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SUMMARY

The � -method is a popular semi-implicit finite-difference method for simulating free-surface flows.
Problem stiffness, arising because of the presence of both fast and slow timescale processes, is easily han-
dled by the � -method. In most ocean, coastal, and estuary modeling applications, stiffness is caused by fast
surface gravity wave timescales imposed on slower timescales of baroclinic variability. The method is well
known to be unconditionally stable for shallow water (hydrostatic) models when 1

2
6 � 6 1, where � is

the implicitness parameter. In this paper, we demonstrate that the method is also unconditionally stable for
nonhydrostatic models, when 1

2
6 � 6 1 for both pressure projection and pressure correction methods.

However, the methods result in artificial damping of the barotropic mode. In addition to investigating
stability, we also estimate the form of artificial damping induced by both the free surface and nonhydro-
static pressure solution methods. Finally, this analysis may be used to estimate the damping or growth
associated with a particular wavenumber and the overall order of accuracy of the discretization. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �-method (“theta”-method) for modeling shallow water flows appeared in [1] and derives its
name from the � or implicitness parameter used in the numerical discretization of the free surface.
The benefit of this method is that fast, free-surface gravity waves are discretized semi-implicitly,
where � D 0 is a fully explicit discretization and � D 1 is fully implicit. When � D 1=2, the method
is the trapezoidal rule or the Crank–Nicolson method [2]. When 1=26 � 6 1, the method is uncon-
ditionally stable for the representation of free-surface waves [3] and thus allows large timesteps,
which otherwise must be quite small for an explicit method in finely spaced or deep water portions
of the model domain. Unconditional stability, or A-stability [4], means the numerical solution is
stable for any timestep or that the stability region encompasses the entire left half of the complex
plane [5]. In fact, the trapezoidal method (� D 0.5) is quite an optimal method as it represents the
A-stable linear multistep method with the smallest truncation error [4].

The �-method was extended to nonhydrostatic flows in [6]. Several hydrostatic and nonhydro-
static models have adopted this semi-implicit or a purely implicit representation of the free surface
including TRIM [1], POP [7], [8], MITgcm [9], ELCOM [10], [11, 12], UnTRIM [13], [14–18],
SUNTANS [19], [20], SELFE [21], and FVCOM [22], [23, 24]. There are other models including
Delft3D [25], which use the alternating-direction implicit method [26] instead of the �-method. The
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predecessors of implicit free-surface models are rigid-lid and mode-split formulations, which are
reviewed in [27]. Each approach has numerous advantages and disadvantages. Implicit free-surface
models are more common in nonhydrostatic ocean modeling because all terms in the model
equations may be treated synoptically without the need for subcycling (although mode-split ocean
models such as POM [28] and ROMS [29] have nonhydrostatic solvers in [30] and [31],
respectively). Furthermore, the computational cost of solving a two-dimensional elliptic equation
for the implicit free surface is small relative to the cost of solving a three-dimensional (3D) elliptic
equation for the nonhydrostatic pressure.

In this paper, we investigate the stability of the nonhydrostatic, free-surface �-method for various
pressure projection methods, including the first-order accurate “pressure projection” method [32,33]
and the second-order accurate “pressure correction” method [34, 35]. The naming convention of
these methods is taken from [36]. In this paper, we show that both methods are unconditionally
stable for linear nonhydrostatic free-surface flows. However, both pressure methods can lead to an
artificial damping of free-surface waves, which is typically more severe for the first-order accurate
pressure projection method. Additionally, we show that the same analysis used to determine the
stability of these methods can also be used to estimate the order of accuracy.

The remainder of this paper is divided into five sections. Section 2 presents the governing equa-
tions and defining characteristics of nonhydrostatic free-surface flows. Section 3 presents common
numerical discretization and solution procedures of the governing equations. Section 4 examines
the stability and consistency of the numerical methods. Section 5 presents numerical simulations of
nonhydrostatic models and illustrates how stability, numerical damping, and order of accuracy are
directly related. Finally, Section 6 presents the conclusions of the methods in this paper.

2. GOVERNING EQUATIONS

The 3D, nonhydrostatic equations of motion under the Boussinesq approximation are given by
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where u D Œu, v,w�T is the velocity vector (uH D Œu, v�T is the vector of horizontal compo-
nents only), � is the rotation vector, g is the gravity, d is the depth, h is the free-surface height,
r � 1

�0

R h
´ �
0 d´ is the baroclinic pressure head, where �0 is the constant reference density of

the fluid and �0 is the (spatially varying) deviation from the reference density (�0 D � � �0), and
�H , �´, KH , and K´ are the horizontal and vertical viscosities and diffusivities, respectively. The
difference between the nonhydrostatic equation set and the hydrostatic equation set is the presence
of the nonhydrostatic pressure term involving q on the right-hand side of momentum Equation (1).
The normalized nonhydrostatic pressure is given by q D pnh=�0 in the notation following [6], where
pnh is the nonhydrostatic or dynamic pressure due to the vertical momentum or acceleration of the
fluid. Hydrostatic models do not include the nonhydrostatic pressure term and instead approximate
the pressure in the fluid as simply the integrated weight of fluid overhead and ignore the effects of
vertical acceleration.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 72:550–582
DOI: 10.1002/fld



552 S. VITOUSEK AND O. B. FRINGER

To understand the behavior of the nonhydrostatic pressure, we examine the nondimensional,
inviscid equation set in the absence of rotation and stratification (i.e., assuming a constant density).
Governing Equations (1)–(3) are nondimensionalized using
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where � D D
L

is the aspect ratio and c0 D
p
gD is the surface gravity wave speed. After ignoring

rotation, viscosity, and stratification, omitting the prime notation, and assuming that all quantities
are dimensionless, Equations (1)–(3) become
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where we have chosen the first-order balance between unsteadiness and the hydrostatic pressure
gradient, as is typically the case for linear gravity waves, ı D F , where ı D a

D
and F D u

c0
.

To determine the nonhydrostatic behavior analytically, we study Equations (5)–(8) in the lin-
ear limit, F ! 0, in two dimensions (x–´) with a constant depth, so that d D 1. The linearized
governing equations thus become
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Differentiating Equation (9) with respect to x, differentiating Equation (10) with respect to ´ and
substituting the results into Equation (12) after it has been differentiated with respect to t yield an
elliptic equation for the nonhydrostatic pressure q, which is given by

�2
@2q
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. (13)

We will examine the nonhydrostatic behavior of a free-surface seiche by assuming a one-
dimensional standing wave for the free surface of the form

hD cos.kx/ cos.!t/, (14)

where k is the horizontal wavenumber or spatial frequency and ! is the temporal frequency or
simply frequency. We assume a separable form of the nonhydrostatic pressure, q, where the vertical
variation is represented by the structure function �.´/. Thus, we can write the nonhydrostatic
pressure as

q.x, ´, t /D �.´/h.x, t / . (15)
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Substituting Equations (14) and (15) into the elliptic equation for nonhydrostatic pressure (13)
results in an ordinary differential equation for the vertical structure function, which is given by

d2�

d´2
� .k�/2� D .k�/2 . (16)

Equation (16) is subject to the boundary conditions
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which arise from the dynamic boundary conditions on the nonhydrostatic pressure
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The solution of Equation (16) with boundary conditions (17) is given by
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With this form of the vertical structure function, �.´/, we can determine solutions to the remaining
dependent variables of interest, which are given by
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where the wave speed, c, is given by c D !=k and the form of ! is determined by the disper-
sion relation, which provides the relationship between the wave frequency and wavenumber. The
dispersion relation can be found by deriving a modified wave equation from Equations (9)–(11).
Differentiating Equation (11) with respect to t and Equation (9) with respect to x after Equation
(15) has been inserted gives
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where � is defined as the negative of the depth average of the vertical structure function, that is,

� ��

Z 0

�1

�.´/ d´ . (24)

We have written Equation (23) with the � term because it becomes important in our analysis of the
stability and consistency of the �-method in this paper. Evaluating the integral in Equation (24) with
the form of the vertical structure function in Equation (19) gives

� D 1�
tanh.k�/

k�
. (25)

Examining the limiting cases for � , we see that in the hydrostatic limit, k� ! 0, and thus, � ! 0.
In the nonhydrostatic limit, k� ! 1, and � ! 1. Thus, � , which we refer to as the normalized
nonhydrostasy parameter, ranges from 0 to 1 depending on the degree of nonhydrostasy. The coef-
ficient, 1� � , in front of the second spatial derivative in Equation (23) is the square of the modified
wave speed, that is,

c2 D
!2
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.
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Thus, the nonhydrostatic dispersion relation for Equations (9)–(12) is given by

!2 D
k

�
tanh.k�/ , (26)

which is the well-known (nondimensional) dispersion relation for free-surface gravity waves [37].
This analysis implies that the magnitude of the nonhydrostatic effects is given by the parameter k�.
Waves that vary slowly in the horizontal on thin aspect ratio domains result in small values of k� and
thus flows that are nearly hydrostatic. Rapidly varying waves on deep aspect ratio domains result in
large values of k� and significant nonhydrostatic effects.

This analysis implies that the effect of the nonhydrostatic pressure, through the integral of the
vertical structure function, is to decrease the speed of the waves. The main characteristic of nonhy-
drostatic processes, in contrast to hydrostatic processes, is variation with depth. We have shown that
the depth variability is given by the vertical structure function �.´/. This function and its integrated
counterpart, � , play important roles in many physical aspects of nonhydrostatic processes as well as
the analytical and numerical solution of the nonhydrostatic equation set.

3. NUMERICAL APPROXIMATION

The governing Equations, (9)–(12), discretized in two dimensions (x–´) using the �-method on
a staggered grid, where the velocity points are defined at the cell faces and the pressure and free
surface are defined at the cell centers, are given by
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where j is the horizontal grid point index and k is the vertical grid point index. The “theta” method
derives its name from the � or implicitness parameter. The method becomes fully implicit in the
discretization of the free surface when � D 1, fully explicit when � D 0, and semi-implicit when
0 < � < 1. In Equation (29), we have written the integral discretely as

R 0
�1 u d´ D 	´

PN´
kD1

u,
where N´ is the number of (uniformly spaced) grid points in the vertical direction. Here, we
have ignored the free-surface nonlinearity. To include this, we must write the integral discretely

as
R F h
�1 u d´D

PN´
kD1

	´ku, where the grid spacing in the top layer is a function of the free-surface
height [6]. We do not consider the free-surface nonlinearity because we are primarily interested in
understanding the numerical method for solving the linear nonhydrostatic equations. The numerical
method to include the free-surface nonlinearity is fairly standard as in [6]. We do, however, include
the advective nonlinearity in our analysis (through the parameter QF ) to study the numerical effects
of the choice of advection scheme that can vary significantly.

In Equations (27) and (28), QF is a finite-difference operator, after [6], that includes the advection
and viscous terms. For example, if the nondimensional advection of momentum and viscous terms
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where included and discretized explicitly, then the operator, presented here in quasi-linear form, is
given by

QF D
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where u0 and w0 are the effective horizontal and vertical velocities and Rex D UL
�H

and Re´ D UL
�´

are the horizontal and vertical Reynolds numbers, respectively. We note that the partial derivatives in
Equation (31) with the Qı symbol represent discrete partial derivatives. In Equation (31), the viscous
terms are discretized explicitly, which creates a timestep restriction based on the viscous Courant
numbers C�H D

2�H�t

�x2
, C�´ D

2�´�t

�´2
. Thus, it is often preferable to discretize the viscous terms

implicitly, particularly in the vertical direction as in [1, 6] to eliminate the timestep restriction asso-
ciated with vertical diffusion. In the analysis in this paper, we only consider the inviscid case and
use the operator QF to study the influence of the momentum advection scheme.

In the family of pressure projection or fractional step methods, provisional horizontal velocities,
u� and w�, are computed using a reduced number of terms in the momentum equation given by
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In Equations (32) and (33), the parameter ˛ designates use of the pressure projection method (˛ D 0)
or the pressure correction method (˛ D 1).

Later, the final velocities can be calculated with the addition of the nonhydrostatic terms
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where qc , the nonhydrostatic correction pressure, enforces the divergence-free constraint on the
velocity field. Substituting final velocities (34) and (35), provisional velocities (32) and (33), into
discrete free-surface Equation (29) gives
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which is a tridiagonal equation (a pentadiagonal equation in 3D) for the free surface at the new
time step, hnC1. Although both projection and correction are second-order accurate in time when
ˇ D 1, Equation (36) is typically solved without the last term (ˇ D 0) to reduce computational over-
head associated with iterating to solve the nonhydrostatic pressure Poisson equation. When ˇ D 0,
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the projection is first-order accurate in time, and the correction is second-order accurate in time [38].
Without the iterative procedure (ˇ D 0), the nonlinear free-surface equation can be inconsistent with
the divergence-free velocity field obtained after the pressure projection step. If this final divergence-
free velocity field is used in passive scalar transport, then the discrete maximum principle can be
violated because of lack of the consistency with continuity property as defined in [39]. Thus to
avoid inconsistency with continuity, either an iterative procedure (ˇ D 1) or use of the hydrostatic
(provisional) velocities in the scalar transport equation is required.

A discrete Poisson equation can be obtained by substituting the expressions for the
final divergence-free velocities, (34) and (35), into discrete incompressibility Equation (30),
resulting in
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Substituting the provisional velocities, (32) and (33), into Equation (37) provides a discrete
representation of Poisson Equation (13), which is given by
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where the normalized nonhydrostatic pressure at time step n C 1=2 is given as qnC1=2 D
q
nC1=2
c C ˛qn�1=2. We note that the nonlinear advection of momentum terms does not appear in

Equation (38) because the quasi-linear approximation to QF operates on the discrete divergence of
the velocity field at time step n, which is identically zero. This is not the case in fully nonlinear mod-
els or on collocated (nonstaggered) grids as the divergence-free condition is not satisfied discretely
to machine-zero. In such cases, Equation (37) must be used or the nonlinear terms must be included
in the right-hand side of Equation (38).

The numerical solution procedure of the method outlined earlier is as follows:

1. Solve implicit Equation (36) for the free surface at time step nC 1.
2. Calculate the provisional velocities, (32) and (33).
3. Solve the elliptic equation for the nonhydrostatic correction pressure using Equation (37) or

(38).
4. If iteration is required (ˇ D 1), return to step 1 and repeat until convergence is reached.
5. Calculate the final divergence-free velocities using (34) and (35). Alternatively, the final

horizontal velocity can be computed using (34), and the vertical velocity can be computed
by integrating divergence-free condition (30) from the bottom boundary upward as in [19].

We examine the convergence properties of the iterative (ˇ D 1) nonhydrostatic method in detail in
Appendix D.
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4. PROPERTIES OF THE METHOD

4.1. Stability

To derive the stability properties of the method, we adopt the following vector notation:
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where we note that 	´eT e D 	´N´ D 1. In the following analysis, we investigate stability of the
free surface and depth-averaged flow. Stability of the full (nondepth averaged) flow is demonstrated
in Appendix B.

By assuming periodic solutions in space of the form

U D U0 exp.ikxj C ik	x=2/ ,

hD h0 exp.ikxj / ,

q D q0 exp.ikxj / ,

the discrete gradient, divergence, and Laplacian operators can be written as

Dx D ik
0 ,

Gx D ik
0 ,

Lxx D�k
02 ,
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where k0 is the modified wave number, k0 D 2 sin.k	x=2/=	x, and k02 D 2Œ1� cos.k	x/�=	x2.
Substitution into discrete Equations (41) and (42) gives

U nC1 D QFU n � i�k0	thnC1 � i .1� �/ k0	thn � ik0	t	´eT qnC1=2 , (43)

�
1C �2.k0	t/2

�
hnC1 D�ik0	t.1� �.1� QF //U nC

�
1� � .1� �/ .k0	t/2

�
hn (44)

� ˛�.k0	t/2	´eT qn�1=2 � ˇ�.k0	t/2	´eT qnC1=2c .

After assuming a periodic solution for q, the vector form of pressure Poisson Equation (38) is
given by

� .k0�/2qnC1=2 �MqnC1=2 D .k0�/2e
�
�hnC1C .1� �/hn

	
, (45)

where, after imposing a Dirichlet boundary condition to satisfy q D 0 at ´ D 0 and a Neumann
boundary condition to satisfy @q

@´
D 0 at ´D�1, the tridiagonal matrix M is given by

MD�
1

	´2

2
66664
�3 1

1 �2 1
. . .

. . .
. . .

1 �2 1

1 �1

3
77775 . (46)

The discrete solution for the nonhydrostatic pressure is then given by

qnC1=2 D�
�
IC .k0�/�2M

	�1
e
�
�hnC1C .1� �/hn

	
. (47)

Using the short-hand notation, hnC� D �hnC1 C .1 � �/hn, we can write the discrete solution for
nonhydrostatic pressure in (47) as

qnC1=2 D�
�
IC .k0�/�2M

	�1
ehnC� . (48)

Equation (48) is the discrete analogue of the analytical form for the nonhydrostatic pressure,
q D �.´/h, given in Equation (15). The discrete structure function is given by

�0 D�
�
IC .k0�/�2M

	�1
e . (49)

The negative depth average of this discrete structure function, which is analogous to the analytical
expression for � (given in Equation (25)), is given by

� 0 D�	´eT�0 D	´eTCe , (50)

where C D
�
IC .k0�/�2M

	�1
and is positive definite. The numerical evaluation � 0 has the same

limits as the analytical expression for � , that is, � 0 is singly valued and ranges from 0 to 1, as k�! 0

and k� ! 1, respectively. The depth-averaged nonhydrostatic pressure, obtained by multiplying
	´eT by (48), appears in momentum Equation (43) and is thus related to � 0 by

	´eT qnC1=2 D�	´eTCehnC� D�� 0hnC� . (51)

Additionally, similar terms, 	´eT qn�1=2 and 	´eT qc , appear in Equation (44), which have
equivalent expressions to Equation (51), which are given by

	´eT qn�1=2 D�� 0
�
�hnC .1� �/hn�1

�
D�� 0hnC��1 , (52)

	´eT qnC1=2c D	´eT
�

qnC1=2 � ˛qn�1=2
�

D	´eT qnC1=2 � ˛
�
	´eT qn�1=2

�
D�� 0hnC� C ˛� 0hnC��1 . (53)
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Substituting Equations (51) into (43) and (52) and (53) into (44) gives (after a great deal of algebra)

U nC1C i.1� � 0/�k0	thnC1 D QFU n � i.1� � 0/.1� �/k0	thn , (54)

�
1C .1� ˇ� 0/�2.k0	t/2

	
hnC1 D�ik0	t

�
1� �

�
1� QF

��
U n (55)

C
®
1� �

�
.1� �/.1� ˇ� 0/� ˛� 0�.1� ˇ/

	
.k0	t/2

¯
hn

C ˛� 0.1� ˇ/�.1� �/.k0	t/2hn�1 .

To analyze the stability of the nonhydrostatic method, we consider momentum Equation (54) and
free-surface Equation (55) in the following matrix form:
2
4 1 i.1� � 0/�k0�t 0

0 1C .1� ˇ� 0/�2.k0�t/2 0

0 0 1

3
5
2
64
U nC1

hnC1

hn

3
75D

2
64

QF �i.1� � 0/.1� �/k0�t 0

�i
h
1� �

�
1� QF

�i
k0�t 1� �Œ.1� �/.1� ˇ� 0/� ˛� 0�.1� ˇ/�.k0�t/2 ˛� 0.1� ˇ/�.1� �/.k0�t/2

0 1 0

3
75
2
4 U n

hn

hn�1

3
5.

(56)
This can be written in compact notation as

A1UnC1 D A2Un (57)

or

UnC1 D AUn , (58)

where A is the amplification matrix, A � A�11 A2, UnC1 D
�
U nC1, hnC1, hn

	T
, and Un D�

U n, hn, hn�1
	T

.
Similarly, matrix system (58) can be written as

Un D AnU0 , (59)

which shows that the powers of the matrix (where n is the number of timesteps taken) determine the
evolution of the system.

If we write the matrix A in an eigenvalue/eigenvector decomposition as A D XƒX�1 (provided
the matrix has a complete set of eigenvectors), then matrix system (59) becomes

Un D XƒnX�1U0 . (60)

System (60) can be decoupled by introducing a new variable ZD X�1U as

Zn DƒnZ0 . (61)

The solution of Equation (61) can be written as

Zp D j
pj
nZ0exp.in'p/ , (62)

where p is the component index and 'p D tan�1
�

Imag.	p/
Real.	p/

�
is the complex phase. In Equation (62),

the magnitude of the eigenvalues controls the amplitude of the solution, and the exponential part
controls the phase or oscillation of the solution. Thus, as suggested by Equation (62), to study the
stability of the solution, we must examine the magnitude of the eigenvalues of the matrix A. The
condition for stability is max.j
j/ � 1, where 
 (without the component subscript) represents all of
the eigenvalues of the stability matrix.

The matrix system given by Equation (56) or (59) is very cumbersome to manipulate analyti-
cally to determine its eigenvalues and thus its stability properties. On the other hand, it is quite easy
to manipulate numerically upon substitution of numerical values for the governing parameters. To
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make this system more tractable, we will examine it in the limit that k0	t ! 1 or simply as the
timestep becomes very large. In the other limit, when the timestep becomes very small (k0	t ! 0),
the matrix system for the linear problem

�
QF D 1.0

�
becomes2

4 U nC1

hnC1

hn

3
5D

2
4 1 0 0

0 1 0

0 1 0

3
5
2
4 U n

hn

hn�1

3
5 , (63)

which simply states that, as expected, U nC1 D U n, hnC1 D hn, and trivially, hn D hn.
In the limit that k0	t !1, the linear matrix system

�
QF D 1

�
of Equation (56) or (59) becomes

2
4 UnC1

hnC1

hn

3
5D

1

�.1�ˇ� 0/

2
664
�.1�ˇ� 0/� .1�� 0/ �i˛� 0�2.1�� 0/.1�ˇ/k0�t �i˛� 0�.1� �/.1�� 0/.1�ˇ/k0�t

0 �.1� �/.1�ˇ� 0/C˛� 0�.1�ˇ/ ˛� 0.1� �/.1�ˇ/

0 �.1�ˇ� 0/ 0

3
775
2
4 Un

hn

hn�1

3
5 ,

(64)
which has eigenvalues


1 D 1�
1

�
, (65)


2 D 1�
1

�

1� � 0

1� ˇ� 0
, (66)


3 D ˛�
0 1� ˇ

1� ˇ� 0
. (67)

Thus for the system to be stable, j
j 6 1, which requires 1=2 6 � 6 1 because � 0 ranges from
0 to 1. Therefore, the nonhydrostatic �-method is unconditionally stable for very large timesteps.
Furthermore, if � D 1=2, then 
1 D �1, which implies that the solution will oscillate between
positive and negative values of its initial condition without damping. When redimensionalized, the
parameter k0	t is proportional to !	t . In fact, k0	t D !	t when the problem is well resolved
spatially (k	x! 0). The parameter !	t represents the degree to which a wave period is resolved
by a timestep 	t . In the typical case, k0	t � !	t D 1 corresponds to approximately 2� � 6

timesteps per period of the fastest wave. In the case of fast free-surface gravity waves, k0	t < 1

represents the well-resolved case, and k0	t > 1 represents the under-resolved case. This under-
resolved case, however, is neither uncommon nor avoidable because often the slower time scales of
baroclinic variability may be the primary interest. Hence, Equations (65)–(67), which are valid in
the limit that k0	t !1, provide useful information.

The matrix system given by Equation (59) is much more tractable for an arbitrary value of k0	t
when the problem is linear, QF D 1, and the equations are solved with the pressure projection method
(˛ D 0) without iteration (ˇ D 0). In this case, the amplification matrix A is a 2 � 2 matrix and is
given by

AD
1

1C �2k02	t2

"
1� �.1� � � � 0/k02	t2 �i.1� � 0/k0	t

�ik0	t 1� �.1� �/k02	t2

#
, (68)

where UD ŒU , h�T . In this case, the eigenvalues of A are given by


1,2 D 1�
1

2

�.2� � 0/k02	t2˙ k0	t
p
�2� 02k02	t2C 4� 0 � 4

1C �2k02	t2
. (69)

In the hydrostatic limit, � 0! 0, and the eigenvalues given in Equation (69) become


1,2 D
1� .1� �/�k02	t2˙ ik0	t

1C �2k02	t2
, (70)
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which is the equivalent expression for the eigenvalues of the stability matrix derived in [3]. For an
arbitrary timestep, the condition for stability requires j
1,2j6 1, where

j
1,2j D

s
1C .1� 2�/

k02	t2

1C �2k02	t2
. (71)

Thus, stability is obtained when 1�2� 6 0 or equivalently � > 1
2

, which is the well-known condition
for the free-surface �-method in [3].

Returning to the nonhydrostatic system, we examine the magnitude of the eigenvalues in
Equation (69) when � 0 ¤ 0. For small � 0, the expression inside the square root of Equation (69)
is negative, and the eigenvalues form complex conjugate roots. In this case, the magnitude of the
eigenvalues is given by

j
1,2j D

s
1C Œ.1� 2�/� .1� �/� 0�

k02	t2

1C �2k02	t2
. (72)

The condition j
1,2j6 1 then requires

.1� 2�/� .1� �/� 0 6 0 , (73)

which is satisfied provided 1=2 6 � 6 1 and � 0 > 0, which is indeed the case because the matrix
C in Equation (50) is positive definite. When � 0 is large and the expression inside the square root
of Equation (69) is positive, the eigenvalues do not necessarily form complex conjugate roots. In
this case, the expression for the magnitude of the eigenvalues is more complicated; however, the
condition j
1,2j6 1 still holds. These situations are investigated numerically in Section 5.

4.2. Numerical damping and order of accuracy estimates

The stability properties of the numerical method are directly related to the damping (amplitude
error) induced by the method and are governed by the eigenvalues of the system. We can also deter-
mine the order of accuracy of the numerical method by examining the amplitude and phase error
as predicted by the eigenvalues of the stability matrix. If we consider the linear, inviscid equations,
then the amplitude of the waves does not decay or grow, and the true eigenvalues of the equations
of motion are unity in magnitude, that is, j
j D 1. Thus, the amplitude error is given by

Eamp D 1� j
j
n . (74)

Likewise, the oscillatory part of the true eigenvalues is given by exp.i!t/ or exp.in!	t/, where !

is given by the dispersion relation, ! D
q
k



tanh .k�/ or ! D k
p
1� � . Thus, the phase error from

one timestep is given by !	t � '. The total phase error after n timesteps is given by

Ephase D .!	t � '/n . (75)

Thus, the order of accuracy (in time) can be determined by examining how the amplitude or
phase error as determined by the eigenvalues increases with 	t . The overall order of accuracy
of the numerical method is given by the lessor of the order of accuracy of the amplitude error or
phase error. Numerical experiments comparing the order of accuracy of the numerical model to
Equations (74) and (75) are given in Appendix C.

4.3. Numerical dispersion

The problem of numerical dispersion in the context of nonhydrostatic ocean models was studied in
[40]. They found that for second-order accurate models, the ratio of numerical to physical dispersion
is proportional to the square of the grid lepticity [41], Q
 � 	x=�. For completeness, we consider
numerical dispersion in the context of staggered grid, finite-difference approximations to nonhydro-
static Equations (9)–(12). We note that the primary goal of this paper is to study numerical stability
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and damping (first-order error). Numerical dispersion (second-order error) is a secondary issue in
this paper, both because it is a higher-order effect and because it has been studied extensively
in [40].

To illustrate the appearance of numerical dispersion, we analyze the discrete pressure Poisson
equation, which following from Equation (13), becomes

�2LxxqCL´´qD�e�2Lxxh . (76)

Substituting the modified wavenumber, Lxx D�k02, gives

� .k0�/2qCL´´qD e.k0�/2h . (77)

Similar to the analytical approach derived earlier if we assume a separable form of q D �0h, this
equation reduces to

L´´�
0 � .k0�/2�0 D e.k0�/2 , (78)

which is the discrete analogue of the ordinary differential equation in Equation (16).
If we assume that we can do the vertical integration exactly, then this becomes

�0 D
cosh.k0�.´C 1//

cosh.k0�/
, (79)

which is the analogue of Equation (19), and thus, the normalized nonhydrostasy parameter � 0

becomes

� 0 D 1�
tanh.k0�/

k0�
, (80)

which is analogous to Equation (25). Thus, the discrete wave equation, following Equation (23),
after substituting the modified wavenumber becomes

@2h

@t2
C .1� � 0/k02hD 0 , (81)

which can be written as

@2h

@t2
C Q�2.1� �/k2hD 0 , (82)

where

Q�2 D
k02

k2
1� � 0

1� �
. (83)

Equation (82) is a simple harmonic oscillator equation that has solution h D h0 exp.i Q!t/, where
Q!2 D Q�2.1� �/k2. This equation can be written in terms of the wave speed as follows:

Qc2 D Q!2=k2 D Q�2.1� �/ . (84)

Comparing this with the true wave speed c2 D 1� � , we see that the quantity 1� Q� represents the
relative error in the wave speed due to the horizontal discretization alone (as the influence of the
vertical and time discretization were ignored). The error term can be written as

Q� D
sin
�
Q	
2
k�
�

Q	
2
k�

vuuut k�

tanh.k�/

tanh
�
2
Q	

sin
�
Q	
2
k�
��

2
Q	

sin
�
Q	
2
k�
� , (85)

where

k0

k
D

sin
�
Q	
2
k�
�

Q	
2
k�

(86)
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and

1� � 0

1� �
D

tanh.k0�/=.k0�/

tanh.k�/=.k�/
D

k�

tanh.k�/

tanh
�
2
Q	

sin
�
Q	
2
k�
��

2
Q	

sin
�
Q	
2
k�
� . (87)

If we ignore the error induced by the solution of the nonhydrostatic Poisson equation and assume
that the dispersive error is only due to the misrepresentation of gradient due to the finite-difference
approximation, then � 0 D � and Q� D k0

k
. Thus, Qc D˙Q�

p
1� � becomes

Qc D˙

vuuut
0
@sin

�
Q	
2
k�
�

Q	
2
k�

1
A
2

tanh.k�/

k�
. (88)

Expanding sin
�
Q	
2
k�
�

and tanh.k�/ in Taylor series, then Equation (88), to lowest order, becomes

Qc �˙

r
1� .1C /

.k�/2

3
, (89)

where  D
Q	2

4
is the ratio of numerical to physical dispersion to lowest order. As  ! 0, then

Equation (89) approaches the first two terms in the Taylor series expansion of c D

˙
p

tanh.k�/=.k�/. The result that the ratio of numerical to physical dispersion, to lowest order,
is proportional to the grid lepticity squared for second-order accurate models was reported in [40],
and the present analysis supports that finding. In summary, we have shown the appearance of numer-
ical dispersion arising from the inability to resolve horizontal gradients in the finite-difference
approximation. The other sources of error in the model include the vertical discretization and time
discretization. However, in general, ensuring that the grid lepticity is small is the primary means of
reducing numerical dispersion.

5. NUMERICAL EXPERIMENTS

We present numerical simulations of the hydrostatic and nonhydrostatic �-methods to verify the
theoretical properties derived in the previous section including consistency, stability, and numer-
ical damping. Appendices A and C contain supporting numerical experiments on mode-specific
damping and order of accuracy, respectively. Summary of the parameters used in each numerical
experiment and corresponding figure is given in Table I. We begin by verifying in Section 5.1 that
the hydrostatic and nonhydrostatic simulations behave according to theory.

5.1. Nonhydrostatic dispersion

In Figure 1, we compare the modeled free-surface height and the horizontal and vertical veloc-
ity profiles of a free-surface seiche in an enclosed basin to the analytical solutions given in
Equations (14), (21), and (22), respectively, at nondimensional time t D T=8, where T D 2L=c

is the nondimensional period of the seiche. This simulation is performed with parameters given in
Table I. Figure 1 displays the nonhydrostatic pressure q and the velocity vectors in panel (B). As
seen in this panel, the influence of the free-surface wave decays quickly with depth. The nonhy-
drostatic pressure, as shown in panel (B), acts to cancel the added hydrostatic pressure due to the
free-surface wave (shown in panel (A)). Thus, at depth beyond the influence of the surface wave,
the total pressure is given by the still-water hydrostatic pressure. As shown in Figure 1(C) and (D),
the modeled velocities agree with the analytical solutions.

Next we compare the speed of modeled free-surface seiche oscillations to the analytical wave
speed following the test case given in [19]. The nondimensional nonhydrostatic wave speed given
by dispersion relation (26) is cnh D

p
tanh.k�/=.k�/ D

p
1� � , whereas the hydrostatic wave
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Figure 1. Modeled free-surface height (A), horizontal (C), and vertical velocity profiles (D) of a seiche
compared to the analytical solutions, which are given by Equations (14), (21), and (22), respectively, at time

t D T=8. The nonhydrostatic pressure, q, and velocity vectors are plotted in (B).

speed is ch D 1. As the waves become more nonhydrostatic (as k� ! 1), the deep water wave
speed becomes

cd D lim
k
!1

r
tanh.k�/

k�
D

1
p
k�

. (90)

Thus, the nonhydrostatic and hydrostatic wave speeds normalized by the deep water wave
speed become

cnh

cd
D
p

tanh.k�/ (91)

and
ch

cd
D
p
k� , (92)

respectively. Figure 2 compares these theoretical relationships to the model behavior of oscil-
lating free-surface seiche waves in an enclosed basin. The test case is performed with parame-
ters given in Table I for various degrees of nonhydrostasy � D 0.02, 0.05, 0.1, 0.175, 0.27, 0.38,
0.5, 0.65, 0.8, 1.0, 1.2. These simulations are performed for the projection and correction methods,
with and without iteration. The free surface is initialized with h0 D cos.kx/, and the analytical
solution is given by h D cos.kx/ cos.!t/, where the wavenumber is given by k D �=L and the
wave frequency, ! D 2�=T , is given by the dispersion relation. The modeled wave speeds are
determined by estimating the period of oscillation, Tmodeled, from the simulation start time to the
time of the next maximum in the free surface at x D 0 and then calculating the wave speed on the
basis of cmodeled D !modeled=k. The modeled wave speeds agree with the theoretical relationships for
each pressure method as shown in Figure 2, indicating that the model achieves the correct disper-
sive behavior. When the nonhydrostasy parameter k� is small, the hydrostatic and nonhydrostatic
models are similar. However, when there is an appreciable degree of nonhydrostasy, the hydrostatic
model overpredicts the true wave speed. We note that all of the nonhydrostatic methods produce
accurate dispersion relations for the fundamental mode, which is why the results in Figure 2 for the
nonhydrostatic methods are almost identical.
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Figure 2. The modeled and theoretical hydrostatic and nonhydrostatic wave speeds normalized by the deep
water wave speed as a function of k�. The curves representing the nonhydrostatic and hydrostatic theories

are given by Equations (91) and (92), respectively.
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Figure 3. The wave speed error c � Qc caused by numerical dispersion in hydrostatic (A) and nonhydrostatic
models (B) as a function of nonhydrostasy parameter k� and grid lepticity Q
�	x=�. The white portion of
this figure represents the region in wavenumber space that does not exist on a discrete grid of size 	x, that
is, .k�/max D

�
Q�

. Dispersive error in the hydrostatic model is persistent at high wavenumbers for all values
of 	x or lepticity. On the other hand, the wave speed error in the nonhydrostatic model decreases rapidly

when Q
 < 1. The white line represents the 5% error contour.

Figure 3 shows the wave speed error caused by numerical dispersion for the hydrostatic and
nonhydrostatic models as a function of nonhydrostasy parameter k� and grid lepticity Q
 � 	x=�.
Panel (A) of Figure 3 shows the wave speed error for the hydrostatic model, which is given by

ch � Qch D 1� Q�h, (93)
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where Qch D Q�h is modeled shallow water wave speed and Q�h D k0

k
, which is given by Equation (86).

Likewise, Panel (B) shows the wave speed error for the nonhydrostatic model, which is given by

cnh � Qcnh D .1� Q�nh/
p
1� � , (94)

where Qcnh D Q�nh
p
1� � is the modeled nonhydrostatic wave speed and Q�nh D Q� , which is given by

Equation (85). The white portion of the figure represents the region in wavenumber space that does
not exist on a discrete grid of size 	x, that is, .k�/max D

�
Q	

. In the hydrostatic case, the dispersion
is purely numerical, and thus, dispersive errors exist at high wavenumbers for all values of 	x
(or lepticity). However, in the nonhydrostatic model, the wave speed error decreases rapidly when
Q
 < 1 because the amount of numerical dispersion becomes small relative to the physical dispersion
as Q
 decreases.

5.2. Stability

As shown in Section 4.2, the cost of stability of the �-method is artificial damping of the free sur-
face. We showed that artificial damping is related to the magnitude of the eigenvalues of the stability
matrix that are functions of the implicitness parameter, � , and the normalized nonhydrostasy param-
eter, � 0. Here, we verify with numerical experiments that the envelope of the numerical solution is
governed by the eigenvalues.

Figure 4 shows the free-surface height at the left wall (x D 0) as a function of time normal-
ized by the wave period. For certain parameters, the amplitude decays as the simulation progresses.
As shown in Figure 4, the numerical damping is greatest when � D 1. However, when � D 0.5,
numerical damping occurs for the projection method without iteration (˛ D 0,ˇ D 0). This is due
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Figure 4. The free-surface height at the left wall (x D 0) computed by hydrostatic and nonhydrostatic
models as a function of time normalized by the wave period. Panels (A), (B), and (C) show simulations for
� D 0.5, � D 0.55, and � D 1.0, respectively. Panel (A) illustrates the numerical damping of the nonhy-
drostatic model with the pressure projection method (˛ D 0). Note that there is no damping associated with
the hydrostatic � -method when � D 0.5. The numerical damping in part (A) associated with the pressure
correction method (˛ D 1) and iteration methods (ˇ D 1) is minimal. Panels (B) and (C) show significant
damping associated with the free-surface solution procedure when � > 0.5. This damping is only slightly
increased for the nonhydrostatic model with the pressure projection method (˛ D 0). This figure also shows

that the amplitude envelope of the numerical solution follows j
jn.
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to the first-order accuracy of the projection method. Use of pressure correction or iteration reduces
or eliminates the damping when � D 0.5. Figure 4 also shows that the damping error is directly
related to the eigenvalues or more specifically j
jn as indicated by Equation (62). We see that the
envelope of the solution follows the curve given by hn D j
jnh0, indicating that the model behaves
as theoretically predicted regarding the decay rate and the magnitude of the eigenvalues. In general,
the envelope of the numerical solution does not follow Un D ƒnU0 exactly. Instead, the envelope
is given by Equation (60), which involves the eigenvectors of the stability matrix. However, for
this particular system, the expression ƒn is very close to XƒnX�1, which is a consequence of the
form of the eigenvalues and eigenvectors. Thus, we can approximate the amplitude envelope of the
solution well with hn D j
jnh0 or U n D j
jnU0.

In Section 4.1, we demonstrated the unconditional stability of the linear nonhydrostatic method
with pressure projection under certain conditions. Here, we demonstrate stability of the other cases
by numerically evaluating the eigenvalues of the stability matrix, A, for both the pressure projection
(˛ D 0) and pressure correction (˛ D 1) methods with (ˇ D 0) and without (ˇ D 1) iteration. Recall
that the stability condition is max.j
.A/j/6 1, where 
.A/ are the eigenvalues of A. Figure 5 shows
the magnitude of the eigenvalues for the various pressure methods as a function of � and � 0 for a
nominal value of k0	t D 1. In this figure, we only show the magnitude of the two largest eigenval-
ues, j
1j and j
2j. The smallest eigenvalue of the stability matrix given in Equation (59), 
3, is in
general very close to zero and thus omitted from this analysis. The figure shows that the magnitude
of the eigenvalues is less than 1 for all values of � 0 when � > 0.5. The solid line in Figure 5 is the
j
j D 1 contour, which does not cross into the region where � > 0.5 for any of the methods. There-
fore, the stability of all methods is dictated by the same requirement as the hydrostatic theta-method,
that is, � � 0.5. The stability properties of projection and correction are very similar when iteration
is used (ˇ D 1), as indicated by the similarity of rows (B) and (D) in Figure 5. In fact, the critical
value (neutrally stable value) of � for stability is very close to � D 0.5 for all values of � 0 when
ˇ D 1. Without iteration (ˇ D 0), the critical value of � is smaller for projection (Figure 5(A)) than
it is for correction (Figure 5(B)) for a given value of � 0, owing to the larger damping of projection
over correction and of both methods over the hydrostatic �-method. In contrast to the behavior when
� < 0.5, increasing � 0 when � > 0.5 leads to larger eigenvalues and less damping for increasing
values of � 0 because j
j ! 1 as � 0 ! 1 for correction and both iterative methods. However, when
projection is used, damping is not monotonic with � 0 when � > 0.5 as seen in panel (A). Instead,
there exists a value of � 0 in this region that maximizes the damping for 
1 for a fixed value of � ,
whereas 
2 exhibits the most damping only when � 0 D 1. We will discuss the consequences of this
behavior later in this section. Figure 5 presents strong evidence of the stability of the nonhydrostatic
�-method. In what follows, we demonstrate that the method is stable for all values of k0	t (because
Figure 5 only shows k0	t D 1).

Figure 6 shows the magnitude of the eigenvalues of the stability matrix, A, compared with the
damping value of the fundamental mode (longest wavelength wave) extracted from the numerical
experiments. This value is determined from an exponential fit to the periodic maxima of h.x D 0, t /.
The eigenvalues of the stability matrix and the damping values from the model agree very well. The
slight differences are attributable to the skill of the exponential fit to the maxima of h.x D 0, t /,
which results in small errors on the damping values extracted from the model. Figure 6 shows that
the damping for the projection method (˛ D 0) is generally larger than the damping for the correc-
tion method (˛ D 1) because of the higher accuracy of the correction method. The theoretical and
modeled eigenvalues also approach the theoretical limits of the maximum eigenvalue as k0	t !1,
which is given in Equation (65). As shown in Figure 6, the damping of the nonhydrostatic models
is largest roughly at k0	t D 4. At present, we have no explanation for this minimum, although the
behavior is consistent with the limits given in Equations (65)–(67).

The analysis presented in Figure 6 is valid for the damping of the fundamental mode; however,
it is informative to analyze the numerically induced damping as a function of wavenumber. The
eigenvalues of the stability matrix depend on wavenumber because � 0 is a function of wavenumber.
As wavenumber increases, � 0 ! 1, and as mentioned earlier, this corresponds to eigenvalues that
are close to unity in magnitude as shown in Figure 5. Furthermore, in this case, the eigenvalues of
the stability matrix are nearly independent of � . To illustrate the effects of the grid resolution on
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Figure 5. The eigenvalues of the pressure projection (˛ D 0; panels (A) and (B)) and pressure correction
(˛ D 1; panels (C) and (D)) methods with (ˇ D 1; panels (B) and (D)) and without (ˇ D 0; panels (A) and

(C)) iteration as a function of � and � 0 for k0	t D 1. The solid line indicates j
j D 1.

the damping, the maximum eigenvalue as a function of k	x is shown in Figure 7. We note that
the maximum wavenumber on a discrete grid is kmax D

2�
2�x
D �

�x
, and thus, .k	x/max D � . We

also note that the curves shown in Figure 7 are symmetric about the y-axis, meaning this behavior
holds both for positive and negative wavenumbers (i.e., right-going and left-going waves, respec-
tively), and thus in Figure 7, we show only the positive wavenumbers. The parameters leading to
the eigenvalues presented in this figure are identical to the simulations presented in Figure 6, with
k0	t D 1, 10, 100. Figure 7 shows that when � D 0.5, the nonhydrostatic methods induce more
damping for low wavenumber modes than for high wavenumber modes. Furthermore, the damping
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Figure 6. Damping of the fundamental mode induced by the � -method as compared with the theoretical
limit as k0	t ! 1. The left panels, (A), (C), and (E), illustrate the numerical damping for models with
implicitness parameter � D 0.5, whereas the right panels, (B), (D), and (F), illustrate the numerical damping
for models with implicitness parameter � D 0.55. Panels (A) and (B) illustrate the results of the hydro-
static model. Panels (C) and (D) illustrate the results of the nonhydrostatic model for the pressure projection
method without iteration (˛ D 0, ˇ D 0). Panels (E) and (F) illustrate the results of the nonhydrostatic model
for the pressure correction method without iteration (˛ D 1, ˇ D 0). The damping in all models approaches

the limits for large k0	t given by Equation (65).

for the pressure projection method is generally larger than the correction method. In contrast to the
nonhydrostatic methods, the hydrostatic method is undamped for all modes when � D 0.5. How-
ever, when � D 0.55, the hydrostatic method induces approximately constant damping value for all
modes. Comparatively, the damping induced by the nonhydrostatic methods, although similar to the
hydrostatic method at low wavenumbers, is significantly reduced for high wavenumbers. In fact, the
damping associated with high wavenumbers is quite minimal for any value of � or k0	t . This is
quite a significant difference between the nonhydrostatic and hydrostatic behavior of the �-method.
We interpret the physical reason for the differences in damping behavior to be the treatment of the
wave speed of each mode. In the nonhydrostatic models, the dispersion or variation in wave speed
with wavenumber is directly computed; thus, waves with shorter wavelength travel more slowly
as they should. These slower waves are thereby better resolved by the fixed timestep, and thus,
the damping is reduced. The speed of the hydrostatic waves, on the other hand, is independent
of wavenumber, and thus, all wavelength waves are resolved in time in a roughly similar manner.
This results in a consistent damping value for each mode. We present an example of mode-specific
damping in Appendix A.

To demonstrate the possible effects of momentum advection, Figure 8 shows the two largest
eigenvalues of the stability matrix when k0	t D 1 and QF D 1.0 � 0.2i , where the added imagi-
nary component (�ik0	tFu0 D �iF u0 D �0.2i) is due to the linearized scheme for advection of
momentum in Equation (31) and we ignore the contribution of the vertical advection of momentum
term. The added term will be purely imaginary (as earlier) when a central differencing scheme for
advection of momentum is used. The magnitude of this additional term (Fu0 D 0.2) is chosen to

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 72:550–582
DOI: 10.1002/fld



STABILITY AND CONSISTENCY OF THE NONHYDROSTATIC � -METHOD 571

0.5

0.6

0.7

0.8

0.9

1

|λ
|

Hydrostatic
Nonhydrostatic (α=0, β=0)
Nonhydrostatic (α=1, β=0)

0.5

0.6

0.7

0.8

0.9

1

|λ
|

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

kΔ x

|λ
|

0 0.5 1 1.5 2 2.5 3

kΔ x

θ=0.5 θ=0.55

k’Δ t=1

k’Δ t=10

k’Δ t=100

A B

C D

E F

Figure 7. Damping induced by the � -method as a function of k	x. The left panels, (A), (C), and (E), illus-
trate the numerical damping of each mode for models with implicitness parameter � D 0.5, whereas the right
panels, (B), (D), and (F), illustrate the numerical damping for models with implicitness parameter � D 0.55.
Panels (A) and (B) illustrate the results of the models when k0	t D 1. Panels (C) and (D) illustrate the results

of the models when k0	t D 10. Panels (E) and (F) illustrate the results of the models when k0	t D 100.

represent the nominal case where the magnitude of the nonlinear term is approximately 20% of the
linear term. As shown in Figure 8, the eigenvalues of the stability matrix A can be greater than unity
for both the projection and correction methods, although the method is more unstable for the correc-
tion method. As mentioned earlier, the damping induced by the nonhydrostatic �-method is minimal
for high wavenumbers (with � 0 � 1). Thus, any additional destabilizing term (such as momentum
advection) may lead to high wavenumber instability because these wavenumbers are already close to
the neutrally stable point where j
j D 1. This case is shown in Figure 8 where the high wavenumber
modes (� 0 � 1) are unstable for any value of � .

The analysis in Figure 8 informs the practice of discretizing momentum advection with a method
that is unstable in the inviscid limit. Examples of this are the use of central differencing or
QUICK scheme [42] in space and second-order Adams–Bashforth in time (used in [19, 43, 44],
among others). In this case, the nonlinear, nonhydrostatic problem will generally experience high
wavenumber instability in the inviscid limit regardless of the value of � . These methods become sta-
ble when viscosity or some form of damping is added; however, the amount of viscosity or damping
required to obtain stability is usually unknown a priori and is often tuned until the model is stable,
which can possibly lead to an overly diffusive solution. This suggests the use of a time advance-
ment scheme that is stable in the inviscid limit such as AB3 or Runge–Kutta methods (third order
and higher). When these schemes are used, the stability requirements will be governed only by the
advective Courant numbers.

The more common approach to discretizing advection of momentum is using an upwind,
Eularian–Lagrangian method (ELM) or TVD scheme. These methods inherently induce some
numerical viscosity/damping, and thus, they are stable when discretized with forward Euler time
stepping. The classical method for advection of momentum used in combination with the �-method
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Figure 8. The eigenvalues of the pressure projection (˛ D 0; top row (A)) and correction (˛ D 1; bottom
row (B)) methods without iteration (ˇ D 0) as a function of � and � 0 when QF D 1.0� 0.2i and k0	t D 1,

which represents using central differencing for advection of momentum. The solid line indicates j
j D 1.

is ELM [1] because of its unconditional stability. In one-dimensional, when the Courant number
C 6 1, then the ELM method is identical to the upwind method as is given numerically as

unC1
jC1=2

D .1�C/unjC1=2CCu
n
j�1=2 , (95)

when un
jC1=2

> 0. This method is simply a linear interpolation of the velocity between the grid
points un

jC1=2
and un

j�1=2
at the traceback location of the advective velocity characteristic. By using

modified wavenumber analysis, the form of the operator QF based on this method is given as

QF D 1�C.1� cos.k	x/C i sin.k	x// . (96)

To study the numerical damping associated with the upwind/ELM method, we perform the same
eigenvalue analysis as in Figure 8 but with QF D 0.8 � 0.2i . This QF parameter is determined
from using a L D 4	x wavelength wave (.k	x/ D �=2) and a Courant number of C D 0.2 in
Equation (96). This value QF D 0.8 � 0.2i is comparable with the case shown in Figure 8 but with
Re
�
QF
�
D 0.8 instead of Re

�
QF
�
D 1.0. This subtle difference between the upwind/ELM method and

the central differencing method is responsible for stability of the upwind/ELM method and the cost
of additional damping. As shown in Figure 9, the j
j D 1 contour is entirely in the left half-plane
where � < 0.5. Thus even when � D 0.5, j
j< 1, and there is damping associated with the method.

We conclude this section with a brief discussion on the implications of wavenumber specific
damping in realistic simulations. For most tidal modeling applications, damping of high
wavenumber waves will not present a serious detriment to achieving realistic simulations. Instead,
proper treatment of long, low wavenumber waves is vital. However, for applications in modeling
bores, fronts, or internal waves, proper representation of steep gradients and thus representation of
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Figure 9. The eigenvalues of the pressure projection (˛ D 0; top row (A)) and correction (˛ D 1; bottom
row (B)) methods without iteration (ˇ D 0) as a function of � and � 0 when QF D 0.8� 0.2i and k0	t D 1,
which represents using upwind differencing or EularianŰLagrangian method for advection of momentum.

The solid line indicates j
j D 1.

high wavenumbers become important. To summarize the results presented in this section, modelers
seeking to minimize damping of high wavenumbers should:

1. Use high-resolution or centered advection schemes with appropriate time stepping for stability.
2. Use � D 0.5 because it induces no damping at any wavenumber for the hydrostatic method.
3. When nonhydrostatic simulations are necessary, use the second-order accurate pressure correc-

tion method instead of the first-order accurate pressure projection method because the former
induces significantly less damping.

4. When affordable, use iterative nonhydrostatic pressure solution methods, ˇ D 1, because they
induce no damping for all wavenumbers for the linear, inviscid equations.

5. Be mindful of how the timestep may influence damping. As shown in Figure 6, the maximum
damping rate is found at approximately k0	t D 4. However, generally speaking, decreasing
the timestep should reduce the damping.

6. CONCLUSIONS

We have shown that linear, inviscid, nonhydrostatic free-surface models using the semi-implicit
�-method are unconditionally stable for surface gravity waves when � > 1=2. This implies that the
overall stability requirements of a nonlinear, nonhydrostatic model reduce to the stability require-
ments of advection of momentum or explicit treatment of viscous terms and not the discretization of
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the nonhydrostatic pressure. Therefore, there is no timestep restriction associated with computing
the nonhydrostatic pressure. However, the nonhydrostatic methods can give rise to artificial damp-
ing of the free surface. For nonhydrostatic models using the first-order accurate pressure projection
method, the low wavenumber modes of the free surface are damped even when � D 0.5. Alter-
natively, using the second-order accurate pressure correction method induces much less damping.
The hydrostatic �-method damps all wavenumber waves at roughly the same rate when � > 0.5.
However, damping of high wavenumber modes of the nonhydrostatic �-method is significantly
reduced compared with the damping induced by the hydrostatic model.

APPENDIX A: WAVENUMBER DEPENDENT DAMPING

In this analysis, we verify that the theoretical behavior for wavenumber dependent damping shown
in Figure 7 holds in numerical experiments. Figure A.1 demonstrates wavenumber dependent
damping of a nonhydrostatic simulation with a stable � D 0.5 and with C D 20 and k0	t D 1.
In this case, all of the modes are stable (amplification factor: � < 1) and hence are damped
in time, albeit at different rates. The initial condition for this numerical experiment is h0 D
0.25 cos.k1x/C1 cos.k2x/C0.5 cos.k3x/C0.75 cos.k4x/. These wavenumbers .k1, k2, k3, k4/ are
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Figure A.1. The numerical damping of the various wave modes over the course of a stable nonhydrostatic
(˛ D 1, ˇ D 0) simulation with � D 0.5. Panel (A) shows the initial condition compared with the numerical
solution at t=T D 60. Panel (B) shows the magnitude of the Fourier coefficients of the initial condition
and final numerical solution at time t=T D 60 in panel (A) as a function of k	x. Panel (D) shows the
amplification factor (the maximum eigenvalue) of the stability matrix for this system as a function of k	x.
Panel (C) shows the comparison of the Fourier amplitudes of the fundamental, 2	x (wavelength), k	x D 1,
and k	x D 2 waves as compared with the expressions 0.25.�1/t=�t , 1�10�17.�2/t=�t , 0.5.�3/t=�t , and

0.75� 10�10.�4/t=�t , respectively, which are derived from the amplification factors in panel (D).
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chosen so that the smallest and the largest k	x waves (k1 D �=L and k2 D �=	x, respectively)
are investigated as well as waves with k3	x D 1 and k4	x D 2. The amplitudes are chosen for
plotting purposes. In Figure A.1(B), the Fourier coefficients of the initial condition and modeled
solution at time t=T D 60 are plotted against k	x. We extract the Fourier coefficients correspond-
ing to wavenumbers k1, k2, k3, and k4, respectively, at each timestep of the model to determine
their damping rate throughout the simulation.‡ We also determine their approximate amplifica-
tion/damping factor analytically (i.e., �1, �2, �3, and �4) from the maximum (in absolute value)
of the eigenvalues of the stability matrix. Figure A.1(D) shows the amplification/damping factor as
a function of wavenumber derived from the eigenvalue analysis. Thus, we can compare the damping
predicted by the theoretically derived amplification factor to that of the local maxima of the extracted
Fourier amplitudes over the course of this simulation. This comparison is shown in Figure A.1(C),
which demonstrates that the damping of the waves in the model can be reproduced using the simple
expressions 1.�1/t=�t , 1� 10�17.�2/t=�t , 1.�3/t=�t , and 1� 10�10.�4/t=�t .

APPENDIX B: STABILITY OF THE VELOCITY PERTURBATION

In the preceding sections, the depth-averaged velocity, U , and the free-surface height, h, are demon-
strated to be unconditionally stable when discretized using the �-method. In this appendix, we show
that the velocity perturbation, the deviation from the depth-averaged velocity, u0 D u � U , cannot
increase without bound and is thus also unconditionally stable.

The depth-averaged velocity following Equation (43) is given as

U nC1 D U n � i�k0	thnC1 � i .1� �/ k0	thn � ik0	t	´eT qnC1=2 , (B.1)

where we assume that the problem is linear, QF D 1. Likewise, the full (nondepth-averaged velocity)
is given as

unC1 D un � i�k0	thnC1e� i .1� �/ k0	thne� ik0	tqnC1=2 . (B.2)

Subtracting e times Equation (B.1) from Equation (B.2), we obtain an expression for the velocity
perturbation, which is given as

.u0/nC1 D .u0/n � ik0	t
�
	´eeT � I

�
qnC1=2 , (B.3)

where u0 D u � U e. Substituting Equation (47) for the nonhydrostatic pressure, qnC1=2, into
Equation (B.3) , the velocity perturbation can be written as

.u0/nC1 D .u0/n � ik0	t
�
�hnC1C .1� �/hn

�
Be , (B.4)

where

BD
�
	´eeT � I

� �
IC

�
k0�
��2

M
���1

D
�
	´eeT � I

�
C , (B.5)

and thus,

BeD	´eeTC e�Ce

D e.	´eTC e/�Ce

D � 0e�Ce

D � 0eC�0 ,

where �0 D�Ce is the discrete structure function given in Equation (49).

‡We note that because the solution is a standing wave, the amplitude of the Fourier coefficients will oscillate throughout
the course of the simulation; thus, it is necessary to analyze only the local maxima of the Fourier amplitudes in time.
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The norm of Equation (B.4) is given as

jj.u0/nC1jj D jj.u0/n � ik0	t.�hnC1C .1� �/hn/Bejj

6 jj.u0/njj C jj � ik0	t.�hnC1C .1� �/hn/Bejj

6 jj.u0/njj C jik0	t.�hnC1C .1� �/hn/j jjBejj

6 jj.u0/njj C knjjBejj , (B.6)

where kn D jik0	t.�hnC1 C .1 � �/hn/j. The recurrence relation, Equation (B.6), can be written
in terms of the initial velocity perturbation, .u0/0, and the initial free-surface height, h0 , as

jj.u0/njj6 jj.u0/0jj � jjBejj
nX

pD0

kp . (B.7)

In the previous sections, we showed that the evolution of the free-surface height can be expressed
as hp D �ph0, where � is the amplification factor and j� j < 1. Substituting this expression for hp

into the expression for kp gives

kp D ji.k
0	t/

�
��pC1h0C .1� �/�ph0

�
j

D ji.k0	t/
�
���ph0C .1� �/�ph0

�
j

D ji.k0	t/.1C �� � �/h0j j�pj

D c1j�
pj , (B.8)

where c1 D ji.k0	t/.1C �� � �/h0j. Thus, Equation (B.7) can be written as

jj.u0/njj6 jj.u0/0jj C c1jjBejj
nX

pD0

j�pj . (B.9)

The summation
Pn
pD0 j�

pj in Equation (B.9) converges because j� j < 1. Thus, we can write the
perturbation velocity at time1 as

jj.u0/1jj6 jj.u0/0jj C c2jjBejj, (B.10)

where c2 D c1
P1
pD0 j�

pj. Because the summation in the expression for c2, the initial velocity
perturbation jj.u0/0jj, and jjBejj are finite, then the norm of the perturbation velocity at any time
step is bounded and thus the full velocity (u D u0 C U ) is unconditionally stable when discretized
with the �-method when � > 0.5.

APPENDIX C: ORDER OF ACCURACY ESTIMATES

In this appendix, we follow the order of accuracy analysis presented in [38], which is extended to
include an examination of the convergence behavior of the iterative method (ˇ D 1). We determine
the order of accuracy of the discrete form of governing Equations (27) and (29), which are given by

unC1 � un

	t
D��eGxhnC1 � .1� �/ eGxhn �GxqnC1=2c � ˛Gxqn�1=2 , (C.1)

hnC1 � hn

	t
D��	´DxeT unC1 � .1� �/	´DxeT un. (C.2)

Here, we only consider error of the nonhydrostatic free-surface method (i.e., we ignore the effects
of advection, diffusion, or other terms). Following the solution procedure given in Section 3,
Equations (C.1) and (C.2) can be split into the hydrostatic predictor and nonhydrostatic corrector
parts as

u� � un

	t
D��eGxh� � .1� �/ eGxhn � ˛Gxqn�1=2 , (C.3)
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h� � hn

	t
D��	´DxeT u� � .1� �/	´DxeT un, (C.4)

and

unC1 � u�

	t
D�GxqnC1=2c , (C.5)

hnC1 � h�

	t
D ˇ�	t	´LxxeT qnC1=2c , (C.6)

respectively. Equations (C.5) and (C.6) can be rearranged as

u� D unC1C	tGxqnC1=2c , (C.7)

h� D hnC1 � ˇ�	t2	´LxxeT qnC1=2c . (C.8)

Substituting Equations (C.7) and (C.8) into Equations (C.3) and (C.4), we obtain

unC1 � un

	t
D��eGxhnC1� .1� �/ eGxhn�GxqnC1=2Cˇ�2	t2	´eGxLxxeT qnC1=2c , (C.9)

hnC1 � hn

	t
D��	´DxeT unC1 � .1� �/	´DxeT un � .1� ˇ/�	t	´LxxeT qnC1=2c . (C.10)

Substituting

qnC1=2c D qnC1=2 � ˛qn�1=2 D
²

qnC1=2 � qn�1=2 D	t @q
@t
CO.	t2/, if ˛ D 1

qnC1=2, if ˛ D 0

D ˛

�
	t
@q
@t
CO.	t2/

�
C .1� ˛/qnC1=2 (C.11)

into Equations (C.9) and (C.10) gives

unC1 � un

	t
D��eGxhnC1 � .1� �/ eGxhn �GxqnC1=2 (C.12)

C .1� ˛/ˇ�2	t2	´eGxLxxeT qnC1=2C ˛ˇ�2	t3	´eGxLxxeT
@q
@t
CO

�
	t4

�
D��eGxhnC1 � .1� �/ eGxhn �GxqnC1=2

C ˇ
�
.1� ˛/O

�
	t2

�
C ˛O

�
	t3

�
CO

�
	t4

�	
,

hnC1 � hn

	t
D��	´DxeT unC1 � .1� �/	´DxeT un (C.13)

� .1� ˛/.1�ˇ/�	t	´LxxeT qnC1=2 � ˛.1�ˇ/�	t2	´LxxeT
@qnC1=2

@t
CO

�
	t3

�
D��	´DxeT unC1 � .1� �/	´DxeT un

� .1� ˇ/
�
.1� ˛/O.	t/C ˛O

�
	t2

�
CO

�
	t3

�	
.

Thus, we see that the nonhydrostatic projection method induces an error of O.	t/ in free-surface
Equation (C.13) when ˛ D 0 and ˇ D 0. When ˛ D 1 or ˇ D 1, then the method becomes at least
second-order accurate. We note that the aforementioned analysis only considers the error induced
by the nonhydrostatic projection part of the method. As discussed in [3], the (hydrostatic portion)
of the �-method for the free surface is second-order accurate when � D 0.5 and first-order accurate
otherwise. We also note that the eigenvalue analysis discussed in Section 4.2 can be used to estimate
the time accuracy of the methods. In the following analysis, we verify the order of accuracy with
numerical experiments.
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Figure C.1. The error of the nonhydrostatic � -method as compared with the amplitude and dispersive error
estimates from the eigenvalues of the stability matrix as a function of 	t . The left panels show the order of
accuracy estimates for � D 0.5, whereas the right panels show the order of accuracy estimates for � D 0.51.
The method is only first-order accurate when � D 0.5, ˛ D 0, and ˇ D 0. The overall order of accuracy of
the model corresponds to the lessor of the order of accuracy of the amplitude or dispersive error as predicted

by the eigenvalue analysis.

Figure C.1 shows the model error as a function	t . The error is computed as jjh.	t/�h.	t=2/jj2,
where h.	t/ represents the numerical solution of the free surface, h, computed with a timestep of
	t after one period tmax D T . We compare the convergence of the model error with the conver-
gence of the theoretically estimated amplitude and phase errors given by Equations (74) and (75),
respectively. The convergence experiments are run with the same numerical parameters and initial
conditions as in Figure 4, for both the projection (˛ D 0) and correction (˛ D 1) methods with
(ˇ D 1) and without iteration (ˇ D 0) with � D 0.5, 0.51. As shown in Figure C.1, the overall
model order of accuracy behaves as the lessor of the order of accuracy of the amplitude or phase
error. For all methods, the theoretical estimate for the phase error is roughly second-order accu-
rate; however, when � D 0.51 and for the projection method without iteration (˛ D 0, ˇ D 0)
with � D 0.5, the amplitude error and thus the overall modeled error are only first-order accurate
at best. Even when � D 0.5, the numerical solution of the nonhydrostatic pressure for ˛ D 0,
ˇ D 0 is only first-order in time, and thus overall, the method is only first-order accurate in time.
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This result agrees with the analysis in [38] and Equation (C.13). Furthermore, when ˛ D 1 and
� D 0.5, both the free-surface discretization and the nonhydrostatic pressure are second-order
accurate, and thus, the model is second-order accurate.

APPENDIX D: CONVERGENCE OF THE ITERATIVE (ˇ D 1)
NONHYDROSTATIC METHOD

In this section, we investigate the convergence properties of the linear iterative (ˇ D 1) nonhydro-
static method. We begin with the linear advancement equations of the numerical method that are
closely related to Equations (43) and (44), viz.

U nC1 D U n � i�k0	thnC1 � i
�
1� � � ˛� 0�

�
k0	thn (D.1)

C i˛� 0.1� �/k0	thn�1 � ik0	t	´eT qnC1=2c ,

�
1C �2.k0	t/2

�
hnC1 D�ik0	tU nC

�
1� � .1� �/ .k0	t/2C ˛� 0�2.k0	t/2

�
hn (D.2)

C ˛� 0�.1� �/.k0	t/2hn�1 � ˇ�.k0	t/2	´eT qnC1=2c .

Equations (D.1) and (D.2) are split into the hydrostatic predictor part

U � D U n � i�k0	thnC1 � i
�
1� � � ˛� 0�

�
k0	thn (D.3)

C i˛� 0.1� �/k0	thn�1 ,

h� D�i
�
1C �2.k0	t/2

��1
k0	tU n (D.4)

C
�
1C �2.k0	t/2

��1 �
1� � .1� �/ .k0	t/2C ˛� 0�2.k0	t/2

�
hn

C ˛� 0�.1� �/
�
1C �2.k0	t/2

��1
.k0	t/2hn�1

and nonhydrostatic corrector part

U nC1 D U � � ik0	t	´eT qnC1=2c , (D.5)

hnC1 D h� � ˇ�
�
1C �2.k0	t/2

��1
.k0	t/2	´eT qnC1=2c , (D.6)

where U � and h� represent the provisional (hydrostatic) velocity and free surface, respectively. The
nonhydrostatic correction is performed after the solution of Poisson Equation (47), viz.

qnC1=2c D�Ce
�
�hnC1C .1� �/hn

�
, (D.7)

where C D
�
IC .k0�/2M

	�1
. However, in general, the final nonhydrostatic free-surface height�

hnC1
�

is not known without iteration. Instead, the Poisson equation is given as

q.m/c D�Ce
�
�h.m/C .1� �/hn

�
, (D.8)

where the superscript .m/ indicates the iteration number. Similarly, we write Equation (D.8) in
depth-averaged from as

	´eT q.m/c D�	´eTCe
�
�h.m/C .1� �/hn

�
D�� 0

�
�h.m/C .1� �/hn

�
, (D.9)

where � 0 D 	´eTCe from Equation (50). The free-surface equation also requires an iterative
solution

h.mC1/ D h� � ˇ�
�
1C �2.k0	t/2

��1
.k0	t/2	´eT q.m/c . (D.10)
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Note that if ˇ D 0, then there is no iteration, and hnC1 D h� according to Equation (D.6).
Substituting nonhydrostatic correction iterate (D.9) into free-surface iterate (D.10), we obtain a
recurrence relation for the free surface given by

h.mC1/ D h��C�h.m/ , (D.11)

where � � ˇ� 0 �
2.k0�t/2

1C�2.k0�t/2
and h�� D h� C ˇ� 0 �.1��/.k

0�t/2

1C�2.k0�t/2
hn. With this recurrence relation, we

derive a formula for the mth iteration step as a function of the starting value h.0/ D h�, which is
given by

h.m/ D �mh.0/C h��
m�1X
iD0

�i . (D.12)

Using Equation (D.12), we obtain the convergence rate by subtracting h.m/ from h.mC1/,
which gives

h.mC1/ � h.m/ D �mh��� , (D.13)

where h��� D ˇ� 0 �.k0�t/2

1C�2.k0�t/2
.�h� C .1 � �/hn/. Thus, Equation (D.13) shows that the iteration

converges with powers of � � ˇ� 0 �
2.k0�t/2

1C�2.k0�t/2
. This parameter is always less than unity, and thus,

the iteration is guaranteed to converge. Also of note is that the iteration converges rapidly for small
values of k0	t and for flows that are nearly hydrostatic (� 0	 1).

We estimate error reduction associated with the iteration by subtracting Equation (D.10) from
(D.6) to give

hnC1 � h.mC1/ D �
�
hnC1 � h.m/

�
. (D.14)

This result generalizes to

hnC1 � h.m/ D �m
�
hnC1 � h.0/

�
D �m

�
hnC1 � h�

�
, (D.15)

where hnC1 � h� (given by Equation (C.6)) is the error committed from using the noniterative
method for the free surface. This result shows that the error is systematically reduced by a factor �
each iteration.

We can also determine the approximate number of iterations until convergence is reached by
setting toleranceD h.mC1/ � h.m/ and using Equation (D.13) to solve for m, which gives

mD
log.tolerance/� log.h���/

log.�/
. (D.16)

If we assume that log.h���/DO.1/ and consequently j log.tolerance/j 
 j log.h���/j, then we can
simplify this formula to

m�
log.tolerance/

log.�/
. (D.17)

Equation (D.17) does not depend on the magnitude of the initial condition (as Equation (D.16)
does) and will still provide a good indication of the number of iterations required for convergence.
Generally speaking, a simulation with k0	t D 1 and � D 0.5 requires about 14 iterations to con-
verge to a tolerance of 1 � 10�10 for even the slowest converging case where � 0 � 1. Finally, we
note that the overall order of accuracy does not change with (ˇ D 1) or without (ˇ D 0) the use
of iteration when the pressure correction method is used (˛ D 1) as shown in Appendix C. Using
iteration with the first-order accurate pressure projection method (˛ D 0) will provide the overall
second-order accuracy at the cost of increased computational effort. The choice of the maximum
iteration number or convergence tolerance will only influence the order of accuracy if the first-order
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accurate projection method (˛ D 0) is used. Using either pressure method, the choice of maximum
iteration number or convergence tolerance when using the iterative method should not influence the
stability of the method because the error in Equation (D.15) is systematically reduced to zero by a
constant factor � each successive iteration and the method is stable with or without the presence of
this error.
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