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The energetics of the interaction of internal gravity waves with a shelf break is investigated by
means of high-resolution two-dimensional numerical simulations, with an emphasis on
understanding the partitioning of the internal wave energy over the course of the interaction process
and the subsequent dynamics of the onshore propagating internal waves. Some of the energy is
dissipated as a result of the instabilities associated with breaking, while the remaining energy is
either reflected back away from or transmitted onto the shelf. We employ an analysis of the
distribution of the energy flux across the shelf break taking into account the contributions from
nonhydrostatic as well as nonlinear effects to quantify the percentage of energy flux that is
transmitted onto the shelf, as well as the percentages of reflected and dissipated energy fluxes, from
an incoming wave field. For a given frequency of an incoming wave, we vary the amplitude of the
wave to vary the incident energy flux, and we simulate conditions ranging from subcritical to
supercritical slopes by varying the topographic slope angle. The results show that the cumulative
transmitted energy flux is a strong function of the ratio of the topographic slope �, to wave
characteristic slope s, while the reflected energy flux is a strong function of both � /s as well as the
nonlinearity. The energy flux calculations indicate that the internal boluses that form as a result of
the interaction of the incident wave with the slope are very energetic, especially for critical to
supercritical slopes. These nonlinear internal waves are plausible candidates for effectively
transporting mass onshore, not withstanding their contribution to diapycnal mixing as well.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2221863�
I. INTRODUCTION

Understanding the interaction of internal waves with to-
pography is a pressing problem in oceanography. The inter-
action of internal waves with bottom features such as conti-
nental slopes, seamounts, and ridges in the ocean can lead to
instabilities and wave breaking, which results in strong mix-
ing close to the boundaries. It has been hypothesized that, in
conjunction with mixing in the interior of the ocean, this is a
plausible mechanism through which oceanic mixing is sus-
tained �Munk and Wunsch1�. Indeed, many field experiments
have provided evidence to suggest that the oceanic internal
wave field has a considerable amount of energy to ignite
intense diapycnal mixing near the boundaries �Ledwell et
al.,2 Polzin et al.,3 Kunze and Toole4�, supporting the con-
jecture that the internal wave field is the only serious candi-
date for supply of energy for vertical mixing in the open
ocean.

Recent in situ and remote-sensing observations clearly
show the presence of nonlinear internal waves �hereinafter
referred to as NLIWs� in marginal seas and coastal waters
�Ostrovsky and Stepanynts;5 Apel et al.,6 Sandstrom and
Oakey,7 Klymak and Moum,8 Hosegood et al.9, Scotti and
Pineda,10 Carter et al.11�. There are a number of ways
through which these waves can be generated such as inter-
action of long, first-mode internal tides with bottom topog-
raphy, lee-wave release, and wave-wave interactions. How-

ever, very little is known about the energetics and structure
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of these highly nonlinear internal waves and their ultimate
fate, especially as they propagate onshore into shoaling re-
gions �Vlasenko and Hutter12�. These NLIWs are likely to be
an integral link in the pathway between the internal wave
energy field in the deep ocean and turbulent dissipation.
Therefore, understanding the dynamics of these NLIWs has
far-reaching implications for numerous applications in the
coastal environment.

Theoretical descriptions of NLIWs are based almost uni-
versally on weakly nonlinear formulations based on
asymptotic expansions �e.g., Thorpe,13 Dauxois and Young,14

as well as the Korteweg–de Vries equation�. These ap-
proaches do not apply to large-amplitude overturning or
breaking internal waves. Several laboratory and numerical
studies have been performed on the interaction of internal
waves with submarine topography. In particular, when an
internal wave-field in a continuously stratified fluid encoun-
ters topography in which the slope matches the angle of the
internal wave group velocity, breaking occurs as a result of
focusing of internal wave energy along the slope �e.g., see
Phillips15�. This problem has been studied via direct numeri-
cal simulations by Slinn and Riley16 and Javam et al.17 and
in earlier laboratory experiments by Cacchione and
Wunsch,18 Ivey and Nokes,19 and Ivey et al.20. These authors
have found that the most significant effect of the breaking
process is the development of a nonlinear bolus �a vortex of
dense fluid� that moves up-slope, mixing fluid and dissipat-

ing energy in the process. At the field scale, Legg and
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Adcroft21 studied the interaction of the internal tide with
concave and convex slopes, and showed that both slope
types induce a similar amount of turbulence and mixing as
well as the generation of up-slope-propagating boluses. Field
scale measurements �Stanton and Ostrovsky,22 Carter et al.11�
associate enhanced turbulence levels with nonlinear internal
waves. For example, Klymak and Moum8 have observed
�probably for the first time� a sequence of three nonlinear
internal solitary waves of elevation over Oregon’s continen-
tal shelf and raise some unanswered questions with regard to
how they form, how far onshore they propagate, and an un-
derstanding of their eventual fate.

A key component in gaining improved understanding of
NLIWs deals with their energy flux budget. For a small-
amplitude linear wave with a wave characteristic slope s en-
countering a shelf break with topographic slope ��s, most
of the energy is transmitted �forward-reflected�, and the slope
is said to be subcritical. The converse is true for a supercriti-
cal slope ���s� with large amplitude where most of the
wave energy is reflected backwards from the topography. A
critical slope is obtained when �=s, for which the reflected
wave is parallel to the topography and focusing of wave
energy takes place. This leads to enhanced dissipation and
mixing in the bottom boundary layer. The dynamics is well
understood for linear and weakly nonlinear waves �Phillips,15

Craig,23 Thorpe,13 Dauxois and Young14�; however, the role
of the slope of the topography is neither fully recognized nor
completely understood in the strongly nonlinear case. Hence,
a fundamental understanding of the energy flux distribution
across a shelf break for NLIWs is warranted. To this end, our
study aims toward a better understanding of the energy flux
distribution for NLIWs across an idealized shelf break using
laboratory-scale numerical simulations.

In this paper, we present results from high-resolution
two-dimensional numerical simulations of the interaction of
a first-mode internal wave field with an idealized shelf break.
Our emphasis is to obtain an understanding of the partition-
ing of the internal wave energy over the course of the inter-
action process and to gain insight into the dynamics of the
onshore propagating internal boluses that form as a result of
the interaction of nonlinear internal waves with topography.
The numerical method and simulation setup is discussed in
Sec. II. The energetics of these waves are discussed in Sec.
III and conclusions are given in Sec. IV.

II. NUMERICAL METHOD AND PROBLEM
CONFIGURATION

The Navier-Stokes equations with the Boussinesq ap-
proximation and with constant kinematic viscosity are given
by

�u

�t
+ u · �u = −

1

�0
� p + ��2u −

g

�0
�k , �1�

subject to the continuity constraint � ·u=0, where � is the
�constant� kinematic viscosity. The density field evolves ac-

cording to
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�t
+ � · ��u� = ��2� , �2�

where � is the �constant� thermal diffusivity. Equations �1�
and �2� are computed with the large-eddy simulation code
developed by Fringer and Street24 in the two-dimensional
domain shown in Fig. 1. This code employs the fractional-
step method of Zang et al.25 to solve the Navier-Stokes and
scalar transport equations presented in Eqs. �1� and �2� using
a finite volume formulation on a generalized curvilinear co-
ordinate nonstaggered grid with a rigid lid. This code has
been extensively validated with a number of different studies
on geophysical fluid dynamics using its single-processor ver-
sion �Zang and Street,26 Zedler and Street,27 Fringer and
Street24� as well as its parallel version �Cui and Street28,29�.

For all the simulations, the initial stratification is given
by the background distribution �b�z�, which is linear and is
given by

��z,t = 0�
�0

− 1 =
�b�z�

�0
= −

��

�0
� z

d
� , �3�

with �� /�0=0.02, which results in a buoyancy frequency of
N=0.57 rad s−1 in a depth of d=60 cm. At the left boundary
of the domain shown in Fig. 1, we impose a first-mode in-
ternal wave given by

u�0,z,t� = U0 cos�mz�sin��t� , �4�

where U0 is the velocity amplitude of the forcing, m is the
vertical wavenumber corresponding to a mode-1 baroclinic
wave with m=	 /d, � is the forcing frequency, and u is the
cross-shore velocity component. Boundary conditions for the
cross-shore �horizontal� velocity u are no-slip on the bottom
boundary, free-slip at the top boundary, and no-flux at the
right boundary. The vertical velocity has a no-flux boundary
condition at both top and bottom boundaries, and free-slip
boundary conditions on all other walls, and the density field
has a gradient-free boundary condition on all walls. The
boundary condition given in Eq. �4� does not allow reflected
waves at the left boundary to radiate out of the domain.
Therefore, the simulations are halted before reflected waves
from the boundary reach the slope. The grid size is 512

128, with a maximum Courant number of 0.2. We use a

−5 2 −1

FIG. 1. Schematic of the computational setup that forms the domain for the
present simulations. The buoyancy frequency is fixed at N=0.57 rad/s, cor-
responding to a density difference of �� /�0=2% over the depth. The fre-
quency of the incoming mode-1 internal wave is fixed at �=0.33 rad/s and
�=2	 /k=1.713 m. Lines �I�, �II�, and �III� represent the transects used to
compute the energy flux in Sec. III B. The horizontal length L2 of the slope
and the on-shelf water depth ds are varied to obtain a range of slope angles
� such that the slope length Ls= �L2

2+ �d−ds�2�1/2=d=0.6 m is kept constant
for all runs. The on-shelf length L3 is varied such that the overall length is
L=8 m.
kinematic viscosity of �=10 m s and a thermal diffusiv-
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ity of �=10−6 m2 s−1, which gives a Prandtl number of Pr
=10. A rough estimate of the turbulent Reynolds number for
these flows, based on the largest turbulent overturning length
scale of Lc=5 cm and a characteristic overturning velocity of
U0=4 cm s−1, is ReT=200. The corresponding Kolmogorov
microscale is then k=Lc ReT

−3/4=0.94 mm. With a longitu-
dinal grid spacing of 15.6 mm and vertical grid spacings of
4.7 mm in the deep region and 1.6 mm in the shallow region,
the longitudinal grid spacing is about 15 times larger than the
Kolmogorov microscale and the largest vertical grid spacing
is 5 times larger.

III. ENERGETICS

Internal wave modes propagate horizontally because
they represent a superposition of phase-locked upward and
downward propagating internal wave beams, which are char-
acterized by both horizontal and vertical wavenumbers k and
m. Upon encountering topography, the upward and down-
ward propagating beams decouple and the dynamics is gov-
erned by the interaction of the beams with the topography.
With respect to beamlike propagation of internal waves, bot-
tom slopes are readily classified by the ratio � /s �Phillips15�,
where � is the bathymetric slope and s is the slope of the
internal wave energy characteristic, which is defined by

s = tan � =
k

m
= � �2 − f2

N2 − �2�1/2

, �5�

where � is the angle of the internal wave characteristic, � is
the wave frequency, f is twice the sine of latitude Coriolis
parameter, and N is the buoyancy frequency. Supercritical
slopes �� /s�1� correspond to topographic slopes that are
steeper than the wave characteristic slope, while subcritical
slopes �� /s�1� correspond to topographic slopes that are
flat compared to the wave characteristic slope. Critical slopes
�� /s=1� correspond to waves in which the angle of propa-
gation of the group velocity matches the topographic slope.

Linear first-mode internal waves in a uniformly stratified
fluid propagate horizontally at the first-mode internal wave
speed of �Kundu30�

cph =
�

k
=

d

	
�N2 − �2�1/2, �6�

where d is the water depth. While holding N and �, and
hence s, fixed, we carried out a series of simulations with
different topographic slopes �, such that � /s was varied from

TABLE I. List of simulations performed showing th

Runs � /s Fr=U0 /cph U0T / �	Ls�

1–8 0 0.06–0.78 –

9–18 0.25–1.5 0.06 0.05

19–28 0.25–1.5 0.45 0.41

29–38 0.25–1.5 0.78 0.71

39–46 1 0.06–0.78 0.05–0.71

47–53 0.5 0.45 0.41
0 to 1.5 and covered a broad range of sub- and supercritical
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slopes. In this study, the topographic slope variation is
achieved by changing the topographic amplitude given by
�d−ds� /d. We believe there is no unique way to obtain dif-
ferent values of � /s without altering either �d−ds� /d or
changing the frequency of the incoming wave field �which
would imply changing the incoming wave properties�. We
also varied the velocity amplitude U0 between 0.5 and
7 cm s−1, in order to vary the Froude number �Fr=U0 /cph�,
which ranged from 0.056 to 0.783. This yielded a parameter
space that allowed us to assess the energy flux distributions
for a wide range of conditions spanning from linear waves
up to conditions where nonlinear wave effects are strong.
Table I lists the parameter space covered by the simulations.

A. Density and velocity fields

Figure 2 depicts the density contours �isopycnals� for the
critical case �� /s=1� obtained by imposing a first-mode in-
ternal wave field at the left boundary of the domain shown in
Fig. 1 using Eq. �4�. Three cases with Fr=0.056, 0.447, and
0.783 are shown in this figure, corresponding to linear, non-
linear,and highly nonlinear waves, respectively, and the fre-
quency of the incoming wave is �=0.33 rad s−1 for all three
cases. This figure shows results at six points in time normal-
ized by the linear wave period T=2	 /� for the right half of
the domain starting at x=4.5 m. For the linear case �Fig.
2�a��, the isopycnal displacements are very small. For the
nonlinear and highly nonlinear cases �Figs. 2�b� and 2�c��,
the sequence depicts wave breaking and the formation of
up-slope surging bores that are ejected onto the shelf as
propagating internal boluses. For these high-Fr cases, the
incoming waves are large-scale features with amplitudes of
the order of half the depth of the water column and are in-
dicative of the features of the waves observed in the field by
Petruncio et al.31

Figures 3 and 4 show the horizontal velocity, vertical
velocity and density profiles at sections A-A �off-shelf� and
B-B �on-shelf� shown in Fig. 2 for the linear and highly
nonlinear cases, respectively, at time t /T=5.9. The velocity
profiles for the linear case �Figs. 3�a�, 3�b�, 4�a�, and 4�b��
show that the incoming wave field propagates as low-internal
modes both on- and off-shelf, with the stratification remain-
ing relatively unaltered �Figs. 3�c� and 4�c��. On the other
hand, the velocity profiles for the nonlinear cases �Figs. 3�d�,
3�e�, 4�d�, and 4�e�� indicate significant departures from the
mode-1 modal structure, indicating the generation of higher

ameter space covered. �h=	 /k, T=2	 /�.

�h �d−ds� /d Comments

– No-slope cases

0.17–0.72 Linear cases

0.17–0.72 Nonlinear cases

0.17–0.72 Highly nonlinear cases

0.57 Effects of nonlinearity

–1.4 0.33–0.66 Effects of slope lengthscale
e par

Ls /

–

0.7

0.7

0.7

0.7

0.7
modes as a result of the interaction with the topography. In
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particular, the density profile on-shelf �Fig. 4�f�� reveals the
presence of dense offshore water that is transported by the
on-shelf propagating internal boluses. These internal boluses
seen on the shelf are analogous to the nonlinear waves of
elevation observed by Carter et al.11 and Klymak and Moum8

in Monterey Bay and off the Oregon Coast, respectively. The

FIG. 2. Density contours of an internal wave interacting with a critical slope
for �a� a linear case with Fr=0.056, �b� a nonlinear case with Fr=0.447, and
�c� a highly nonlinear case with Fr=0.783. Both the nonlinear and highly
nonlinear cases show how the internal bolus propagates onshore as a result
of the interaction process �see Fig. 5 for a detail of the bolus core shown in
�c��. Contours of density are plotted every 0.2%.

FIG. 3. Velocity and density profiles at section A-A at t /T=5.9, for the
linear �a�–�c� and highly nonlinear �d�–�f� cases shown in Fig. 2. The ve-
locities are normalized by the velocity amplitudes of U0=0.005 and
0.07 m s−1 corresponding to the linear and highly nonlinear cases, respec-
tively, while the density profiles are normalized by the density difference of

−3
��=20 kg m .
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passage of these boluses displaces isopycnals locally and can
provide significant bursts of turbulent kinetic energy that can
contribute to diapycnal mixing and sediment resuspension.
The boluses have large onshore velocities contained within
their well-mixed cores as shown in Fig. 5, which depicts a
detail of the internal bolus shown in Fig. 2�c� at t /T=5.9.
The onshore propagation speed of these boluses coupled
with the circulation within their cores leads to large near-bed
velocities making these signatures prime candidates for en-
training and transporting mass.

B. Energy flux

The equation governing the energetics of NLIWs is ob-
tained by taking the dot product of equation �1� with u and
multiplying equation �2� by gz and adding the two resulting
equations to obtain

FIG. 4. Velocity and density profiles at section B-B at t /T=5.9, for the
linear �a�–�c� and highly nonlinear �d�–�f� cases shown in Fig. 2. The ve-
locities are normalized by the velocity amplitudes of U0=0.005 and
0.07 m s−1, corresponding to the linear and highly nonlinear cases, respec-
tively, while the density profiles are normalized by the density difference of
��=20 kg m−3.

FIG. 5. Velocity vectors superimposed on the density contours to show the
amplification of onshore velocities within the boluses. This figure is a
blown-up detail of the bolus shown in Fig. 2�c� at time t /T=5.9. The mag-
nitude of the single horizontal velocity vector in the right-hand center of the

−1
figure is 10 cm s . Waves propagate from left to right.
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�

�t
��0q + �gz� + � · f = − �0�k − 2�

�

�z
��g� , �7�

where q=u ·u /2 is the kinetic energy per unit mass, �k is the
viscous dissipation rate of kinetic energy and is given by
�k=��ui� �xj �ui� �xj , and the local energy flux is given by

f = u��0q + p + �gz� − � � q − � � ��gz� . �8�

Here, � is the dynamic viscosity. Integrating Eq. �7� in time
from t=0 to 6.6T, and from sections II to III in Fig. 1 and
over the depth gives

�E� + �E��III − �E��II = − � + �i, �9�

where, in units of J m−1, the change in total energy within the
control volume is given by

�E� = �
0

L2 �
−d

0

��0q + g�� − �b�z�dzdx , �10�

and, in units of J m−1, the time-integrated energy flux is
given by

E� = �
0

t

FE���d� , �11�

where, in units of W m−1, the depth-integrated energy flux is
given by

FE = �
−d

0 �u��0q + �gz + p� − �
�q

�x
− �

�

�x
��gz�	dz . �12�

In Eq. �9�, � is the integrated kinetic energy dissipation, and
�i is the time-integrated energy flux through the upper and
lower surfaces, i.e., �i=−2�g
0

t 
0
L2��top−�bottom�dxd� �as de-

32
fined in Winters et al. �, and the change in the total energy is
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computed by assuming that at t=0, the density field is given
by the background density field �b. To a good approximation,
the contribution of the diffusive terms to the energy flux is
negligible, and the depth-integrated energy flux reduces to

FE = �
−d

0

p�udz , �13�

where p�=�0q+�gz+ p. Splitting the pressure p into its hy-
drostatic �PH� and nonhydrostatic �PNH�, components then
gives p�=�0q+�gz+ pH+ pNH. Roughly 50% of the energy
flux is due to the density field, while 30% is due to the
nonhydrostatic pressure. A detailed analysis of the different
terms can be found in the work of Venayagamoorthy and
Fringer.33

Figure 6 shows the depth-integrated energy flux from
equation �13� as a function of time at locations �I�, �II�, and
�III� shown in Figure 1. Transects �II� and �III� represent
cross sections at the beginning and end of the shelf break and
define the edges of the control volume over which the analy-
sis in this study is performed. Results are shown for four
different ratios of slope angle to beam propagation angle,
i.e., � /s=0, 0.5, 1 and 1.5, depicting no-slope, subcritical,
critical, and supercritical slopes, respectively, and the Froude
number is fixed at Fr=0.447. All the fluxes have been nor-
malized by the estimate of energy flux of an incoming inter-
nal wave using linear theory �Kundu30�, for which

FL =
�0�U0

2

2k
d , �14�

where �0 is the reference density, � is the forcing frequency,
U0 is the forcing amplitude, d is the offshore depth, m

FIG. 6. Normalized energy fluxes FE

as function of time t /T at transects �I�,
�II�, and �III� shown in Fig. 1, for
� /s=0 �no-slope case�; � /s=0.5 �sub-
critical slope�; � /s=1 �critical slope�,
and � /s=1.5 �supercritical slope�; T
=19.2 s, Fr=U0 /cph=0.447.
=	 /d is the vertical wavenumber, and k is the horizontal
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wavenumber that is readily obtained from the dispersion re-
lation for internal waves. The energy flux FL given by Eq.
�14� is simply the integral of the product of the velocity and
pressure perturbations. Using the definition for the slope of
an internal wave group velocity characteristic from Eq. �5�,
after some manipulation it is easy to show that, in the ab-
sence of rotation �f =0�,

FL

�0
=

1

2
U0

2c1d
1

�1 + s2�1/2 , �15�

where c1 is the mode-1 baroclinic wave speed for a linear
hydrostatic ���N� internal wave and can be deduced from
Eq. �6� to be Nd /	. Equation �15� can then be put in nondi-
mensional form as

FL

F0
=

Frh
2

�1 + s2�1/2 , �16�

where F0= 1
2�0c1

3d is constant for all the simulations, and
Frh=U0 /c1 is also a Froude number based on the hydrostatic
linear wave speed c1. Equation �16� implies that the incident
linear energy flux grows quadratically with the Froude num-
ber for a given wave group velocity slope s. On the other
hand, for a given Froude number, the energy flux should
decrease with increasing wave slope s.

The lower peaks in the energy fluxes at transect �I� in
Figs. 6�d�, 6�g�, and 6�j�, signify the arrival of wave energy
at the left boundary, which has reflected from the slope. As
noted previously, the reflected energy does not radiate but
instead reflects back towards the slope. As a result, we halt
the simulations before this re-reflected energy contaminates
the energetics of interest. At transect �II� �Figs. 6�e�, 6�h�,
and 6�k��, the computed energy fluxes include both the inci-
dent energy flux coming from the waves approaching the
slope as well as wave energy flux that is reflected offshore
from the slope. Hence, they provide a measure of the com-
bined energy flux from incident and reflected waves; i.e.,
FE,i+FE,r. In order to extract the reflected portion of the en-
ergy flux at transect �II�, we use the energy flux computed at
the same location for the no-slope case �� /s=0� shown in
Fig. 6�b�. This provides a measure of the incident energy
flux, i.e., FE,i for all the runs for a given Fr. The difference
between FE,i obtained from the no-slope case and the mea-
sured fluxes for any other case with � /s�0 is the amount of
reflected energy flux �FE,r� from the slope for that particular
case. The transmitted �or forward-reflected� energy fluxes
�FE,t� are shown in Figs. 6�c�, 6�f�, 6�i�, and 6�l�. The trans-
mitted energy fluxes decrease significantly as � /s increases
due to increased reflection away from the slope as seen, for
example, in Fig. 6�k� for � /s=1.5. We find that as Fr in-
creases, the instantaneous energy fluxes that reach the shelf
for the near-critical slopes and beyond become intermittent
and occur due to the passage of the energetic internal bo-
luses.

Figure 7 shows the cumulative �time-integrated� hori-
zontal energy flux given in Eq. �11� normalized by FL /� for

the cases shown in Fig. 6. The effects of the reflection from
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the slope for steeper topographic slopes are clearly evident in
the reduced cumulative fluxes as shown in Figs. 7�b� and
7�c�.

From Eq. �9�, if we neglect the contribution of �i

�Fringer34�, then the energy budget can be approximated by

EI = ER + ET + ED, �17�

where, as depicted in the schematics shown in Fig. 8, the
cumulative incident energy is EI= �E��II,ns, the cumulative re-
flected energy is ER= �E��II,ns− �E��II,ws, and the cumulative
transmitted energy is ET= �E��III,ws, and ED= ��+�E��ws is the
energy change in the control volume due to mixing and dis-
sipation, where � is the integrated dissipation and �E� is
defined in Eq. �10�.

An understanding of the dynamics of the transmission
process can be gained by analyzing the ratio of transmitted to
incident energy in the cumulative sense. In Fig. 9, we show
the results of the cumulative transmitted, reflected and dissi-
pated energy fluxes for ten different values of � /s and for
three different values of the Froude number, i.e., Fr=0.056,
0.447, and 0.783, depicting linear, nonlinear, and highly non-
linear cases, respectively. For all Fr, the transmission ratio
ET /EI drops monotonically with � /s as shown in Fig. 9�a�.
For the linear case, most of the energy is transmitted for low
values of � /s, with the remaining energy dissipated onslope,
while for near-critical and supercritical slopes, the ratio of
reflected to incident energy ER /EI �Fig. 9�b�� increases as the
topographic slope steepens and asymptotes to 1 in the invi-
sicid limit as � /s→�, since we have chosen the slope length
Ls to be equal to the offshore water depth d. These results
corroborate well with linear theory. However, as Fr in-
creases, some interesting trends emerge. First, the transmit-
ted energy fluxes for subcritical slopes decrease with corre-
sponding increases in dissipation as shown in Fig. 9�c�,
whereas the transmitted energy fluxes for the near-critical

FIG. 7. Normalized cumulative energy fluxes E� as function of time t /T at
transects �I�, �II�, and �III� shown in Fig. 1. Solid lines: � /s=0 �no-slope
case�; dotted lines: � /s=0.5 �subcritical slope�; dash-dotted: � /s=1 �critical
slope�; dashed lines: � /s=1.5 �supercritical slope�; T=19.2 s; Fr=U0 /cph

=0.447.
and supercritical slopes are slightly higher for the nonlinear

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



076603-7 Numerical simulations of the interaction of internal waves Phys. Fluids 18, 076603 �2006�
case �Fr=0.447� than for the linear case �Fr=0.056�. This
suggests that there is an optimum Froude number that maxi-
mizes the transmission of the energy flux. Second, the re-
flected energy fluxes for the near-critical and supercritical
slopes are suppressed monotonically with increasing Fr as
shown in Fig. 9�b�. This loss can be attributed to the more
vigorous nature of the interaction of the large-amplitude in-
coming waves with the slope, with a significant amount of
the reflected energy being trapped within the slope region,
leading to enhanced levels of dissipation and possible mix-
ing. Overall, dissipation and mixing on the slope is enhanced
significantly as Fr increases with peak dissipation occurring
for the critical slope due to the intense focusing of wave
energy on-slope, while reflection is attenuated. The transmis-
sion rates for supercritical slopes are sustained mainly
through the highly energetic and intermittent bursts of energy
on-shelf brought about by the passage of the internal boluses
that form as a result of the nonlinear interaction with the
slope.

To investigate further the optimum level of nonlinearity
for a given value of � /s in the near-critical region, we ran
simulations with more values of Fr that cover the gaps in the
data represented in Fig. 9 for the critical slope. Figure 10
shows the ratio of cumulative transmitted to incident energy
flux as a function of Fr for � /s=1. Our results show almost
a plateau in the transmission ratios for Fr in the range of 0.22

FIG. 8. Schematic of the energy budget for the control volume bounded by
transects �II� and �III� in Fig. 1, where schematic �a� shows the no-slope case
�� /s=0�; schematic �b� shows a typical case with a shelf �� /s�0�. Sche-
matic �c� shows how the energy flux budget is closed by using schematics
�a� and �b� to obtain the incident and reflected energy fluxes; i.e., EI and ER,
respectively. The subscript ns implies “no-slope,” while the subscript ws
implies “with-slope.”
to 0.45 with a slight peak occurring at Fr=0.34. We also plot

Downloaded 16 Oct 2006 to 171.64.53.158. Redistribution subject to 
the transmission ratio as a function of the parameter FrE

=U0T / �	Ls�, which gives a measure of the particle excur-
sion over half the wave period T normalized by the topo-
graphic lengthscale Ls. The corresponding values of FrE

where the plateau in the transmission occurs are in the range
0.2–0.4. It is plausible to suggest that there is a range of
optimum level of nonlinearity where the transmission is
maximum for slopes that are in the near-critical region. The
peak transmission occurs as a result of the interaction of the
wave field with the slope in such a way that tends to maxi-
mize the up-slope surge of fluid onto the shelf for an opti-
mum degree of nonlinearity, beyond which dissipation and
mixing overwhelm the dynamics. This alludes to the need for
three-dimensional simulations in order gain a more detailed
understanding of the interaction dynamics on the slope.

FIG. 9. Cumulative energy fluxes normalized by the cumulative incident
energy flux EI, as a function of topographic steepness: �a� cumulative trans-
mitted energy fluxes; �b� cumulative reflected energy fluxes; �c� cumulative
dissipation and mixing. Solid lines: linear case with Fr=0.056; dashed-
dotted lines: nonlinear case with Fr=0.447; dashed lines: highly nonlinear
case with Fr=0.783.

FIG. 10. Cumulative transmitted energy flux as a function of Froude num-
bers, i.e., Fr=U0 /cph �bottom x axis� and FrE=U0T / �	Ls� �top x axis�, for

critical slope �� /s=1�.
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For the main set of runs we have discussed, we held the
slope length Ls constant. However, another important param-
eter that will influence the energetics is the ratio of the topo-
graphic lengthscale Ls to the half-wavelength �h of the in-
coming wave for any given topographic slope �. Due to the
computational costs involved in investigating the entire pa-
rameter space resulting from the need for increased domain
sizes that have to be computed, we restricted our investiga-
tion of the ratio Ls /�h to single values of � /s=0.5 and Fr
=0.447. With the same incoming wave with a frequency of
�=0.33 rad s−1, we varied the slope length Ls from 0.6 to
1.2 m in increments of 0.1 m, which yielded values of Ls /�h

in the range 0.7–1.4. The results of the cumulative transmit-
ted energy flux normalized by the cumulative incident energy
flux EI, as a function of Ls /�h are shown in Fig. 11. The
transmitted energy flux drops monotonically with increasing
values of Ls /�h. This is indeed predictable since the relative
excursion of the fluid particles will decrease as the topo-
graphic scale increases, which results in more on-slope dis-
sipation.

IV. CONCLUSION

We have presented two-dimensional high-resolution
simulations of internal waves interacting with a sloped
coastal shelf break. The simulations described in this study
have covered a range of wave amplitudes spanning from lin-
ear waves up to strongly nonlinear waves where internal bo-
luses develop due to the complex interaction of the incoming
wave with the topography.

As expected, for small-amplitude �low-Fr� waves, most
of the energy is transmitted for subcritical �flat� topography
�� /s�1� and a large fraction of the energy is reflected for
supercritical �steep� topography �� /s�1�. However, as non-
linearity increases, the transmission rates drop slightly from
the linear case for subcritical slopes mainly due to corre-
sponding increases in dissipation. On the other hand, for
slopes close to critical and beyond, the transmission of en-
ergy does not differ much from its linear counterpart and in
fact does increase slightly and then decreases as Fr increases.
We hypothesize that this sustained transmission occurs due
to the formation of the nonlinear internal boluses due to
complex interaction of the incoming wave with the topogra-
phy and subsequent propulsion of these dense vortex cores

FIG. 11. Cumulative transmitted energy flux as a function of topographic
scale Ls /�h for a subcritical slope � /s=0.5 and Froude number Fr=0.447.
onto the shelf, providing significant intermittent bursts of
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energy. The more profound impact is on the amount of re-
flected energy in the near-critical to supercritical regions.
Here, nonlinearity drastically suppresses reflection in a
monotonic way. This occurs due to more vigorous interaction
of the wave field with the slope leading to the trapping of
reflected waves within the slope region resulting in enhanced
dissipation and mixing.

The calculations for varying Froude numbers for the
critical slope indicate that there is an optimum degree of
nonlinearity that tends to maximize transmission. Beyond the
optimum Froude number, dissipation overwhelms both trans-
mission and reflection. Furthermore, the instantaneous trans-
mitted fluxes for the near-critical and supercritical slopes are
highly intermittent and provide significant bursts of energy
on-shelf. The internal boluses that transmit this energy pro-
vide an effective mechanism for transporting mass onshore
and are a likely source of significant energy for diapycnal
mixing on coastal shelves.

While the overall energetics are well-described by two-
dimensional simulations, the mechanisms through which
these nonlinear internal waves interact with the surrounding
fluid are inherently three-dimensional. Further work is in
progress to extend our calculations to three dimensions in
order to obtain a better understanding of the turbulent dy-
namics, instabilities, mixing, and dissipation associated with
these highly nonlinear waves and the discussion is left to a
subsequent paper.

We note that application of the results reported here to
real geophysical flows is limited by the low Reynolds num-
ber of the simulations. Therefore, one useful extension would
be to expand the Reynolds number range of the simulations
so as to clarify its influence on the interaction processes. For
example, at higher Reynolds numbers, it is likely that the
three-dimensionality will be especially important in the
boundary layer as well as in the overturning regions.
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