal analysis, and

[PK:

a o
is the solitary wave length (Liu, 1988; Helfrich and Melville, 2006).
Following Liu (1988), the coefficients in Eq. (F.1) are given by

3 Pu(8) e

L= (F4)

d 1 (F.5)
2 2\ 2
P, () dz
and
0 2
dz
€= 1 L’L (E.6)

2 ?

2 [ (%) dz

where ¢ = ¢(z) is the mode-1 eigenfunction determined from a
modal analysis.

Egs. (F.5) and (F.6) are used to compute the values of ¢ and €
from the stratification in Eq. (51) using an eigenfunction analysis
(Fringer and Street, 2003) with 1000 equispaced vertical layers.
These values along with the mode-1 wave speed, c;, are indicated
in Table F.3, and are referred to as “Normal mode theory” values.
The still-water interface depths in the 10-layer isopycnal model
are arbitrarily set to z=—[0,50,100,250,460,750,1000,
1500, 2000, 2500,3000] m with density values computed at the
vertical center of each layer using Eq. (51). Using these values of
the layer heights and densities to compute the first-mode eigen-
function gives c;,d, and € that match the theoretical values quite
well as shown in Table F.3. For the two-layer isopycnal model,
the layer depths and densities are set to match the theoretical val-
ues for ¢y, d, and € from Helfrich and Melville (2006) that are given
by

_ [5P2—pr b
o= 2 (E7)
N

1
€= 6C1h1 hz. (Fg)

For given values of § and ¢, Egs. (F.8) and (F.9) can be used to derive
expressions for h; (since specifying h; also sets the value of hy, i.e.
h, = Hp — hy) which are given by

-9(5)"

71 3¢

1
2

1 1 5 €
hy _jHoij,/H0 7245.

Based on the form of Egs. (F.10) and (F.11), it is, in general, not pos-
sible find a value of h; to match both the ¢ and € coefficients with
only two layers. For example, using values of ¢; =2.856 ms! ,
5=-0.0076s"", and €=2.895x 10° m?®s~! from the 10-layer
model, Eq. (F.10) gives h; =3662 m or h; =460 m and Eq. (F.11)
gives hy =3191m or h; = —-191 m. Clearly, since Ho = 3000 m,
the only possible choice for the upper layer thickness, h;, is
h; =460 m (and accordingly h, = Hy — H; = 2540 m). This choice
allows the coefficient of nonlinearity, §, to match in the 2-layer
and 10-layer models. Here, we match the coefficient of nonlinearity,
4, in the 2- and 10-layer models to best match the solitary wave
speed, ¢, which is dependent on § as shown in Eq. (F.3). We note that
there are a number of viable alternative methods to compute h;. For
example, it is possible to select h; to match the ratio of § and
thereby match the solitary wave width, Ly, which depends on this
ratio as shown in Eq. (F.4). It may also be possible to choose h; to
match quantities of interest such as the energy flux according to lin-
ear theory. However, development of an ideal method to choose h;
is beyond the scope of this paper. With values of h; and h, known,
the density difference between the layers is specified by matching
the linear 2-layer wave speed from Eq. (F.7). In the 2-layer model,
the density of the upper layer, p, = 1028 kg m—, is set using Eq.
(51) at the center of the layer. Next, the density of the lower layer,
P, = 1030.1967 kg m~3, is calculated to match the mode-1 wave
speed of the 10-layer model. Compilation of the KdV parameters
based on normal-mode theory and the 2- and 10-layer models is
given in Table F.3. Finally, we note that while the layer configura-
tions should produce similar behavior for weakly nonlinear,
mode-1 solitary wave behavior, nonlinear and higher-mode effects
will produce results in the isopycnal model simulations that differ
from the normal-mode theory.

(F.11)
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