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SUMMARY

We demonstrate how the background potential energy is an excellent measure of the e�ective numerical
di�usion or antidi�usion of an advection scheme by applying several advection schemes to a standing
interfacial gravity wave. All existing advection schemes do not maintain the background potential energy
because they are either di�usive, antidi�usive, or oscillatory. By taking advantage of the compressive
nature of some schemes, which causes a decrease in the background potential energy, and the di�usive
nature of others, which causes an increase in the background potential energy, we develop two back-
ground potential energy preserving advection schemes that are well-suited to study interfacial gravity
waves at a density interface between two miscible �uids in closed domains such as lakes. The schemes
employ total variation diminishing limiters and universal limiters in which the limiter is a function of
both the upwind and local gradients as well as the background potential energy. The e�ectiveness of
the schemes is validated by computing a sloshing interfacial gravity wave with a nonstaggered-grid
Boussinesq solver, in which QUICK is employed for momentum and the pressure correction method
is used, which is second-order accurate in time. For scalar advection, the present background potential
energy preserving schemes are employed and compared to other TVD and non-TVD schemes, and
we demonstrate that the schemes can control the change in the background potential energy due to
numerical e�ects. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A host of literature exists on the study of surface gravity waves or gravity waves at an
interface separating immiscible �uids. Free-surface simulations that do not involve breaking
map the domain onto one that follows the surface with the use of a �-coordinate system,
such as the large-eddy simulation of nonlinear free-surface waves of Hodges and Street [1].
These simulations do not allow overturning because of the monotonicity requirement of the
curvilinear grid. Breaking interfacial gravity waves are more appropriately simulated with
methods such as the marker and cell technique developed by Harlow and Welch [2], or the
interface tracking method of Puckett et al. [3]. Chen et al. [4] implement the volume of �uid
(VOF) method to simulate breaking free-surface gravity waves, and also simulate interfacial
gravity waves, but the interface is immiscible and in�nitesimal in thickness. Other methods,
such as the particle level set method [5], yield excellent results for surface or interfacial
gravity wave problems, but they too do not allow for a �nite-thickness miscible interface.
Gravity waves at an interface between miscible �uids can be simulated with any hydro-

dynamic equation solver that computes the evolution of the density �eld. However, if the
advection scheme that is used to compute the evolution of the density �eld is to capture the in-
terfacial gravity wave dynamics realistically, it cannot generate excessive di�usion at the inter-
face, nor can it impose antidi�usion and generate unphysical overshoots. The problem with
advection schemes, however, is that they can be either di�usive or antidi�usive in the presence
of sharp fronts.
The numerical di�usion or antidi�usion of the density �eld resulting from the numerical

method can be quanti�ed with the evolution of the background potential energy. According
to Winters et al. [6], the potential energy can be split into its available and background
components with

Ep =Ea + Eb (1)

The available potential energy, Ea, represents the potential energy of a system that is available
to be converted into motion. The background potential energy, Eb, represents the potential
energy of a system in its background state, that is, in a state in which no more available
potential energy exists that can be converted into kinetic energy. As an example, consider the
sloshing of a standing interfacial gravity wave in a laboratory tank that contains a layer of
fresh water (blue) over a layer of heavier salty water (red), as shown in Figure 1(a). As the
wave oscillates, some of its energy is lost to viscosity, while at the same time the interface
between the two layers thickens as the salt di�uses into the fresh water. Eventually, the wave
comes to rest due to viscosity, and the thickness of the di�use layer is greater than it was
when it started, as shown in Figure 1(b). If the same situation is repeated, but this time with
a higher di�usivity of salt in water, then the wave comes to rest in the same manner, but in
this case the interface is thicker due to the higher di�usivity, as shown in Figure 1(c). Now
consider the case in which the wave oscillates in the absence of salt di�usivity. In this case,
the wave comes to rest due to viscosity and the thickness of the interface does not change,
as shown in Figure 1(d).
The potential energy of the density �elds shown in Figures 1(b)–1(d) is given by

Ep = g
∫
V
�z dV (2)
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BACKGROUND POTENTIAL ENERGY 303

Figure 1. Depiction of a standing interfacial gravity wave when it begins (a), and after it has come to
rest due to viscosity (b), (c), and (d). Because the di�usivity is much higher in case (c), the interface
thickens substantially more than it does in case (b). Case (d) results when the di�usivity is zero.

where g is the gravitational body force per unit mass, � is the density of the �uid, and z is the
height above some datum. Because the density �elds in Figures 1(b)–1(d) do not have any
horizontal variation, there is no available potential energy that can be converted into kinetic
energy, so Ea vanishes and Ep =Eb. Since �=�(z), the potential energy reduces to

Ep =Eb = gLW
∫ 0

−d
�(z)z dz (3)

where L, W , and d are the length, width, and depth of the domain shown in Figure 1. By
writing the centre of mass of each density �eld as

zc =
LW
M

∫ 0

−d
�(z)z dz (4)

where the mass is given by

M =LW
∫ 0

−d
�(z) dz (5)
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we can write Equation (3) as

Eb =Mgzc (6)

This is the background potential energy of the �uids at rest. The density �elds with the thicker
interfaces have a higher centre of gravity, and therefore they have a larger background potential
energy. The density �eld with the lowest background potential energy is that shown in Figure
1(d). This density �eld was created in the absence of salt di�usivity, and hence the density
�eld in Figure 1(d) represents the background density �eld associated with the density �eld
shown in Figure 1(a). At any point in time during the history of oscillation of the interfacial
gravity wave shown in Figure 1(a), its background potential energy distribution will be given
by that shown in Figure 1(d) in the absence of salt di�usivity.
From this we can de�ne the background density �eld as the density �eld that results if

at some instant in time the thermal and salt di�usivities in a �ow �eld vanished but the
viscosity remained �nite, and the �ow was allowed to come to rest in some statically stable
state. Winters et al. [6] de�ne this background potential energy as

Eb = g
∫
V
�z∗(x; t) dV (7)

where z∗(x; t) is the height of a �uid parcel with density � in its background state, as shown,
for example, in Figure 1(d). In Figures 1(b) and 1(c), the background potential energy is
larger as a result of di�usion at the interface. Di�usion causes the interface to thicken, and
hence causes the background potential energy to increase. In a closed domain and in the
absence of heat or mass sources, if there is no thermal or salt di�usivity then the background
potential energy must remain constant. In the absence of physical di�usion, if an advection
scheme that is applied to the transport equation for density alters the background potential
energy, then it is imposing unphysical numerical di�usion or antidi�usion on the density �eld.
An increase in the background potential energy implies numerical di�usion, while a decrease
in the background potential energy implies either numerical antidi�usion or the development
of nonmonotonicity.
Unlike mass conservation, it is impossible for a numerical scheme to maintain the back-

ground potential energy of a �ow�eld from one time step to the next unless speci�c coun-
termeasures are employed. Numerical methods that are not monotonic cause a decrease in
the background potential energy, while methods that are monotonic either cause an increase
in the background potential energy if they must di�use the interface in order to maintain
monotonicity, or cause a decrease in the background potential energy if they are over-
compressive. As an example, in their simulations of internal gravity waves in lakes, Laval
et al. [7] use the ULTIMATE-QUICKEST scheme [8] because they found it to be the most
well-behaved for �eld-scale environmental �ow simulations where sharp grid-scale density
fronts are commonplace. But due to the presence of grid-scale density fronts, ULTIMATE-
QUICKEST is forced to employ numerical di�usion to maintain monotonicity and thus causes
an increase in the background potential energy. Because they use ELCOM [9], which em-
ploys operator splitting and treats the advection and di�usion steps separately, Laval et al.
quantify the global di�usion incurred by the advection scheme by computing the background
potential energy before and after the advection step. Using this unphysical change as a base
(since the change should be identically zero), they employ a �lter that e�ectively imposes
antidi�usion on the density �eld to remove the e�ects of the numerical di�usion on the
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interface and bring the background potential energy back down to its correct value. The �lter
e�ectively adds a step to the advection process that removes the di�usive character of the
ULTIMATE-QUICKEST scheme.
In this paper we employ several commonly used advection schemes to compute the standing

interfacial gravity wave problem, and discuss the bene�ts and drawbacks of each method
with regard to maintaining the background potential energy of the �ow. Then, we develop a
similar technique to that of Laval et al. [7], in which we use the background potential energy
as a measure of the numerical di�usion. However, instead of using a �lter, we employ a
limiter that is a function of the background potential energy as well as the local gradients.
In this manner, both monotonicity and the background potential energy can be maintained
automatically without employing a �lter.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

2.1. Discretization

We solve the two-dimensional Euler equations with the Boussinesq approximation,

@ui
@t
+
@
@x
(uiuj)= − 1

�0
@p
@xi

+
g
�0
(�− �r)�i3 (8)

subject to the continuity constraint

@ui
@xi
=0 (9)

where j=1; 3, ui are the velocity components in the i=1; 3 directions and the Einstein sum-
mation convention is assumed, g is the gravitational body force per unit mass, and �0 is the
reference density. The transport equation for density in a thermally and salt strati�ed environ-
ment is derived by assuming an equation of state of the form �=�(s; T; p), where s is the
salinity and T is the temperature, and using mass transport to obtain an evolution equation for
salinity and the heat equation to obtain an equation for temperature. In this work we neglect
the e�ects of pressure on the density and assume that the �uid is salt strati�ed. Using the
transport equation of salt of the form

@s
@t
+
@
@xj
(suj)=0 (10)

and employing a linear equation of state for density such that

�− �0
�0

=�(s− s0) (11)

where �=7× 10−4 psu−1 is the saline expansion coe�cient of water and s0 is some constant
reference salinity, the transport equation for density becomes

@�
@t
+
@
@xj
(�uj)=0 (12)
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It is assumed that the pressure �eld represents a departure from some arbitrary hydrostatic
reference state. If pT represents the total pressure, then it is related to the pressure in Equa-
tion (8) via

pT(x; y; z; t)=p(x; y; z; t) + pr(z) (13)

where pr(z) is the reference pressure �eld and is related to the reference density �eld
�r(z) by

@pr(z)
@z

= − �r(z)g (14)

This substitution is useful for computations of strati�ed �ows in which the solution is started
from rest and the reference pressure �eld is taken as the initial hydrostatic pressure �eld.
The numerical discretization of the momentum equations is similar to that carried out by

Zang et al. [10], except the pressure correction method [11] is employed to obtain second-
order accuracy in time. Without it, the approximate projection method used by Zang et al. is
�rst-order accurate in time. Advection of momentum is computed with the QUICK scheme of
Leonard [12] and discretized temporally with the second-order Adams–Bashforth scheme, and
the pressure-Poisson equation is solved with the multigrid method with a normalized residual
of 10−8.

2.2. Computation of the background potential energy

Given a two-dimensional domain with a discrete density distribution given by �i; k and a cell
volume distribution �Vi; k , the mass of the domain is given by

m=
Ni;Nk∑
i; k=1

�i; k�Vi; k (15)

where Ni and Nk are the total number of grid points in the i and k directions, respectively.
If the height of the cell centres corresponding to each cell is given by zi; k , then the total
potential energy of the domain is given by a discretization of (2) to yield

Ep = g
Ni;Nk∑
i; k=1

�i; kzi; k�Vi; k (16)

Likewise, the background potential energy is given by the discrete form of (7), i.e.

Eb = g
Nk×Nk∑
n=1

�∗
nz

∗
n�V

∗
n (17)

where �∗
n is the sorted density distribution that is obtained by sorting the two-dimensional

density �eld �i; k in decreasing order, and �V ∗
n is the volume of the cell with density �

∗
n . The

sorted height z∗n is computed with

z∗n+1 = z
∗
n +

�V ∗
n+1

A(z∗n )
(18)
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where the planform area A(z) of the domain is known a priori and n∈ {2; : : : ; Nik}, where
Nik =Ni ×Nk is the total number of cells in the domain. The initial height z∗1 is given by

z∗1 = z0 +
�V ∗

1

2A(z0)
(19)

where z0 corresponds to the bottom of the domain.
Computation of the background potential energy is expensive because it requires a sorting

algorithm to obtain the sorted density �eld �∗
n . Tseng and Ferziger [13] have developed a

probability density function approach that reduces the expense of computing the background
potential energy by sorting the density �eld into Nb bins (which form the pdf) instead of Nik
bins. Their approach requires O(NikNb) instead of O(N 2ik) calculations to compute the back-
ground potential energy. We employ the quicksort algorithm to sort the density �eld, which
requires O(log2 Nik) operations, and thus computation of the background potential energy
requires O(Nik log2 Nik) operations. From a computational point of view, the two methods are
equivalent when the number of bins for the pdf approach is given by Nb = log2 Nik .

3. ADVECTION SCHEMES

3.1. Existing schemes

Integrating the transport equation (12) in time and over a two-dimensional control volume (in
x–z) gives the explicit update in conservative form as

�n+1i; k =�
n
i; k + Cw�w − Ce�e + Cs�s − Cn�n (20)

where �i; k is a volume-averaged quantity and the subscripts denote East (i+1=2), West (i−1=2),
North (k+1=2), or South (k−1=2) ‘e�ective’ face values that result from averaging the �uxes
in time and over each face [14], and Cw = uw�t=�x and Cs = vs�t=�y are the Courant num-
bers de�ned at the faces. Using this discretization, conservation of mass is automatically
guaranteed by computing unique �ux-face values �e(i) and then using �w(i) =�e(i−1) (likewise
for �n and �s). If u and v are split into their positive and negative components such that

u± = 1
2(u± |u|) (21)

v± = 1
2(v± |v|) (22)

then (20) becomes

�n+1i; k = �
n
i; k + C

+
w�

+
w + C

−
w �

−
w − C+e �+e − C−

e �
−
e

+C+n �
+
n + C

−
n �

−
n − C+s �+s − C−

s �
−
s (23)

The objective of any �nite-volume Eulerian advection scheme is to interpolate the volume-
averaged values of �i; k to obtain the e�ective face values �e. In this paper we will employ
one-dimensional schemes to interpolate the volume-averaged quantities in each direction and
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employ the update in one step to obtain �n+1i; k . While this method has been shown to be
unstable for schemes other than �rst-order upwinding unless operator splitting is employed
and each coordinate direction is updated sequentially [14], the present formulation and the
applications of References [10, 15] have been stable because of the low Courant numbers em-
ployed, and because the instability is a long wavelength instability that does not have time to
grow in highly unsteady �ows. We will employ explicit one-dimensional interpolation tech-
niques that are guaranteed to be monotonic in one dimension but are not guaranteed to be
monotonic in two or more dimensions. Again, because of the small Courant number we em-
ploy, we have found that one-dimensional interpolations remain monotonic in two dimensions
except in extreme cases in which the velocity �eld is highly deformational. Monotonicity
preservation in multidimensions can be guaranteed for arbitrary Courant numbers with the use
of the methodology outlined by Leonard et al. [14].
The simplest one-dimensional approach is �rst-order upwinding, for which, assuming C¿0

and �=�+, yields

�e =�i (24)

This method is highly di�usive [16] and only �rst-order accurate in space and time, but
is simple to employ and guarantees monotonocity, even for the multidimensional case [14].
Second-order spatial accuracy can be achieved by employing central-di�erencing in space and
forward-di�erencing in time (FTCS) with

�e = 1
2 (�i + �i+1) (25)

This method is unstable for pure advection unless di�usion is added to ensure that the grid
Peclet number satis�es Pe� = u�x=�6 2=C [17], where � is the di�usion coe�cient. We
restrict ourselves to schemes that remain stable in the nondi�usive limit. The QUICK scheme
of Leonard [12] is a third-order spatially accurate alternative to FTCS because, while it is
theoretically unstable in the nondi�usive limit, the upper bound on the stability limit of
Pe�6 2=C results from a low wavenumber instability that is likely not excited in practice
[18]. While QUICK was designed for steady �ows, it has been applied to highly unsteady
large-eddy simulations of turbulent �ows and found to behave very well when coupled with the
second-order Adams–Bashforth scheme [10]. In QUICK, an upwind-weighted curvature term
is used to cancel the third-order truncation error present in the central-di�erencing scheme.
Assuming C ¿ 0, the face values using QUICK are given by

�e = 1
2 (�i + �i+1)− 1

8 (�i−1 − 2�i + �i+1) (26)

For unsteady �ows, Leonard [12] presents the QUICKEST scheme, which is theoretically
stable in the nondi�usive limit because it adds additional terms to stabilize the QUICK scheme.
The face values using QUICKEST when C¿0 are given by

�e = 1
2 [(�i + �i+1)− C(�i+1 − �i)]− 1

6 (1− C2)(�i−1 − 2�i + �i+1) (27)

To guarantee monotonicity for steady �ows, Leonard [19] proposed the SHARP scheme,
which also behaves quite well for highly unsteady �ows when used with the second-order
Adams–Bashforth scheme [10], despite very subtle, but negligible, overshoot behaviour in the
presence of sharp fronts. The ULTIMATE-QUICKEST scheme of Leonard [8] is the unsteady
version of SHARP, which guarantees monotonicity in highly unsteady convective �ow. This
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scheme employs the QUICKEST scheme with a universal limiter that limits the magnitude of
the higher-order terms (in a very small fraction of the �ow) to maintain monotonicity of the
advected quantity.
Monotonicity is also guaranteed with the use of total variation diminishing, or so-called

shock-capturing schemes [20–22], which are �ve-point second-order accurate schemes that
maintain the total variation of the advected quantity. From Hirsch [23], a scheme is total
variation diminishing if the total variation of a solution to a nondi�usive advection equation
does not increase in time, such that TV(�n+1)6TV(�n), where the total variation of � is
given by

TV(�)=
∑
i

|�i+1 − �i| (28)

For the TVD schemes used in the present paper, the �ux-face values are computed with the
upwind values plus the addition of a higher-order term with

�+e = �i +
1
2�(r

+
i )(1− C+e )(�i+1 − �i) (29)

�−
e = �i+1 − 1

2�(r
−
i )(1 + C

−
e )(�i+1 − �i) (30)

where r represents the ratio of the upwind gradient to the local gradient such that

r+i =
�i − �i−1
�i+1 − �i (31)

r−i =
�i+2 − �i+1
�i+1 − �i (32)

The limiting function � de�nes the particular scheme that is used, a host of which have been
developed in the literature. We employ the following limiters that are presented in Hirsch
[23]:

�(r)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Upwind

1 Lax–Wendro�

max[0;min(2r; 1);min(r; 2)] Superbee

(r + |r|)=(1 + r) Van Leer

min(r; 1) MINMOD

max
[
0;min

(
2; 2r;

1 + r
2

)]
MUSCL

(33)

Therefore, if �(r)=0, the scheme reduces to the upwind scheme, which is �rst-order accurate
in space and time, and if �(r)=1, it is the Lax–Wendro� scheme, which is second-order
accurate in space and time. All other schemes are second-order accurate in both space and
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time as long as �(1)=1. The ULTIMATE-QUICKEST scheme of Leonard [8] can also be
expressed in this way using

�(r)= max
[
0;min

(
1
2
(1 + r) +

1
6
(1− r)(1− 2|C|); 2

1− |C| ;
2r
|C|

)]
(34)

where the Courant number C is evaluated at the same �ux face as �e. One advantage of
the ULTIMATE-QUICKEST scheme is that it is not as restrictive as the TVD schemes,
since the upper bound of �(r) is boundless with the introduction of the Courant number in
the denominator, while it is limited to a maximum value of 2 for the TVD schemes. Two
compressive schemes that take advantage of the less restrictive boundary of this so-called
universal limiter are the second-order accurate Super-C scheme, for which

�(r)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
(
2r
|C| ; 1

)
06 r6 1

min
(
r;

2
1− |C|

)
r¿1

0 otherwise

(35)

and the maximally compressive �rst-order accurate Hyper-C scheme, for which

�(r)=

⎧⎪⎨
⎪⎩
min

(
2r
|C| ;

2
1− |C|

)
r¿0

0 otherwise

(36)

These schemes are overly compressive, yet the latter proves to be very useful as a scheme
to reverse the e�ects of numerical di�usion, as discussed in the next section. An excel-
lent comparison between the TVD and ULTIMATE schemes can be found in the work of
Leonard [8], where their behaviour is quanti�ed with respect to one-dimensional advection. In
Section 4 we demonstrate the behaviour of these schemes when applied to a sloshing in-
terfacial gravity wave and discuss the e�ects the schemes have on the background potential
energy.

3.2. A background potential energy preserving formulation

As we will show in the next section, in the absence of salt di�usion, no existing advection
schemes maintain the background potential energy. Schemes that do not preserve monotonicity
cause a decrease in the background potential energy because overshoots in the density pro-
�le are equivalent to numerical antidi�usion. Monotonicity-preserving schemes, on the other
hand, cause an increase in the background potential energy if they are even mildly di�usive,
which is a requirement of such schemes if they are not among the ‘compressive’ of the
monotonic schemes. The compressive schemes always cause a decrease in the background
potential energy because steepening of density fronts is also e�ectively numerical antidi�u-
sion, even if this e�ect is monotonic. Despite these adverse e�ects, we will show that it
is possible to maintain the background potential energy by using a combination of di�usive
and antidi�usive schemes, the choice of the particular scheme depending on the value of the
background potential energy. In the absence of scalar di�usion, if the background potential

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:301–329



BACKGROUND POTENTIAL ENERGY 311

energy is larger than its initial value, then this indicates the presence of numerical di�usion,
whereas if the background potential energy is less than its initial value, then this indicates the
presence of numerical antidi�usion. Because it is always desirable to maintain monotonicity
from a physical perspective, regardless of whether or not nonmonotonicity causes a decrease
in the background potential energy, we require that the schemes we choose to combine to
create the background potential energy produce negligible overshoots. This is to guarantee
that the change in the background potential energy is resulting from either numerical di�usion
or antidi�usion and not overshoots in the density pro�le.
We employ two forms of the background potential energy formulation. For the �rst, we use

the Hyper-C universal limiter as the compressive scheme, and for the di�usive scheme, we
use the Van Leer limiter, so that this background potential energy preserving scheme becomes
a limited scheme in which the limiter is a function of the background potential energy Eb and
the upwind gradient ratio r. If Eb0 is the initial background potential energy, then this limiter
is given by

�(r; Eb)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(r + |r|)=(1 + r) Eb6Eb0

min
(
2r
|C| ;

2
1− |C|

)
r¿0 and Eb¿Eb0

0 otherwise

(37)

This scheme is referred to as BPEP1 in what follows.
As an alternative to this scheme, because the Hyper-C scheme can be overly compressive,

we employ a second scheme, which we refer to as BPEP2, that employs the Superbee scheme
in place of the Hyper-C scheme, so that its limiter is given by

�(r; Eb)=

⎧⎪⎪⎨
⎪⎪⎩
(r + |r|)=(1 + r) Eb6Eb0

max[0;min(2r; 1);min(r; 2)] r¿0 and Eb¿Eb0

0 otherwise

(38)

4. IMPLEMENTATION OF ADVECTION SCHEMES

4.1. Computation set-up

We apply the schemes discussed in the previous section to a standing interfacial gravity wave
in order to evaluate their capability to maintain the background potential energy. The test case
is a �nite-amplitude deep-water standing wave in an inviscid �uid, and the initial condition
for the interface � to second order in the steepness ka is given by Thorpe [24]

k�(x)= ka
[(
1− (ka)2

64

)
cos kx − (ka)2

8
cos 3kx

]
(39)

where the second-order dispersion relation that describes the frequency of the wave ! as a
function of the wavenumber k=2�=L, nondimensional interface thickness k�, and steepness
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ka, is given by

!2 =!2k�

[
1− (ka)2

8

]
(40)

and !k� is the zero-steepness, �nite-interface thickness frequency. The e�ect of a �nite in-
terface is to reduce the frequency, which, to �rst order, can be approximated, following
Phillips [25], by

!2k�=
g′k
2

(
1 +

k�
4

)−1
(41)

In Equations (39)–(41), a is the maximum wave amplitude, � is the interface thickness, and
g′= g��=�0 is the reduced gravity, where �� is the density di�erence between the layers.
The evolution of the two-dimensional standing wave is computed in a 1:0 m× 1:0 m tank

with an initial steepness of ka=0:1 and nondimensional interface thicknesses of k�=0:01�
and k�=0:05�, as shown in Figure 2. The 80× 80 grid is set up so that 4 cells resolve
the k�=0:01� interface while 10 cells resolve the k�=0:05� interface. The grid spacing in
the vertical is a minimum at the interface and is stretched from mid-depth with a maximum
vertical stretching factor of 1.1, where the vertical stretching factor is de�ned by

�k =
zk+1 − zk
zk − zk−1 (42)

The density di�erence between the layers is ��=�0 = 0:03, and the initial density distribution
is given by

�(x; z)= − ��
2
tanh

[
2 tanh−1 �

k�
(kz − k�+ kd=2)

]
(43)

where �=0:99 and k� is de�ned in (39).
The wave periods adjusted for amplitude and interface thickness using the dispersion relation

(40) are T =9:28 s for k�=0:01� and T =9:43 s for k�=0:05�. Since these wave periods

0

0

-π/2

π/2 π0

kz

kx kx

π/2 π
-π

0

-π/2

-π

(a) (b)

Figure 2. Initial conditions for the ka=0:1 interfacial standing wave with an interface thickness of: (a)
k�=0:01�; and (b) k�=0:05� with a density di�erence of ��=�0 = 0:03 between the two layers.
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are �rst-order approximations in k� and second-order in ka, to obtain more accurate values
for the periods, two oscillations of the internal seiche are �rst computed with a total of 800
time steps, corresponding to time steps of �t=0:0232 s for k�=0:01� and �t=0:0236 s
for k�=0:05�. This corresponds to a maximum wave Courant number of Cw =0:04 for each
case, where the wave Courant number is de�ned by

Cw = ka
c�t
�x

(44)

and c=!=k is the wave speed. From these simulations, the average periods are then computed
to yield periods of T =9:74 ± 0:06 for k�=0:01� and T =9:82 ± 0:05 for k�=0:05�, that
corresponds to �t=0:02435 s and �t=0:02455 s, respectively.

4.2. Behaviour of advection schemes

Advection of the density �eld is computed with the advection schemes discussed in Section 3,
namely (a) First-order upwind, (b) Lax–Wendro�, (c) QUICK, (d) QUICKEST, (e) SHARP,
(f) ULTIMATE-QUICKEST, (g) MINMOD, (h) Van Leer, (i) MUSCL, (j) Superbee, (k)
Super-C, (l) Hyper-C, (m) BPEP1 and (n) BPEP2. Figures 3 and 4 depict the surface plots
for each scheme when applied to the k�=0:01� and k�=0:05� cases, and Figures 5 and 6
depict the vertical density pro�les at x=0 for each of the surface plots. The computations
are compared to the exact solution, which is identical to the initial condition since the density
�eld returns to its initial distribution after two periods of oscillation. Errors that arise in the
computation of the density distribution change the frequency of oscillation of the interface
and hence alter the �nal position of the interface after two computed oscillations. The errors
in computing the frequency of oscillation, and hence the error in the �nal position of the
interface, are shown in Figure 7. For the k�=0:01� case in Figure 7(a), the Lax–Wendro�
and QUICK schemes induce the most pronounced underestimation of the period because
the overshoots e�ectively reduce the interface thickness for this case, which translates to
an increased frequency in Equation (41). For the k�=0:05� case, however, these schemes
cause an overestimation of the wave period because they e�ectively add higher modes to
the solution that propagate at slower speeds. Because it is the most di�usive and causes the
most interface thickening, �rst-order upwind causes an overestimation in the wave period
by roughly 1.5% for both interface cases, and because it is the most compressive, Hyper-
C causes an underestimation in the wave period by roughly 1% for the thick interface and
roughly 0.5% for the thin interface. While these errors are small, Figure 7 shows that there
is a clear relationship between the character of the scheme and the resulting error in the
computation of the wave period.
Errors in the computation of the wave period for the nonmonotonic schemes result from

overshoots in the density �eld. These are most evident in Figures 3 and 5 for the Lax–
Wendro�, QUICK, and QUICKEST schemes for the k�=0:01� interface, and are less drastic
for the k�=0:05� interface, as shown in Figures 4 and 6. Overshoots generated by the SHARP
scheme are negligible since they only appear at the beginning of the simulation for k�=0:01�,
and the SHARP scheme is monotonic for k�=0:05�. For k�=0:01�, once the interface
thickens due to numerical di�usion, the SHARP scheme smoothes out these initial overshoots
and the interface once again becomes monotonic. While the compressive schemes Superbee,
Super-C and Hyper-C most accurately predict the shape of the k�=0:01� interface, they
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Exact

Lax-Wendroff

QUICKEST

ULTIMATE-QUICKEST

Van Leer

Superbee

Hyper-C

Upwind

QUICK

SHARP

MINMOD

MUSCL

Super-C

BPEP1

BPEP2

Figure 3. Density �elds for the k�=0:01� interface thickness after two periods of oscillation for the
advection schemes discussed in the text. The exact solution corresponds to the initial condition.

perform poorly for the k�=0:05� interface because they erroneously compress the density
pro�le at the interface. In particular, the Hyper-C scheme produces multistep pro�les in the
density �eld, as can be seen in Figure 6. All of the other nonmonotonic schemes perform
much better for the thicker interface case because interfacial di�usion is not necessary to
maintain monotonicity. Interfacial di�usion, however, increases for the monotonic schemes in
regions of the �ow�eld where the local Courant number is reduced. This can be seen most
clearly in Figure 4, where the interface thickness is larger at the centre of the wave pro�le
than it is at the edges. This is the region where the vertical and horizontal velocity is a
minimum. This e�ect is pronounced for the TVD schemes such as Superbee because, while
the Courant number is a minimum at the centre of the domain, it is a maximum at the edges,
resulting in nonlinear steepening and interface thinning there.
From a qualitative point of view, the overly compressive schemes behave the best for the

thin interface while the other monotonic schemes behave the best for the thick interface,
and the nonmonotonic schemes are unacceptable for both cases. The BPEP1 scheme appears
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Van Leer
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Hyper-C

Upwind

QUICK

SHARP

MINMOD

MUSCL

Super-C

BPEP1

BPEP2

Figure 4. Density �elds for the k�=0:05� interface thickness after two periods of oscillation for the
advection schemes discussed in the text. The exact solution corresponds to the initial condition.

to represent the interface most accurately for both cases because it takes advantage of the
compressive behaviour of the Hyper-C scheme for the thin interface, and the Van Leer scheme
for the thick interface. The BPEP2 scheme does not capture the thin interface case as well
because it is only as compressive as the Superbee scheme. This is con�rmed quantitatively
by the results depicted in Table I, which presents several error metrics, which are computed
as follows. Given that �2T is the advected solution after two periods, and �̂ represents the
exact solution, or the solution at t=0, then the L1-error norm of the density �eld is given by

L1 =

∑Ni
i=1

∑Nk
k=1 |�2Ti; k − �̂i; k |�Ai; k∑Ni

i=1

∑Nk
k=1 |�̂i; k |�Ai; k

(45)

the L2-error norm of the density �eld is given by

L22 =

∑Ni
i=1

∑Nk
k=1(�

2T
i; k − �̂i; k)2�Ai; k∑Ni

i=1

∑Nk
k=1 �̂

2
i; k�Ai; k

(46)
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Upwind Lax-Wendrof f

QUICK QUICKEST

SHARP ULTIMATE-QUICKEST

MINMOD Van Leer

MUSCL Superbee

Super-C Hyper-C

BPEP1 BPEP2

Figure 5. Density pro�les at x=0 for the k�=0:01� interface thickness after two periods of oscillation
for the advection schemes discussed in the text. The initial or exact �eld is the solid line while the

circles represent the advected pro�les.

Upwind Lax-Wendroff

QUICK QUICKEST

SHARP ULTIMATE-QUICKEST

MINMOD Van Leer

MUSCL Superbee

Super-C Hyper-C

BPEP1 BPEP2

Figure 6. Density pro�les at x=0 for the k�=0:05� interface thickness after two periods of oscillation
for the advection schemes discussed in the text. The initial or exact �eld is the solid line while the

circles represent the advected pro�les.
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Figure 7. Normalized error in computing the wave period for the: (a) k�=0:01�; and (b) k�=0:05�
cases when using di�erent advection schemes.

Table I. Per cent errors for di�erent advection schemes after two interfacial wave
oscillations for the k�=0:01� and k�=0:05� cases. The lowest values in the L1 and

L2 columns are in bold.

k�=0:01� k�=0:05�

Scheme L1 L2 Lmax L1 L2 Lmax

Lax–Wendro� 2.6 9.4 32.5 0.3 1.5 13.3
QUICK 1.5 6.9 14.6 0.5 2.2 15.4
QUICKEST 1.6 7.9 11.4 0.7 3.1 6.2
Upwind 4.8 16.4 3.9 12.6
MINMOD 2.2 10.5 1.3 5.5
Van Leer 1.6 8.9 0.7 3.7
MUSCL 1.4 8.3 0.6 3.2
ULTIMATE-QUICKEST 1.2 7.6 0.4 2.6
Superbee 0.9 6.5 0.4 2.2
Super-C 0.5 4.8 0.2 0.4 2.0
Hyper-C 0.1 1.4 2.7 1.0 6.2 1.5
SHARP 1.1 6.8 1.2 0.3 1.5
BPEP1 0.3 2.8 0.3 0.3 1.9
BPEP2 0.9 6.5 0.4 2.3
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and the max-norm is given by

Lmax =
max(�2T )−max(�̂)

max(�̂)
(47)

where Ni and Nk are the number of grid points in the horizontal and vertical, respectively,
and �Ai; k is the area of grid cell i; k. The max-norm is a measure of the nonmonotonicity of
the particular scheme and is identically zero for monotonic schemes.
The most surprising result in Table I is that the SHARP scheme produces the lowest L1

and L2 errors for both interface thicknesses if we do not include the overly compressive
schemes Superbee, Super-C, and Hyper-C for the thin interface case, or the BPEP1 scheme.
Although it was designed for steady �ows, it is clear that SHARP is a superior scheme
for the present simulations even though it does not guarantee monotonicity of the advected
quantity. The overshoots it exhibits clearly have a minimal e�ect on the overall solution, and
are substantially lower than those produced by the Lax–Wendro�, QUICK and QUICKEST
schemes. Furthermore, it becomes monotonic for the thicker interface case. Overall, the BPEP1
scheme produces the lowest errors for both interface cases. Like the SHARP scheme, however,
the BPEP1 scheme is not monotonic, nor are the Super-C and Hyper-C schemes, since they
have positive max-norms in Table I. The k�=0:01� interface case is being resolved by only
four grid cells at the start of the simulation. The compressive schemes e�ectively reduce
this resolution to one cell in some regions of the �ow, and, as a result, the velocity �eld
becomes highly oscillatory because of the QUICK scheme that is used to advect momentum as
well as the central-di�erencing character of the underlying pressure correction method. Under
such extreme conditions, the universal limiter does not guarantee monotonic behaviour of the
density �eld for the Super-C and Hyper-C schemes. This is a result of the one-dimensional
interpolation scheme to obtain the face values, which does not guarantee monotonicity, as
outlined in Reference [14], especially for highly deformational velocity �elds. This is shown
in Figure 8, where oscillations exist in the velocity �eld for the k�=0:01� case, and as

-1 0 1
 

-π/2

0

kz

u/umax

-1 0 1
w/wmax

-1 0 1
ρ/ρmax(a) (b) (c)

Figure 8. Oscillations in the: (a) u-velocity; (b) w-velocity �elds that induce negligible nonmonotonic
behaviour of the density �eld; and (c) when using the Hyper-C scheme for the k�=0:01� interface. The

pro�les are shown at kx=3�=4 and t=0:6T .
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a result, slight overshoots are introduced into the density �eld. This same character is also
exhibited by the Hyper-C scheme for the k�=0:05� case because the scheme reduces the
interface thickness due to its overcompressive behaviour. The BPEP1 scheme, however, is
monotonic for the k�=0:05� case because the velocity �elds are smoother, and the BPEP2
scheme is monotonic for both cases because the TVD schemes still maintain monotonicity.
These results show that accuracy comes at the cost of minor nonmonotonicity, since SHARP

and BPEP1 are the most well-behaved, yet introduce overshoots in the density �eld for the
k�=0:01� case. The second-order TVD schemes maintain monotonicity, but at the expense
of di�using the interface and hence increasing the L1 and L2 errors. As we will show in the
next section, the di�usive character of the second-order TVD schemes requires the use of the
Hyper-C scheme if the background potential energy is to be conserved for both the k�=0:01�
and 0:05� cases.

4.3. E�ects on the background potential energy

Using the technique described in Section 2.2, the background potential energy is computed
at each time step and used to quantify the numerical di�usion associated with each of the
advection schemes presented in Section 3. Figures 9 and 10 show the history of the back-
ground potential energy for the nonmonotonic schemes Lax–Wendro�, QUICK, QUICKEST
and SHARP, and Figures 11 and 12 show the history of the background potential energy for
the monotonic schemes. The Super-C, Hyper-C and BPEP1 schemes are included among the
monotonic schemes because the overshoots they generate are minimal and do not signi�cantly
a�ect the background potential energy. The background potential energy is plotted as a depar-
ture from the initial background potential energy �Eb and normalized by the initial available
potential energy Ea0.
Figures 9 and 10 show that the e�ect of the highly oscillatory schemes Lax–Wendro�,

QUICK and QUICKEST is to cause a substantial decrease in the background potential
energy. One can show that overshoots in the density pro�le lead to a decrease in the back-
ground potential energy by considering a quiescent two-layer �uid with a density distribution

0 0.5 1 1.5 2
-8

-6

-4

-2

0

t/T

∆ 
E

b(t
)/

E
a0

Figure 9. Background potential energy evolution of the internal seiche with initial interface thickness
k�=0:01� normalized by the initial available potential energy Ea0, for the nonmonotonic schemes.

Legend: Lax–Wendro� /, QUICK ×, QUICKEST ∗, SHARP ◦.
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Figure 10. Background potential energy evolution of the internal seiche with initial interface thickness
k�=0:05� normalized by the initial available potential energy Ea0, for the nonmonotonic schemes.

Legend: Lax–Wendro� /, QUICK ×, QUICKEST ∗, SHARP ◦.
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Figure 11. Background potential energy evolution of the internal seiche with initial interface thickness
k�=0:01� normalized by the initial available potential energy Ea0, for the monotonic schemes. Legend:
Upwind /, MINMOD ◦, Van Leer ., MUSCL �, ULTIMATE-QUICKEST ×, Superbee=BPEP2 ∗,

Super-C +, Hyper-C , BPEP1 �.

given by

�(z)=

⎧⎪⎪⎨
⎪⎪⎩
��
2

−d6 z¡ −d=2

−��
2

−d=26 z¡0
(48)

with �� being the density di�erence between the two layers and d being the total depth
of the two layers. Given this distribution, the quiescent background potential energy Eb0 is
obtained using Equation (3) as

Eb0 = − 1
8Md (49)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:301–329



BACKGROUND POTENTIAL ENERGY 321

t/T=0 1 2 

0 0.5 1 1.5 2
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t/T

∆ 
E

b(t
)/

E
a0

Figure 12. Background potential energy evolution of the internal seiche with initial interface thickness
k�=0:05� normalized by the initial available potential energy Ea0, for the monotonic schemes. Legend:
Upwind /, MINMOD ◦, Van Leer ., MUSCL �, ULTIMATE-QUICKEST ×, Superbee ∗, Super-C +,

Hyper-C , BPEP1=BPEP2 �.

where M is the mass of the �uid, as in Equation (5). To understand the e�ects of overshoots
on the background potential energy, we can approximate a numerical perturbation as a�ecting
both the upper and lower layers uniformly by an amount ��, as shown in Figure 13. The
resulting perturbed density �eld is given by

�(z)=

⎧⎪⎪⎨
⎪⎪⎩
��
2
+ �� −d6 z¡ −d=2

−��
2

− �� −d=26 z¡0
(50)

noting that this perturbation does not change the mass of the �uid M . The change in the
background potential energy resulting from this perturbation is given by

�Eb = − 2|Eb0| ���� (51)

which shows that overshoots in the density pro�le, represented by +��, result in a decrease
in the background potential energy. Di�usion of the pro�le, on the other hand, which is
represented by −��, results in a gain in the background potential energy.
The Lax–Wendro� scheme induces the largest overshoots, and hence it causes the most

substantial change in the background potential energy for both the k�=0:01� and 0:05�
cases. For the thicker interface case shown in Figure 10, however, the net change in the
background potential energy for all three cases is substantially reduced as a result of the
reduced overshoot. Oscillations in the background potential energy result from the periodic
nature of the Courant number over the course of the simulation. The Lax–Wendro� scheme
shows the most pronounced oscillations in the background potential energy because it is the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:301–329



322 O. B. FRINGER, S. W. ARMFIELD AND R. L. STREET

-δρ

+δρ  
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∆ρ /2 

∆ρ /2 

Figure 13. Approximate e�ect of a numerical perturbation to a quiescent density �eld, showing that
overshoots can be approximated by increases in the density di�erence between the layers by an amount
+�� (a), while di�usion can be approximated by a decrease in the same amount, as shown in (b).

most dispersive of the schemes presented here. Changes in the background potential energy
are the lowest at t=T =0, 1=2, 1, 3=2 and 2, since these are the points at which the �uid
velocity is a minimum and hence the Courant number is a minimum. As shown in Figure 14,
the Lax–Wendro� scheme generates overshoots in the density �eld on the underside of the
interface at kx=3�=4 due to negative dispersion as it rises. This translates into an increase
in the background potential energy between t=T =0 and t=T =1=2, but as the interface at
x=3�=4 falls between t=T =1=2 and t=T =1, positive dispersion removes the overshoots and
causes an increase in the background potential energy. This occurs at kx=�=4 as well, but
above the interface. From Figure 14, there is weak dispersion that induces overshoots above
the interface at kx=3�=4 as it falls, but these are much weaker because the upper half of
the interface is smoothed as it rises between t=T =1=2 and t=T =1.
Owing to its nonmonotonicity at the beginning of the simulation, the SHARP scheme

initially causes a slight decrease in the background potential energy for the k�=0:01� case,
as shown in Figure 9, but di�usion eventually causes a net increase in the background potential
energy after two wave periods. Because it is monotonic for k�=0:05�, however, the SHARP
scheme causes a monotonic increase in the background potential energy for this case, as
shown in Figure 10.
As shown in Figures 11 and 12, the background potential energy increases monotonically for

�rst-order upwind and all of the TVD schemes except for Superbee. The Superbee limiter is
compressive for the k�=0:05� case, as shown in Figure 12, and hence causes a decrease in the
background potential energy. However, in order to guarantee monotonicity for the k�=0:01�
case in Figure 11, interfacial di�usion causes a monotonic increase in the background potential
energy. The only scheme that causes a decrease in the background potential energy for the
k�=0:01� case in Figure 11 is Hyper-C, which lowers the background potential energy of
any initial distribution with a �nite interface thickness. As shown in Figure 12, however, in
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Figure 14. Density pro�les over time at kx=3�=4 for the k�=0:05� case, showing how the
Lax–Wendro� scheme generates overshoots due to negative dispersive error as the pro�le at kx=3�=4

rises, and e�ectively removes these overshoots with positive dispersion as the pro�le descends.

addition to the Superbee scheme, both the Super-C as well as the Hyper-C schemes cause a
monotonic decrease in the background potential energy due to their compressive behaviour.
For the thin interface case shown in Figure 11, the BPEP2 scheme does not maintain the
background potential energy because it is only as compressive as the Superbee scheme, and
hence the background potential energy for the BPEP2 scheme is identical to that for Superbee
for the k�=0:01� case. Because Superbee can lower the background potential energy for
k�=0:05�, the BPEP2 scheme maintains the background potential energy for this case. The
BPEP1 scheme, on the other hand, maintains the background potential energy for both cases in
Figures 11 and 12 because it employs the Hyper-C scheme that is the only scheme capable of
reducing the background potential energy for k�=0:01�. Figure 12 demonstrates how the rate
of increase in the background potential energy for the Van Leer scheme is roughly the same
magnitude as the rate of decrease of the background potential energy for the Hyper-C scheme.
This was the original motivation for using the Van Leer scheme as the di�usive limiter, despite
a wealth of available choices. We have found through numerical experimentation that the Van
Leer scheme yields the most favourable results.
We quantitatively determine the relative increase or decrease in the background potential

energy by computing the total change in the background potential energy of each scheme
after two periods with

�Eb =
Ebf − Eb0
Ea0

(52)

where Eb0 is the initial background potential energy, Ebf is the background potential energy
after two periods, and Ea0 is the initial available potential energy, as de�ned in Equation (1).
The results are presented in Table II. Positive values indicate a scheme that is di�usive on av-
erage, while negative values indicate schemes that either induce overshoots or are compressive.
Because they generate overshoots for both interface cases, the values for the Lax–Wendro�,
QUICK, and QUICKEST schemes are negative, while the Hyper-C scheme is negative for
both cases because it is compressive, as are the Superbee and Super-C schemes for k�=0:05�.
Not surprisingly, the Super-C scheme induces the smallest change in the background poten-
tial energy after the BPEP1 scheme for the thin interface case. The BPEP2 scheme matches
the value for Superbee when k�=0:01�, since for this thin interface the BPEP2 scheme is
e�ectively the Superbee scheme. While they are small, the values for the BPEP schemes are
not identically zero because, as will be shown in the next section, they oscillate about the
x-axis as they change back and forth between the compressive and Van Leer schemes.
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Table II. Per cent error measures of the background potential
energy for di�erent advection schemes after two interfacial
wave oscillations for the k�1 = 0:01� and k�2 = 0:05� cases.

Scheme k�=0:01� k�=0:05�

Lax–Wendro� −696.0 −38.9
QUICK −413.6 −181.1
QUICKEST −243.8 −101.6
Upwind 166.5 167.0
MINMOD 42.8 36.2
Van Leer 21.3 13.5
MUSCL 15.3 7.3
ULTIMATE-QUICKEST 11.7 4.6
Superbee 7.6 −1.5
SHARP 3.3 1.6
Super-C 1.9 −3.3
Hyper-C −10.8 −14.6
BPEP1 0.1 0.0
BPEP2 7.6 0.0

5. COST AND ACCURACY

As shown in Figure 15, the background potential energy oscillates about the x-axis, and hence
the background potential energy is actually conserved in an average sense. The advantage of
the BPEP2 scheme is that, because the Superbee scheme is not as compressive as the Hyper-
C scheme, the background potential energy does not oscillate as drastically as it does for
the BPEP1 scheme. As mentioned in Section 2.2, conservation of the background potential
energy in this way incurs an added computational expense because the background potential
energy is computed at every time step. The total computation time on an Intel Pentium 4
1:80GHz cpu for the BPEP1 scheme is 192 s, of which 81% is spent on the pressure-Poisson
equation, 13% on computation of the background potential energy, and the remaining 6% on
advection and other computations, which indicates that the BPEP schemes incur an extra 15%
computation time. It is possible to reduce the added expense by decreasing the frequency
with which the background potential energy is computed. This is done by computing the
background potential energy once every �xed number of time steps, rather than at every
time step, and hence reducing the associated expense of computing the background potential
energy in proportion to the number of skipped time steps. The drawback to not computing the
background potential energy as frequently is that this e�ectively causes the BPEP schemes
to revert to one of the limiters for a �xed number of time steps, regardless of the state of
the background potential energy. As a result, the more infrequently it is computed, the more
the background potential energy deviates from its initial value. This is depicted in Figure 16,
which depicts the mean-square departure of the background potential energy from its initial
value for k�=0:05� for both BPEP schemes. This error is given by

L2Eb =
1
T

∫ T

0

(
Eb(t)− Eb0

Ea0

)2
dt (53)
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Figure 15. Zoomed in views of the background potential energy for the: (a) BPEP1; and (b) BPEP2
schemes for k�=0:05�, showing how the background potential energy oscillates about the x-axis.
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Figure 16. Mean-square departure of the background potential energy from its initial value as a function
of the number of steps over which computation of the background potential energy is skipped. The

wave Courant number for this case is Cw =0:04.

where T is the period of oscillation. As expected, the BPEP2 scheme yields mean-square
departures of the background potential energy that are an order of magnitude less than the
BPEP1 scheme. The added expense associated with computing the background potential energy
can be reduced by a factor of 16, but this results in an increase in the mean-square departure
of the background potential energy LEb by an order of magnitude when using the BPEP1
scheme. However, doing so for the BPEP2 scheme causes in increase in the mean-square
departure by only a factor of 5.
When the background potential energy is computed for every time step, the mean-square

departure in Equation (53) converges to �rst order in time at best, as shown in Figure 17,
despite the second-order accuracy of the underlying solvers. In this �gure, the time is non-
dimensionalized and convergence is plotted as a function of the wave Courant number Cw
from Equation (44). First-order convergence is to be expected, since the background potential
energy is not a continuous function when the BPEP schemes are used. When the wave Courant
number increases to roughly 0.1, the BPEP1 scheme maintains the background potential energy
to less than 1% of its initial value, and the BPEP2 scheme does so to within 0.05%. Therefore,
while the BPEP1 scheme is the most favourable overall scheme for the present simulations,
if the interface thickness is not too small relative to the vertical grid spacing, it is best to
use the BPEP2 scheme since it can maintain the background potential energy with a tighter
tolerance.
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Figure 17. Temporal convergence of the background potential energy when the background potential
energy is computed at every time step. The wave Courant number, Cw, varies by changing the time

step and keeping all other parameters �xed.
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Figure 18. Evolution of a two-dimensional breaking interfacial wave with nondimensional interface
thickness k�=�=10, with T being the wave period. The wave propagates from left to right.

6. APPLICATION TO A BREAKING PROGRESSIVE INTERFACIAL
GRAVITY WAVE

As an example of an application of the BPEP schemes, we apply the BPEP2 scheme to
the generation and breaking of progressive interfacial gravity waves, details of which can be
found in the work of Fringer and Street [15]. In that work, periodic interfacial gravity waves
are generated by applying a forcing function to the horizontal momentum equation until the
waves reach their critical breaking steepness. An example of a breaking interfacial wave with
interface thickness k�=�=10 is shown in Figure 18. In this simulation, the domain is similar
to that shown in Figure 2, except the width is 0:2 m and the depth is 0:3 m, and the total
number of grid cells is 2562. Prior to application of the forcing function, the initial density
�eld is given by Equation (43) with ka=0:0 and ��=�0 = 0:03, and the velocity �eld is
quiescent. In Figure 18, the density �eld is plotted in a frame that moves with the wave,
but in the simulation the wave propagates through the periodic domain roughly eight times
before breaking begins. The growth rate is kept to a minimum in order to prevent transient
oscillations from contaminating the solution. During wave growth, the salt di�usivity is set to
zero and the BPEP2 scheme is employed to reduce the e�ects of numerical di�usion on the
interface to keep the nondimensional interface thickness as close to its initial value as possible
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as well as to prevent the background potential energy from increasing during wave growth.
Upon wave breaking, the salt di�usivity is set to its molecular value and the SHARP scheme
of Leonard [19] is then employed. Maintenance of the background potential energy during
wave growth is essential for these simulations because the breaking criterion is dependent on
a realistic value of the potential energy at the time of breaking.

7. CONCLUSIONS

Advection schemes do not in general maintain the background potential energy of a standing
interfacial gravity wave because they are either compressive, di�usive, or oscillatory. Com-
pressive schemes cause a reduction in the interface thickness because of steepening of the
density pro�le, and as a result lead to a decrease in the background potential energy. Di�usive
schemes, on the other hand, thicken the interface and cause an increase in the background
potential energy. Oscillatory schemes always lead to a decrease in the background potential
energy because they are e�ectively antidi�usive. However, dispersive schemes can incur a de-
crease in the background potential energy, followed by an almost equal and opposite increase,
if oscillations induced during one cycle of wave propagation are canceled out during another
cycle of wave oscillation.
By combining the characteristics of di�usive and antidi�usive schemes, we have devel-

oped schemes that conserve the background potential energy to a speci�ed tolerance. The �rst
scheme, BPEP1, employs a combination of the Hyper-C universal limiter and the Van Leer
TVD limiter to maintain the background potential energy to within 1% of its initial value
for �ows with wave Courant numbers less than 0.1. It maintains the background potential
energy for a wide interface thickness range at the risk of generating a slight nonmonotonicity
in the advected quantity. The other scheme, BPEP2, guarantees monotonicity of the advected
quantity, but does not maintain the background potential energy for thin interfaces because it
employs the Superbee limiter, which must employ numerical di�usion to maintain monotonic-
ity of sharp fronts. If the interface thickness is large enough, the BPEP2 scheme is favourable,
especially for large Courant numbers, since it can maintain the background potential energy
by an order of magnitude less than the BPEP1 scheme.
Use of the BPEP schemes requires computation of the background potential energy and

hence incurs roughly 15% extra computation time. This added expense can be reduced by
lowering the frequency of computation of the background potential energy. For example,
computing the background potential energy every 16 time steps reduces the added computation
time associated with the BPEP schemes to less than 1%. However, this results in an increase
in the mean-square departure of the background potential energy from its initial value by an
order of magnitude for the BPEP1 scheme and a factor of 5 for the BPEP2 scheme.
The present scheme reduces the change in the background potential energy by adjusting

the limiter in the formulation of the advection scheme. This is in contrast to the scheme of
Laval et al. [7], in which the background potential energy is identically preserved with the
use of a pycnocline �lter that is independent of the advection scheme. That scheme entails
an iterative calculation of the length scale required of the �lter that removes the background
potential energy added during the advection step and conserves mass to a speci�ed tolerance
(since the �lter does not conserve mass). Laval et al. suggest that the expense associated
with this iterative technique (which requires roughly 20 computations of Eb per time step)
can be reduced by refreshing the sharpening �lter less often, much in the same way we have
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outlined the method by which the cost of the BPEP schemes can be reduced by computing
Eb less often. In principle, a BPEP formulation could be constructed that determines the
appropriate limiter that identically conserves the background potential energy by blending two
limiters, rather than switching between them [26]. For example, if �1 is a compressive limiter,
while �2 is a di�usive limiter, then the ‘blended’ BPEP scheme would employ the limiter
�= ��1 +(1− �)�2 (06 �6 1), where the value of � that identically conserves Eb could be
determined via a Newton iteration at each time step. This scheme is the subject of future work
in which a background potential energy preserving scheme is being developed that preserves
Eb by altering the limiter locally, rather than globally.
In general, it has been shown that the background potential energy is an excellent measure of

the e�ective numerical di�usion or antidi�usion of an advection scheme. Physically speaking,
it must remain constant in the absence of thermal or salt di�usivity or mass �uxes into and
out of the domain. The second-order TVD schemes have been shown to either increase or
decrease the background potential energy, depending on the particular nature of the limiter
involved. Likewise, schemes that employ the universal limiter can also cause an increase or
decrease in the background potential energy, yet they do not guarantee monotonicity for very
sharp fronts, especially when the velocity �eld is highly oscillatory. However, the presence of
slight nonmonotonicity has been shown to produce good behaviour, especially for the BPEP1
scheme. Moreover, despite its slight nonmonotonicity, the SHARP scheme has been shown
to produce the best results overall, second to the BPEP1 scheme. It causes an increase in the
background potential energy by only 1.6% for the thin interface case.
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