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Abstract: Turbulent flows over bumpy walls are ubiquitous and pose a fundamental challenge to various engineering applications such as
coastal boundary layers, drag on ships, hydraulic conveyance networks, and bluff body aerodynamics, to name a few. In this study, we used
direct numerical simulations (DNS) along with a direct-forcing immersed boundary method (IBM) to understand the connection between the
roughness geometry and the mean flow drag. A bumpy wall was constructed using an array of randomly oriented ellipsoids characterized by
the Corey shape factor (Co). We found that our results exactly validated the experimental studies by Nikuradse for sand-grain type roughness
(Co ¼ 1.0). Additionally, we observed that the mean flow drag increased for decreasing Co through an increase in the form-drag contribution
and a decrease in the viscous drag. We also developed a relationship between the statistics of the bottom height distribution and the roughness
parameter (z0) that may help explain the spread observed in the drag coefficient predicted when using conventional tools such as the Moody
diagram. DOI: 10.1061/JHEND8.HYENG-13666. This work is made available under the terms of the Creative Commons Attribution 4.0
International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Turbulent boundary layers over rough walls are of significant in-
terest to a variety of disciplines including the aviation industry
(Spalart and Mclean 2011), shipping industry (Murphy et al. 2018),
hydraulic conveyance networks (Moody 1944), and estuarine or
coastal modeling (Grant and Madsen 1986), to name a few. A
thorough review of recent advances in characterization of the flow
drag over rough walls was presented by Chung et al. (2021). They
showed a large uncertainty of roughly �11% still exists in most
engineering applications of flow drag prediction. Although the ab-
solute magnitude of the uncertainty may not seem substantial, the
same study suggested that these uncertainties have an expected cost
of the order of billions of US dollars annually for naval applications
(Chung et al. 2021). Consequently, understanding the uncertainty
around the flow drag is a fruitful endeavor not only from a funda-
mental turbulence physics standpoint but from an engineering
application perspective. Thus, a central question has aimed at speci-
fying the flow drag as a function of the properties of the underlying
roughness features.

Canonical flat-wall channel flows have been extensively studied
because they encapsulate rich turbulence dynamics that support a
wide range of applications (Kim et al. 1987; Tamburrino and
Gulliver 1999; López and García 1999; Lozano-Durán et al. 2012;
Rodi 2017). These studies have validated the analytical predictions
of the time-averaged velocity profile close to the wall (i.e., the
linear velocity region) and away from the wall (i.e., the log-law),
as shown in Fig. 1. For canonical flat-wall channel flows, the

time-averaged velocity profile close to the wall obeys the law of
the wall in that the velocity is linearly dependent on the distance
from the wall (von Kármán 1930). This region is followed by the
buffer layer that does not have a universal first principles–based
model, even though most of the turbulence production occurs
within this region (Pope 2000). Townsend (1976) suggested that
in the region above the buffer layer, the time-averaged velocity
profile is given by

U
u�

¼ 1

κ
ln

�
x3u�
ν

�
þ B ð1Þ

where u� ≡
ffiffiffiffiffiffiffiffiffiffi
τ=ρ0

p
is the friction velocity; τ = bottom stress; ρ0 =

fluid density; κ = von Kármán constant; ν = kinematic viscosity of
the fluid; and B≈ 5.2 = empirical constant, which is a weak func-
tion of the Reynolds number. This region is called the log-law
region and has been the subject of a wide range of studies, as pre-
viously mentioned. As for the wake region above the log-law,
there is some empirical understanding, although this region has
received less attention than the others (Pope 2000).

Although flat-wall channels are relatively well understood,
bumpy-wall channel flows have so far evaded such a universal
understanding. The primary challenge has been to universally con-
nect the roughness characteristics to the time-averaged velocity
profile and bottom stress. Clauser (1954) and Hama (1954) inde-
pendently proposed that roughness acts to shift the log-law region
downward when compared to the flat-wall channel cases, as shown
in Fig. 1. Consequently, the log-law velocity takes on the form

U
u�

¼ 1

κ
log

�
x3 − ks

z0

�
ð2Þ

where ks = mean physical roughness height; z0 ≡ ks=αk is the
reference height that sets the location of the log-law; and αk =
regression parameter that best fits the log-law. Townsend (1976)
hypothesized that for sufficient scale separation (i.e., large
Reynolds number), the turbulence within the log-law region is self
similar and that the wall boundary conditions set z0. Nikuradse
(1933), in his seminal work, suggested that for sand-grain type
roughness and large Reynolds numbers, the reference height for
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bumpy walls is z0 ¼ ks=30. Following the work by Nikuradse
(1933), many studies have focused on characterizing non–sand
grain type rough walls based on bulk statistics such as higher mo-
ments of the probability distribution of the roughness heights
(Thakkar et al. 2017), regularly spaced identical roughness ele-
ments (Volino et al. 2011; Schultz and Flack 2009; Singh et al.
2007), and randomly oriented ellipsoidal roughness elements
(Yuan and Piomelli 2014). Owing to the large number of nondi-
mensional parameters needed to characterize the rough wall, most
of the literature suggests a lack of universal scaling for the velocity
shift in the transitionally rough flow regime. Thakkar et al. (2017)
showed that the roughness characteristics such as the root-mean-
squared roughness height can be used to characterize the peak tur-
bulent kinetic energy for rough walls typically used in industrial

applications. In geophysically relevant flows, Scotti (2006) vali-
dated a novel direct forcing immersed boundary method (IBM)
with experimental results and observed that the turbulent statistics
along with the dissipation characteristics can be accurately pre-
dicted. Scotti (2006) generated the bumpy wall using a set of ran-
domly oriented ellipsoids, thus eliminating the dependence of
streamwise and spanwise spacing length scales on the parameters
of interest. This method has been further validated to understand
the turbulent kinetic energy and Reynolds stress budgets in boun-
dary layers (Yuan and Piomelli 2014, 2015).

The discussion presented in Scotti (2006) suggested that the
bumpy wall generated using randomly oriented ellipsoids has a
prescribed set of semiaxes lengths for the individual roughness
elements. Using these lengths, we can define the Corey shape factor
as (Corey 1949)

Co ¼
αksffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðβksÞðγksÞ

p ¼ αffiffiffiffiffiffi
βγ

p ð3Þ

where ks = mean roughness height; α, β, and γ = nonzero constants
defined such that αks = minor semiaxis length; βks = major semi-
axis length; and γks = intermediate semiaxis length. Based on the
shape characterization defined in Eq. (3), Scotti (2006) prescribed
Co ≈ 0.6, which is expected to exhibit a mean flow drag that is
larger than that for the case with roughness elements with Co ¼ 1,
that is, sand-grain–type spherical roughness elements (Corey 1949;
Julien 2010). The larger mean flow drag occurs due to flow sep-
aration because the roughness elements are relatively taller for
Co ¼ 0.6 when compared to Co ¼ 1.0, thus increasing the form
drag. Although the work of Corey (1949) dealt with the drag force
on the vertical settling of sedimentary particles, the Corey shape
factor can be used to characterize general properties of the rough-
ness. For example, as shown in Fig. 2, for the same mean roughness
height (ks), the roughness function can be different based on the
Corey shape factor (Co). These observations provide sufficient
motivation to investigate the effect of changing Co on the flow drag
as a systematic characterization of engineering-based roughness
features.

In this study, we quantified the effect of changing the Corey
shape factor on the flow drag. Direct numerical simulations of a
turbulent channel over varying Co were used to present the first-
order statistics and comment on the flow drag. Lower-cost
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Fig. 1. (Color) Time-averaged velocity profiles for three cases with
varying wall boundary conditions. The red markers correspond to
canonical flat-wall channel flow, the magenta line corresponds to a
bumpy-wall channel with hydraulically smooth wall conditions, and
the blue line corresponds to a bumpy-wall channel with hydraulically
transitional wall conditions. The text at the top of the figure marks the
various regions in the canonical flat-wall channel case. These cases
have identical friction Reynolds numbers (i.e., Re� ≡ u�H=ν ¼ 350).

Fig. 2. (Color) (a) Comparison of the area fraction ψr as a function of distance from the wall (xþ3 ) for identical mean roughness height (ks) and
different Corey shape factor (Co); inset provides a definition sketch for the ellipsoidal semiaxes α, β, and γ, respectively; and (b and c) the
arrangement of individual roughness elements along the streamwise direction of the channel. The nondimensionalization is presented using the
wall units corresponding to Re� ¼ 350.
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simulations with minimal-span channels were used to estimate the
flow drag over a larger number of simulations with different Co.
Last, we connect the roughness characteristics to the expected
mean flow drag and present concluding remarks.

Problem Formulation

Governing Equations and Computational Framework

We simulated a steady channel flow with direct numerical simula-
tion (DNS) in which we solve the incompressible Navier–Stokes
equations

∂tui þ ∂jðujuiÞ ¼ − 1

ρ0
∂ipþ ν∂j∂jui þΠcδi1 þ FIBM ð4Þ

subject to the continuity equation

∂iui ¼ 0 ð5Þ
where t = time; ui = velocity vector; xj = coordinate vector; ρ0 =
density of the fluid; p = pressure; ν = kinematic viscosity of the
fluid; Πc = driving pressure gradient; δij = Kronecker delta func-
tion; and FIBM = immersed boundary force used to model the effect
of the roughness elements. The coordinate axes x1, x2, and x3
are aligned in the streamwise, spanwise, and vertical directions, re-
spectively. The channel is periodic in the streamwise and spanwise
directions, whereas a no-slip boundary condition is imposed at the
bottom wall where the roughness elements are located. The top
wall has boundary conditions given by

u3ðx3 ¼ HÞ ¼ 0;
∂ui
∂x3 ðx3 ¼ HÞ ¼ 0; ∀ i ∈ 1; 2 ð6Þ

where H = channel depth.
The governing equations were solved with a direct-numerical

simulation code that had been extensively validated in previous
studies of turbulent channel flows (Lozano-Durán and Bae 2016,
2019; Patil and Fringer 2022). In the code, all terms in the momen-
tum equation are discretized in space with second-order accurate
finite-difference schemes. In time, the fractional-step method
(Kim and Moin 1985) is used along with a third-order accurate
Runge–Kutta time-advancement scheme (Rai and Moin 1991).
The advection terms are discretized in time explicitly, whereas
the viscous terms are discretized implicitly to eliminate the stability
constraint associated with viscous diffusion where the vertical grid
resolution is refined. The pressure-Poisson equation was solved us-
ing a direct-Fourier–based method, as detailed in Costa (2018).
Fourier transforms are applied in the x1 (streamwise) and x2 (span-
wise) directions, which have uniform grid spacing, whereas a finite-
difference method is applied in the vertical, which can have variable
grid spacing. These discretizations result in tridiagonal systems for
the horizontal Fourier modes that are solved efficiently with a tri-
diagonal solver. A bumpy wall was introduced with a direct forcing
immersed boundary method based on the method proposed by
Scotti (2006). The bumpy wall was generated by placing randomly
oriented ellipsoids with fixed semiaxes such that the mean rough-
ness height could be estimated a priori through the roughness func-
tion (ψr), which is the area fraction as a function of height, as
shown in Fig. 2. Here, the area fraction at a given vertical coordi-
nate is given by Afðx3Þ ¼ 2π2H2½1 − ψrðx3Þ�. Additional details of
the computational framework can be found in Patil and Fringer
(2022). As shown by Jiménez and Moin (1991) and Flores and
Jiménez (2010), the near-wall, nonlinear turbulent kinetic energy
production cycle maintains “healthy turbulence” for wall-bounded

flows. The study by Jiménez and Moin (1991) provided crucial
insights into the statistical flow properties and elucidated the geo-
metric requirements for “healthy turbulence” in channel flow
geometries, also called minimal-span channels. This concept of the
minimal-span channel was subsequently used to understand the
mean flow drag without resolving the entire velocity profile (Chung
et al. 2015; MacDonald et al. 2017). As the name indicates, the
minimal-span channels limit the domain size in the spanwise direc-
tion such that the flow domain resolves the minimal dynamics
(i.e., the interaction of two streamwise streaks) required to correctly
resolve the near-wall region that is responsible for most of the tur-
bulence production (Jiménez and Moin 1991; Flores and Jiménez
2010; Pope 2000). As a result, by correctly tuning the domain size
in the spanwise direction, the mean velocity profile can be resolved
adequately up to xþ3 ≡ x3u�=ν ≈ 160 (Jiménez and Moin 1991;
Flores and Jiménez 2010; Chung et al. 2015; MacDonald et al.
2017).

Simulation Parameters

We define the drag coefficient as

Cd ¼
u2�
U2

ð7Þ

where u� ≡
ffiffiffiffiffiffiffiffiffiffi
τ=ρ0

p
is the friction velocity; τ = time-averaged bot-

tom stress averaged over the bottom boundary; and U = domain-
integrated and time-averaged streamwise velocity. The friction
velocity is fixed by choosing the driving pressure gradient Πc ¼
u2�=H, which in turn ensures that the bottom stress is given by
τ ¼ ρ0u2�. As a result, because u� is fixed, the drag coefficient
changes due to changes in U. In this problem, there are seven rel-
evant parameters: the bottom stress (τ=ρ0), velocity (U), channel
depth (H), kinematic viscosity of the fluid (ν), and the three semi-
axis lengths of the ellipsoid (αks, βks, and γks). Additionally, there
are two rotation angles (uniformly distributed) that are required to
define the Euler angle rotations of the ellipsoids. However, because
there are a relatively large number of roughness elements, it is
assumed that the effect of sampling the rotation angles is not sub-
stantial, as shown in Yuan and Piomelli (2014). Thus, using the
Buckingham-pi theorem, the drag coefficient can be shown to have
the functional dependence

Cd ≡ τ
ρ0U2

≡
�
u�
U

�
2

¼ G
�
Re;Co;

H

ks
; Sp

�
ð8Þ

where Re≡ UH=ν is the Reynolds number; Co = Corey shape
factor defined in Eq. (3); H=ks = blocking factor; and Sp ≡
ðαβ=γ2Þ1=3 is the sphericity of the ellipsoids. In Eq. (8), the last
three terms on the right-hand side of the equation depend on the
statistical properties of the bed. Therefore, rather than conducting
an exhaustive study of the effects of the bed parameters, we focused
on the effects of Co while holding H=ks fixed and then related the
effective bottom roughness to the statistical properties of the bed.
The sphericity (Sp) is not held constant, although we minimized its
effects by ensuring Sp ≥ 0.84.

To understand the effect of Co, we chose friction Reynolds num-
bers 350 and 700, fixed H=ks ¼ 13.15, and ran a set of full-span
simulations along with a series of minimal-span channel flows to
extend the range of Co while limiting the computational cost. To
directly compare the flat wall cases to the bumpy wall cases, Jiménez
(2004) recommended H=ks > 40, such that the change in the ef-
fective depth does not significantly affect the comparison. However,
because all the bumpy wall cases have identical values of H=ks,
they can be compared directly. The relation h·iþ ≡ h·iu�=ν indicates

© ASCE 04023049-3 J. Hydraul. Eng.
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nondimensionalization using wall units unless specified otherwise.
As shown in Table 1, we ran a set of 13 simulations to understand
the effect of changing Co and Re� on the mean flow drag.

The full-span channels had dimensions 2πH × πH ×H and
were discretized using 768 × 512 × 256 grid points in the stream-
wise, spanwise, and vertical directions, respectively. Uniform grid
spacing was used to resolve the roughness region, beyond which
hyperbolic tangent grid stretching was used. For Re� ¼ 700, this
gave Δxþ1 ¼ 5.73, Δxþ2 ¼ 4.30, and Δxþ3;min ¼ 0.66 over the
roughness region andΔxþ3;max ¼ 10.0 at the top of the channel. The
dimensions of the minimal-span channels were 2πH × 200Δxþ2 ×H
and discretized using 768 × 64 × 256 grid points in the streamwise,
spanwise, and vertical directions, respectively. For all simulations,
a time-step size of Δtþ ≡ u2�Δt=ν ¼ 0.045 was used, based on a
maximum Courant number of 0.4. All bumpy wall simulations cor-
responded to hydraulically transitional flow conditions, that is,
4 ≤ u�ks=ν ≤ 70, with u�ks=ν ¼ 26.6 and u�ks=ν ¼ 53.2 for
Re� ¼ 350 and Re� ¼ 700, respectively. Ideally, for DNS, higher-
order methods are preferred, although the deficiencies inherent to
the second-order accurate method can be alleviated with grid re-
finement for the requisite scales of interest, as discussed in Moin
and Verzicco (2016). For the simulations carried out in this paper,
the region that encapsulates the roughness features was uniformly
discretized with a vertical grid resolution ofΔxþ3 ¼ 0.6 < 1.0. This
grid resolution accurately resolved the flow features that correctly
predict the Reynolds-stress dynamics such that the relative residual
in computing the turbulent kinetic energy budget was less than 5%.
Additionally, implementing boundary conditions and the immersed
boundary method are relatively straightforward for second-order
numerical stencils when compared to higher-order stencils or spec-
tral methods. As a result, despite the second-order accurate spatial
discretization, the present computational framework ensured accu-
rate simulation of turbulent flows without introducing additional
computational costs while reducing the model complexity.

The channel flow simulations were initialized with a flow field
from precursor simulations interpolated and scaled to match the
friction Reynolds number. The simulations were run for a total
of 15 eddy-turnover times (Tϵ ¼ H=u�) with an initial transient
of 10Tϵ. Time-averaged statistics discussed in this paper were aver-
aged over the last 5Tϵ unless otherwise specified. The flow is said
to be statistically converged when the total stress profile above the
roughness elements follows the linear stress profile as discussed in
Patil and Fringer (2022). The full-span channels were run on 256
central processing units (CPU) and required about 276,500 CPU
hours to simulate a total of 15 eddy-turnover times for both values

of the Reynolds numbers. The minimal-span channels were run on
32 CPUs and required 7,700 CPU hours to simulate a total of 15
eddy-turnover times, reflecting savings in computational cost by a
factor of 36 when compared to the full-span simulations.

Results

Mean and Root-Mean-Squared Velocity Profiles

Changing the parameters and their impact on the mean flow drag
can be inferred by observing the location of the log-law region
in the time-averaged and planform-averaged velocity profiles.
Fig. 3(a) shows a comparison of the time-averaged and planform-
averaged streamwise velocity for the full-span channel flow cases.
Comparing the velocity profiles to the canonical flat-wall channel
case (CF), the presence of roughness decreased the mean flow U
and thus increased the bottom drag coefficient for the bumpy
wall cases. The bumpy wall log-law is given by Eq. (2), where
Nikuradse (1933) found that z0 ¼ ks=30 for sand-grain type rough-
ness (i.e., Co ¼ 1.0). As shown in Fig. 3, the red dashed line cor-
responds to the log-law estimate given by Eq. (2) and the Nikuradse
(1933) estimate for z0. Case C350C1 exactly matched this pre-
diction, and, more importantly, z0 was not regressed, unlike in
the other cases (i.e., Co ¼ 0.6). The mean flow drag for case
C700C1 was larger when compared to case C350C1 because the
drag increased with increasing Re�. A similar observation can be
made when case C700C06 is compared to case C350C06. The
full-span channel results suggest that there was a consistent in-
crease in the mean flow drag when decreasing Co for the two Re�
considered in this study.

To further understand the effect of Co on the mean flow drag, we
validated the use of minimal-span channels (Jiménez andMoin 1991;
Chung et al. 2015; MacDonald et al. 2017). As seen in Fig. 3(a), as
the spanwise domain was restricted to incorporate the interaction of
just two streamwise streaks, the velocity profiles in the minimal-
span channels matched the full-span counterparts for xþ3 ≲ 160,
beyond which the profiles deviated from the log law. Therefore,
because minimal-span channels accurately captured the near-wall
velocity profiles, we used the minimal-span channels to extend the
range of Co without imposing the large computational cost that
would be required for the full-span channel cases.

In addition to the mean velocity profiles, there were distinct
changes observed in the root-mean-squared (RMS) velocity profiles,
as shown in Fig. 3(b). First, for cases with Co ¼ 0.6, there was a

Table 1. Simulations carried out in this study, where the first Chnumi corresponds to the friction Reynolds number, and the following Chnumi stands for the
Corey shape factor. Thus, case C350C1 corresponds to a channel with a friction Reynolds number of 350 and a Corey shape factor of 1. All simulations have
H=ks ¼ 13.15. Case names starting with the letter M correspond to the minimal-span channel simulations

Case name Description Re� Co Sp

CF Flat wall, full-span channel 350 — —
C350C1 Bumpy wall, full-span channel 350 1.0 1.000
C350C06 Bumpy wall, full-span channel 350 0.6 0.94
C700C1 Bumpy wall, full-span channel 700 1.0 1.000
C700C06 Bumpy wall, full-span channel 700 0.6 0.94
MC350C1 Bumpy wall, minimal-span channel 350 1.0 1.000
MC350C08 Bumpy wall, minimal-span channel 350 0.8 0.97
MC350C06 Bumpy wall, minimal-span channel 350 0.6 0.94
MC350C04 Bumpy wall, minimal-span channel 350 0.4 0.84
MC700C1 Bumpy wall, minimal-span channel 350 1.0 1.000
MC700C08 Bumpy wall, minimal-span channel 350 0.8 0.97
MC700C06 Bumpy wall, minimal-span channel 350 0.6 0.94
MC700C04 Bumpy wall, minimal-span channel 350 0.4 0.84
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strong decrease in the RMS velocity components when compared
to the case with Co ¼ 1.0 in the near-wall region. Further away
from the wall, cases with Co ¼ 0.6 were identical to those with
Co ¼ 1.0, further confirming the decoupled nature of the near-
wall and outer regions of the flow (Townsend 1976). Similar mean
flow response for the two Reynolds numbers suggested that the
effect of Co was to modify the wall boundary condition such that
decreasing values of Co resulted in a larger effective z0. As for the
Reynolds and viscous stress profiles, most of the variations oc-
curred in the vicinity of the roughness elements. For the viscous
stress, there was a prominent decrease in the maximum value with
decreasing Co. Additionally, as the friction Reynolds number in-
creased, the relative contribution of the viscous stress decreased.
These changes in the viscous stress profiles support the hypoth-
esis that the stress contribution due to flow separation is expected
to increase at the expense of the viscous stress for decreasing Co

(discussed later). The Reynolds stress profiles, on the other hand,
were independent of Co and followed the linear stress (blue
dashed line) profile as expected.

Drag Coefficient

To compare the drag coefficient for the full-span and minimal-span
channels, we define the drag coefficient

Cr
d ¼

�
u�
Ur

�
2

ð9Þ

where Ur = time-averaged and planform-averaged streamwise
velocity evaluated at xþ3 ¼ 120. This definition of the drag coeffi-
cient allows for comparison of the full-span and minimal-span
channels for cases where the full log-law velocity profile may
not be available. Such a definition of the drag coefficient is quite
common, especially in field experiments where only point mea-
surements may be available (Egan et al. 2019). Fig. 4 shows a
comparison of the drag coefficient for all cases detailed in Table 1.
The overall trend was that with decreasing values of Co, there was
an increase in the drag coefficient for the two friction Reynolds
numbers considered. Additionally, the drag coefficient predicted
using the minimal-span channels was consistent with the full-span
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Fig. 3. (Color) (a) Comparison of time-averaged and planform-averaged velocity profiles for the full-span channel flow cases (lines) and minimal-
span channel flow cases (markers). The magenta solid line marks the canonical channel flow case with Re� ¼ 350. The red dashed line marks the
location of the log-law fit where z0 ¼ ks=30, as suggested by Nikuradse (1933). For clarity, the time-averaged and planform-averaged velocity
profiles for cases MC350C08, MC350C04, MC700C08, and MC700C04 are not shown; and (b) comparison of the root-mean-squared (RMS)
velocity profiles for the full-span channels (right of the zero mark on the x-axis) and the Reynolds and viscous stresses (left of the zero mark
on the x-axis). The blue dashed line marks the total linear stress profile expected for channel flow cases.
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Fig. 4. (Color) (a) Comparison of the drag coefficient for varying values of the Corey shape factor (Co). Filled data markers correspond to full-span
channel cases, whereas empty markers correspond to minimal-span channel cases. Black markers indicate Re� ¼ 700, whereas red markers indicate
Re� ¼ 350; and (b) same data as panel (a) but normalized using the drag coefficient for Co ¼ 1 such that the y-axis represents the relative gain (Γ) of
the drag coefficient for decreasing Co.
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channels, providing further impetus to use the concept of minimal-
span channels to predict the mean flow drag (Chung et al. 2015;
MacDonald et al. 2017). For Re� ¼ 350, the drag coefficient in-
creased as Co decreased until about Co ¼ 0.6, beyond which Cr

d
saturated and started to decrease slightly. However, for Re� ¼ 700,
a monotonic increase in the drag coefficient was observed with de-
creasing Co. Because the estimate of Cr

d is sensitive to zref , Cr
d

seemed to saturate for Re� ¼ 350 but increased monotonically for
Re� ¼ 700. Although it is unclear why case MC350C04 appears to
be an outlier in the overall trend, it is omitted in the following
analysis. The value of Cr

d was more sensitive to Co for higher
Re�, which is a result of the higher contribution of the form drag
at higher Re�, as discussed later. It is expected that for increasing
values of Re�, the drag coefficient becomes independent of Re�,
similar to the behavior of pipe friction in the Moody chart. The
independent behavior of the transition to Re� is expected to occur
at lower Re� for increasing relative roughness such that once the
flow is sufficiently hydraulically rough (i.e., Rek ≫ 70), the drag
coefficient will asymptote to a constant value. Because of the
relatively low values of Re� in this paper, due to computational
constraints, there was a nontrivial dependence of the mean flow
drag on Re� for identical values of the Corey shape factor. As a
result, for identical values of Co and ks, the mean flow drag
changed nontrivially.

Another way to understand the effect of changing the geometry
of the bumps is through changes in the roughness parameter z0, as
shown in Fig. 5. For the full-span cases, z0 can be regressed to best
fit the log law [Eq. (2)] because the log-law region is well resolved.
This is evident in Fig. 3, which shows that the minimal-span chan-
nels reproduced the full-span velocity profiles. However, for cases
without companion full-span channels (Co ¼ 0.4, 0.8), the lack of a
significant log law region did not allow such a regression to com-
pute z0. Consequently, to enable consistent comparison between
the full-span and minimal-span channels, zr0 was inferred from the
log law at a reference height of zref ¼ 120ν=u�, such that

zr0 ¼ ðzref − ksÞ exp
�
− κffiffiffiffiffiffiffi

Cr
D

p
�

ð10Þ

where Cr
D = drag coefficient defined in Eq. (9). Fig. 5(a) suggests a

similar overall trend as observed from the drag coefficient for
changing Co and Re�. Additionally, it is clear that for increasing

values of Co, αk increased, suggesting that the roughness height
zr0 decreased for increasing Co.

Although these observations provide a consistent way to relate
the roughness characteristics, it is often more practical to relate the
roughness height zr0 to statistical properties of the bed height in
addition to the mean roughness (bed) height. Indeed, the results in
the paper show very clearly that the bottom drag varied signifi-
cantly through changes in Co even though ks was constant for all
simulations. To relate z0 to the statistical properties of the bed, we
calculated the standard deviation of the bed height

kσs ¼
�
1

N

XN
i¼1

ðkis − ksÞ2
�1=2

ð11Þ

where kis = height of each of the ellipsoids; and N ≈ 360 is the
number of ellipsoids (N is approximate because the number of el-
lipsoids that can fit on the bottom wall is subject to the random
orientation angles). We then regressed the standard deviation to the
roughness height with zr0 ¼ χkσs , where χ is the regression parameter.
As shown in Fig. 5(b), good correlation can be observed between kσs
and the roughness parameter; that is, zr0, where χðRe� ¼ 700Þ ¼
0.188 and χðRe� ¼ 350Þ ¼ 0.112. For Re� ¼ 350, the data point
for Co ¼ 0.4 was not included in the regression because it appears
to be an outlier. Although it is unclear why this point was an outlier,
we expect this to be a consequence of the minimal-span nature of
the channel. Using linear regression, we observed R2 ¼ 0.891 for
Re� ¼ 700, and R2 ¼ 0.765 for Re� ¼ 350, suggesting a strong
correlation between the roughness characteristics and the expected
roughness parameter. In addition to the Re� dependence, the def-
inition of Co does not account for varying values of the sphericity
(Sp) for identical Co, as suggested by Julien (2010). It is clear to see
that zr0 is sensitive to Re�, which can be inferred from the regression
parameter. Some of the scatter observed in the data presented here
can be attributed to the transitional roughness Reynolds number
regime because the flow separation was localized to some rough-
ness elements that penetrated beyond the viscous sublayer, as
shown in Fig. 6 and discussed in Schultz and Myers (2003) and
Flack et al. (2012). These observations may help explain the vari-
ability observed in conventional methods to estimate the mean flow
drag (e.g., Moody 1944) or the roughness function (ΔUþ) defined
in Schultz and Myers (2003).
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Fig. 5. (Color) (a) Comparison of the effect of changingCo and Re� on the roughness parameter zr0; and (b) correlation between the standard deviation
of the roughness (kσs ) and the roughness parameter (zr0). Dashed lines mark the linear fit to the data, and the markers starting from the left correspond to
Co ¼ 1.0, Co ¼ 0.8, Co ¼ 0.6, and Co ¼ 0.4, respectively. Marker color scheme is identical to Fig. 4.
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Mean Momentum Partitioning

Increased mean flow drag with a simultaneous decrease in the vis-
cous stress for decreased Co suggests that there was a net increase
in the form drag components as the flow separated at the crest of the
roughness elements. As shown in Fig. 6, there was relatively more
flow separation for cases C350C06 and C700C06 when compared
to cases C350C1 and C700C1. These observations, along with the
attenuated viscous stress profiles and increased drag coefficient,
suggest that the form drag for smaller Co increased. In addition
to Fig. 6, a vorticity comparison can be seen in Fig. 7, which shows
instantaneous vorticity for the four full-span cases. Comparing
cases with Re� ¼ 350 against Re� ¼ 700 clearly shows the effect
of increased Reynolds number on the vorticity distribution close to
the wall. The effect of Co was more pronounced for lower Re�, as
indicated by the slightly more negative values for case C350C06
when compared to case C350C1. For higher Re�, there were no
obvious differences in the vorticity between cases C700C1 and
C700C06.

Because the immersed boundary force (FIBM) is imposed at
every substep in the Runge–Kutta time-integration scheme, only
the divergence-free velocity at the end of each time step is available
(Yuan and Piomelli 2014, 2015). Therefore, although the IBM
force can be used to compare the total drag force on the bed, it
does not give the relative contributions of viscous and form drag.

To separately compute these components of the drag, we began
with the streamwise momentum equation

∂tu1 þ ∂jðuju1Þ ¼ −∂1Pþ ν∂j∂ju1 þ Πc þ FIBM ð12Þ

where P ¼ p=ρ0 = modified or reduced pressure. Defining Vf as
the volume occupied by the fluid above the roughness elements and
integrating Eq. (12) over Vf gives, after using Gauss’s theorem and
noting that FIBM ¼ 0 in Vf and imposing periodicity in the x1 and
x2 directions and free-slip condition at x3 ¼ H,

∂t

Z
Vf

u1dV þ
Z
AB

u1ðuj ejÞdA

¼ −
Z
AB

Pe1dAþ ν
Z
AB

ej∂ju1dAþ VfΠc ð13Þ

where AB = control surface at the bumpy wall that corresponds
to the top of the roughness elements; and ej = unit normal
vector pointing outward relative to Vf. After time-averaging
Eq. (13), the unsteady term vanishes, thus giving the momen-
tum partitioning

Fig. 6. (Color) Contour plots along the channel centerline at time tϵ ¼ tu�=H ¼ 12.0, showing the instantaneous streamwise velocity
normalized by the friction velocity (u1=u�) for the four full-span channel cases. The white region marks the roughness elements. Blue color
indicates slower velocities, and red color indicates faster velocities. The solid magenta line marks the contour where U1 ¼ 0; thus, regions
enclosed by the magenta line correspond to negative streamwise velocity where there is flow separation. (a) C700C1; (b) C350C06;
(c) C700C06; and (d) C350C06.
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Z
AB

u1ujej dA|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Advective Term

þ
Z
AB

Pe1 dA|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
FormDrag

− ν
Z
AB

ej∂ju1 dA|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ViscousDrag

¼ VfΠc|fflffl{zfflffl}
Driving Force

ð14Þ

where the overbar represents the time average. The advective
term on the left-hand side is nonzero because the IBM method
imposes a force that produces a vanishing cell-centered velocity
component and a small nonzero face-centered component where
AB is defined. As a result, the advective term does not vanish,
although it is much smaller than the other terms. Table 2 lists

the normalized contribution of the three terms in the mean
momentum equations for the full-span channel flow cases. The
results indicate an enhanced form drag component for Co ¼ 0.6
that can be interpreted as a consequence of increased flow sepa-
ration because the roughness elements are taller when compared to
the case with Co ¼ 1.0. Additionally, this increase in the form
drag occurs with a simultaneous decrease in the viscous drag
for the two Reynolds numbers. Because the driving pressure gra-
dient (i.e., u2�=H) is constant for varying Co for a given Re�, only
the bottom boundary conditions are responsible for an increase in
the drag coefficient and the mean momentum partition. It is clear
from Table 2 that there was a definitive increase in the form drag
for decreasing Co for both Re�.

The relative importance of the viscous and form drag (relative
drag) is depicted for varying Co in Fig. 8. The minimal span chan-
nels capture the overall trend as predicted by the full span channels,
with a consistent overprediction for all cases when compared to the
full span data. As shown in Fig. 3, the time-averaged and planform-
averaged velocity profiles for the minimal-span channels led to a
flow velocity that was comparatively large in magnitude away from
the wall. Because the minimal-span channels did not effectively
mix momentum in the vertical direction due to the spanwise do-
main constraint, we anticipated larger form drag as a result of this
increased mean flow velocity away from the wall when compared
to the full-span channel cases (Chung et al. 2015; Yuan and
Piomelli 2015). For both values of Re�, the relative drag increased
for decreasing values of Co. Additionally, it is clear from these data
that the relative drag increased more quickly for Re� ¼ 700 when
compared to Re� ¼ 350, further validating the changes observed in
Cr
d (see Fig. 4).

Fig. 7. (Color) Contour plots along the channel centerline of the spanwise vorticity ωþ
2 ¼ ω2ν=u2� at time tϵ ¼ tu�=H ¼ 14.0. The magenta region

marks the roughness elements. (a) C350C1; (b) C350C06; (c) C700C1; and (d) C700C06.

Table 2. Mean momentum partition computed using the discrete
integration of the streamwise momentum equation. All terms are
normalized by u2�=H

Case name Form drag
Viscous
drag

Advective
term Sum

C700C1 0.773 0.214 0.017 1.00
C350C1 0.734 0.242 0.028 1.00
C700C06 0.863 0.129 0.011 1.00
C350C06 0.823 0.172 0.014 1.00
MC700C1 0.785 0.193 0.022 1.00
MC350C1 0.742 0.228 0.030 1.00
MC700C08 0.810 0.171 0.019 1.00
MC350C08 0.767 0.209 0.023 1.00
MC700C06 0.869 0.116 0.015 1.00
MC350C06 0.820 0.160 0.020 1.00
MC700C04 0.872 0.111 0.017 1.00
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Conclusions

We studied the effect of changing bottom boundary conditions
through the definition of the Corey shape factor that characterizes the
individual roughness elements on the mean flow drag. Using a com-
bination of full-span and minimal-span channel flows and direct
numerical simulations, we established that decreasing Corey shape
factors result in increased mean flow drag. Additionally, we validated
that for sand-grain–type roughness with Co ¼ 1.0, DNS can accu-
rately replicate the Nikuradse (1933) estimate z0 ≡ ks=30 without
regression. We also observed that for decreasing values of Co, there
was enhanced flow separation for the two friction Reynolds numbers
considered in this study. Furthermore, using a mean momentum
analysis, we demonstrated that this increased mean flow drag was
a result of enhanced flow separation at the crest of the roughness
elements that led to a larger form drag contribution. Additionally,
we showed that the viscous drag decreased with the simultaneous
increase in the form drag where these changes are both a function
of the flow Reynolds number and the Corey shape factor. This study
also explains variations in the drag coefficient (Cd or Cf), which is
typically assumed to be only a function of the mean roughness height
(ks). The drag coefficient was observed to be 2.5 times larger for
Co ¼ 0.4 when compared to the drag coefficient when Co ¼ 1.0 for
identical mean roughness height (ks) for Re� ¼ 700. Additionally,
the roughness parameter correlated well with the standard deviation
of the roughness height for varying Co, thus providing a means to
estimate the mean flow drag using the roughness characteristics.
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