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A B S T R A C T

With increased computing power, the horizontal grid-spacing of regional ocean models is decreasing to the
point where they can directly simulate lee waves. Although oceanic lee waves can be inherently nonhydrostatic,
such as in the abyssal ocean or in the Gulf Stream, regional ocean models are frequently run in hydrostatic
mode to avoid the computational expense of solving the nonhydrostatic pressure. However, the effects of
the nonhydrostatic pressure and the numerical error on the accuracy of the simulated lee waves is not
immediately obvious. To quantify these effects, this paper presents hydrostatic and nonhydrostatic simulations
of an idealized lee wave over both linear and nonlinear height and varying length bathymetry utilizing a range
of horizontal grid-spacings. We present an analysis of the numerical error arising from the discrete linear,
stratified Euler equations to identify the numerically induced physics in lee wave simulations. As expected
for the second-order accurate model, the numerical error in the lee wave drag decreases quadratically with
respect to horizontal grid refinement, although the error arises from two primary sources. The first is related
to discretization of the kinematic bottom boundary condition, which acts to decrease the lee wave drag. The
second is related to discretization of the nonhydrostatic pressure, which acts to increase the drag. Together,
the results offer a regional ocean modeler several cautionary notes for calculating and interpreting properties
of simulated lee waves, namely, that a hydrostatic model can produce the correct form drag due simply
to numerical error, and attempting to employ a nonhydrostatic model to correct for this error can require
prohibitively fine grid resolution.
. Introduction

Simulating certain types of internal gravity waves remains compu-
ationally challenging for ocean models. Chief among these perennially
exing oscillatory signals, at least in terms of potential abundance, is
he lee wave, which occurs wherever a steady current with stable strati-
ication interacts with bathymetry. The generation of a lee wave causes
rag on the background flow, hereafter referred to as lee wave drag,
hich is hypothesized to significantly affect the fate of momentum
nd energy in the ocean (Legg, 2020; Nikurashin and Ferrari, 2011;
rossman et al., 2016).

For global ocean models with 𝑂(10) km or coarser resolution, lee
aves are a subgrid-scale phenomenon that must be parameterized.
egional ocean simulations, however, are capable of resolving lee
aves in both the coastal and abyssal ocean (Caulfield et al., 2019). Re-

ent examples include Nikurashin et al. (2014), Zheng and Nikurashin
2019), Klymak (2018), Gula et al. (2018), and Marez et al. (2020).
ften, these studies employ hydrostatic simulations to avoid the com-
utational expense of solving the 3-D elliptic equation for the nonhy-
rostatic pressure. For lee waves, the hydrostatic model is appropriate
hen the horizontal length scale of the bathymetry 𝐿ℎ𝑖𝑙𝑙 is much

∗ Corresponding author.
E-mail address: fmayer@stanford.edu (F.T. Mayer).

longer than the wavelength of the lee wave 𝜆𝑙𝑒𝑒, which in typical
oceanic conditions is 𝜆𝑙𝑒𝑒 = 𝑂(1) km. As demonstrated by linear theory,
however, when the length of the bathymetry narrows to the same
order as the lee wavelength, the nonhydrostatic pressure reduces the
magnitude of the pressure anomaly in the lee wave and attenuates
the drag. Therefore, simulations over nonhydrostatic bathymetry that
neglect this nonhydrostatic effect risk over predicting the lee wave
drag.

Resolving a lee wave often requires the dual constraints of both
a fine enough horizontal grid-spacing to capture the horizontal gra-
dients in the lee wave as well as the expensive computation of the
nonhydrostatic pressure. Dimensional analysis suggests that both of
these requirements should be directly related to the length scale of
the bathymetry. This paper thus presents a set of hydrostatic and
nonhydrostatic simulations of an idealized lee wave over sinusoidal
bathymetries of hydrostatic and nonhydrostatic length scale with a
range of horizontal grid-spacing (𝐿ℎ𝑖𝑙𝑙∕100 < 𝛥𝑥 < 𝐿ℎ𝑖𝑙𝑙∕4). The
simulations offer a quantitative diagnosis of the resolution requirement
and the importance of the nonhydrostatic effect over various length
bathymetry. Additionally, this paper presents an analytical evaluation
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of the discrete lee wave equations and identifies how the truncation
error affects the physical system. Lastly, this paper offers a brief com-
parison of hydrostatic and nonhydrostatic lee wave simulations over
nonlinear height bathymetry to demonstrate that the lessons learned in
the linear regime apply also in the nonlinear regime.

This paper is organized as follows. In Section 2, we introduce an
idealized lee wave and derive a dimensionless form of the lee wave drag
predicted by linear theory. In Section 3, we describe our simulations
and analyze a set of high resolution simulations. In Section 4, we
present a derivation of the modified equivalent lee wave drag from the
discrete PDEs and compare it to the drag observed in our simulations.
In Section 5, we offer a brief analysis of nonlinear lee wave simulations.
Finally, in Section 6 we conclude with suggestions for grid resolutions
needed to resolve hydrostatic and nonhydrostatic lee waves.

2. Linear lee wave theory and parameter space

2.1. Dimensional analysis

An idealized lee wave can be generated by a flow with constant
background horizontal velocity 𝑈 and buoyancy frequency 𝑁2 = 𝑔

𝜌0
𝜕𝜌
𝜕𝑧

ver a sinusoidal bathymetry of height ℎ0 and length 𝐿ℎ𝑖𝑙𝑙 = 2𝜋∕𝑘 (see
ig. 1). Sinusoidal bathymetry is chosen in part for the simplicity that
t offers the analysis. But it also serves as a reasonable approximation
f a ubiquitous small-scale bathymetric feature of the ocean floor,
he abyssal hills (Goff and Arbic, 2010). Abyssal hills are strongly
nisotropic, appearing as an expanse of periodic ridges aligned with
he mid-ocean ridges where they are formed. Locally, their amplitudes
re focused at dominant wavelengths, such that they are similar to a
inusoid.

Rotation is neglected under the assumption of large Rossby number,
𝑘∕𝑓 > 1, where 𝑓 is the Coriolis frequency. In the presence of

otation, this assumption fails first for the longer (more hydrostatic)
ill lengths. For the most hydrostatic hill length considered in this
tudy, this assumption is equivalent to 𝑁∕𝑓 ≥ 𝑂(100) (see Fig. 8.10
n Gill (1982)), which, using a typical oceanic buoyancy scale 𝑁 =
𝑂(0.001) s−1, is valid at latitudes smaller than approximately 15◦.
teady lee wave theory demonstrates that as 𝑈𝑘 approaches the rate
f 𝑓 , rotation changes the lee wave wavelength, slows the vertically
ropagating wave front, and diminishes the form drag (Gill, 1982). For
𝑘 ≤ 𝑓 , propagating lee waves cannot exist and the steady-state drag
anishes, though the rotationally-evanescent lee wave response may
till entail significant drag (Klymak, 2018). Thus rotation is likely an
mportant element of most oceanic lee waves. However, as the goal
f this paper is to identify numerical considerations when resolving
onhydrostatic effects in lee waves, the analytical clarity gained by
gnoring rotation outweighs the potential cost in realism.

We also assume that the depth of the domain, 𝐷, is irrelevant,
i.e. that the ratio of the current to the first-mode internal gravity wave
speed satisfies 𝑈∕(𝑁𝐷) ≪ 1. In the deep ocean, where 𝐷 ≈ 4 km and
typical abyssal values of velocity and buoyancy give 𝑈∕𝑁 ≈ 100 m,
the assumption of infinite depth is very reasonable. In coastal regions,
where 𝐷 ≈ 1 km, reflections of the lee wave from the surface or
pycnocline might become important (Khatiwala, 2003).

With these assumptions, the idealized lee wave is characterized by
the dimensional quantities 𝑈 , 𝑁 , ℎ0, and 𝑘. Choosing 𝑈 and 𝑁 to
nondimensionalize ℎ0 and 𝑘, the governing nondimensional parameters
are 𝐽 = 𝑁ℎ0∕𝑈 and 𝜖 = 𝑈𝑘∕𝑁 . 𝐽 is a Froude number, indicating a ratio
of perturbation advection speed within the wave to its group velocity,
and serves as a measurement of the nonlinearity of the lee wave (Mayer
and Fringer, 2017). In this study, we focus the numerical analysis on
linear height bathymetry, implying 𝐽 ≪ 1. However, the results are
applicable for all subcritical lee waves (𝐽 < 1), where the nonlinear
effects on the lee wave drag are small (Nikurashin and Ferrari, 2010).
The results are also applicable to nonlinear height bathymetry with

𝐽 = 𝑂(1), as demonstrated in Section 5. We note that, although much

2

of the lee wave literature focuses on supercritical height bathymetry,
there are many abyssal hill regions with subcritical heights (see Fig. 9
in Nikurashin et al. (2014)).

We will refer to the second nondimensional number 𝜖 = 𝑈𝑘∕𝑁
as the nonhydrostatic parameter, since it informs the degree of non-
hydrostatic effects in the lee wave. 𝑈𝑘 may be interpreted as the
frequency of the bathymetric forcing on the flow, implying that 𝜖 is
the ratio of this forcing rate to the buoyant response rate of the fluid,
𝑁 . Equivalently, one can view 𝜖 as a ratio of the wavelength of the
lee wave, 𝜆𝑙𝑒𝑒 = 2𝜋𝑈∕𝑁 to the wavelength of the hill, 𝐿ℎ𝑖𝑙𝑙 = 2𝜋∕𝑘.
If the hill is very long, such that 𝜆𝑙𝑒𝑒 ≪ 𝐿ℎ𝑖𝑙𝑙, then 𝜖 ≪ 1 and the
wave is hydrostatic (Gill, 1982). However, in their study of the global
energy flux into lee waves, Nikurashin and Ferrari (2011) report that,
upon weighting by the energy flux, the average horizontal and vertical
wavelength of oceanic lee waves are 2.5 km and 700 m, respectively,
which implies 𝑈∕𝑁 = 107 m (see Eq. (20)) and 𝜖 = 0.27. Although
not strongly nonhydrostatic, this value of 𝜖 still entails qualitative
and quantitative differences between hydrostatic and nonhydrostatic
simulations, as demonstrated in this paper.

Seen as a ratio of frequencies, 𝜖 is analogous to 𝜔∕𝑁 for internal
tides, where 𝜔 is the tidal frequency, and the hydrostatic regime is
defined by 𝜔 ≪ 𝑁 . For internal tides, 𝜔∕𝑁 relates directly to the
angle of the tidal beam such that, as the tidal frequency approaches the
buoyancy frequency, the beam steepens toward the vertical. Internal
tide simulations run in hydrostatic mode when 𝜔 ≈ 𝑂(𝑁) will under
predict this beam steepening (Vitousek and Fringer, 2014). An analo-
gous relationship exists between 𝜖 and the angle of the group velocity
vector in a lee wave, as shown in Fig. 1 and discussed below.

As a final comment on 𝜖, note the potentially counter-intuitive
caling of the horizontal length by 𝑘 rather than 𝐿ℎ𝑖𝑙𝑙. This choice

results from recognizing that the quantity 𝛿 = 𝑈∕𝑁 is the inverse of
the lee wave wavenumber, 𝑁∕𝑈 , while the lee wave wavelength is
𝜆𝑙𝑒𝑒 = 2𝜋𝑈∕𝑁 . If one were to use 𝐿ℎ𝑖𝑙𝑙 to scale the horizontal, one
could use 𝜆𝑙𝑒𝑒 to arrive at the same expression for the nonhydrostatic
parameter,

𝜖 =
𝜆𝑙𝑒𝑒
𝐿ℎ𝑖𝑙𝑙

= 2𝜋𝑈
𝑁𝐿ℎ𝑖𝑙𝑙

= 𝑈𝑘
𝑁

. (1)

It would not be correct, however, to form a nonhydrostatic parameter
as 𝛿∕𝐿ℎ𝑖𝑙𝑙 = 𝑈∕(𝑁𝐿ℎ𝑖𝑙𝑙), because as we show below, this choice
bscures by a factor of 2𝜋 the distinction between the propagating and
vanescent regime given by 𝜖 = 1. Although it is still true that a flow is
ydrostatic when 𝑈∕(𝑁𝐿ℎ𝑖𝑙𝑙) ≪ 1 (Baines, 1995), omitting the factor of
𝜋 has resulted in some studies assuming nearly hydrostatic bathymetry
𝜖 ≈ 𝑂(0.1)), when it is in fact strongly nonhydrostatic (𝜖 ≈ 𝑂(1))
e.g. Zheng et al., 2012; Gula et al., 2018; Marez et al., 2020). As we
emonstrate below, this can result in over predictions of the lee wave
rag.

Our quantity of interest in this paper is the form drag associated
ith a lee wave, 𝐹 , which is the drag in units of force per unit length

nto the page shown in Fig. 1. Since a scale for 𝐹 in terms of 𝜌0, 𝑈 , and
is 𝜌0𝑈3𝑁−1, the nondimensional form drag must satisfy
𝐹

𝜌0𝑈3𝑁−1
= 𝑓 (𝐽 , 𝜖) . (2)

2.2. Nondimensional equations

We separate the flow into its external and internal quantities such
that 𝐮total = 𝑈𝐞𝑥 +𝐮, 𝜌total = 𝜌(𝑧) + 𝜌, and 𝑝total = 𝜌0𝑝(𝑧) + 𝜌0𝑝. Under
hese definitions, the governing steady Euler equations, after employing
he Boussinesq approximation, are given by

𝑈 𝜕𝑢
𝜕𝑥

+ 𝐮 ⋅ ∇𝑢 = −
𝜕𝑝
𝜕𝑥

, (3)

𝑈 𝜕𝑤
𝜕𝑥

+ 𝐮 ⋅ ∇𝑤 = −
𝜕𝑝
𝜕𝑧

−
𝜌
𝜌0

𝑔 , (4)

𝑈
𝜕𝜌

+ 𝐮 ⋅ ∇𝜌 =
𝜌0𝑁2

𝑤 , (5)

𝜕𝑥 𝑔
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Fig. 1. A lee wave generated over sinusoidal bathymetry of length 𝐿ℎ𝑖𝑙𝑙 and height
ℎ0 resulting from uniform background flow with horizontal velocity 𝑈 and buoyancy
requency 𝑁2 = 𝑔

𝜌0

𝜕𝜌
𝜕𝑧

, where 𝑔 is the gravitational constant, 𝜌 is the background density
f the fluid, and 𝜌0 is the reference density. The color contours represent a linear
ave-field variable, e.g. 𝑢(𝑥, 𝑧) (Eq. (26)). The dashed line indicates a line of constant
hase in the wave field from the downstream crest. The lee wave wavelength, 𝜆𝑙𝑒𝑒,
tretches perpendicularly from the phase line to the upstream crest, demonstrating
he trigonometric relationship between the angle of the wavenumber vector and the
orizontal, cos(𝜃) = 𝑈𝑘∕𝑁 ≡ 𝜖. Note that 𝜃 is also the angle of the phase line to the
ertical.

here ∇ = 𝐞𝑥𝜕∕𝜕𝑥 + 𝐞𝑧𝜕∕𝜕𝑧, 𝑁2 = −𝑔∕𝜌0 𝜕𝜌∕𝜕𝑧, subject to continuity
∇ ⋅ 𝐮 = 0 and the kinematic boundary condition at 𝑧 = ℎ(𝑥)

𝜕ℎ
𝜕𝑥

+ 𝑢 𝜕ℎ
𝜕𝑥

= 𝑤 , (6)

here ℎ(𝑥) is the topography as a deviation from a flat bottom and has
maximum crest to trough amplitude of ℎ0.

The equations are nondimensionalized using the inner variable
cales defined by

𝑢,𝑤, 𝜌, 𝑝, ℎ, 𝑥, 𝑧] =
[

𝑢𝑜𝑢
∗, 𝑤0𝑤

∗, 𝑅𝜌∗, 𝑃 𝑝∗, ℎ0ℎ
∗, 𝑘−1𝑥∗, 𝛿𝑧∗

]

, (7)

here dimensionless quantities are indicated with the ∗. Using these
cales, Mayer and Fringer (2017) show that the problem is uniquely
haracterized by 𝜖 = 𝑈𝑘∕𝑁 and 𝐽 = 𝑁ℎ0∕𝑈 , with the relevant inner
cales (nondimensionalized by 𝑁 and 𝑈)

𝑢0
𝑈

,
𝑤0
𝑈

,
𝑔𝑅

𝜌0𝑈𝑁
, 𝑃
𝑈2

,
𝑁ℎ0
𝑈

, 𝑁𝑘−1

𝑈
, 𝑁𝛿
𝑈

]

=
[

𝐽 , 𝜖𝐽 , 𝐽 , 𝐽 , 𝐽 , 𝜖−1, 1
]

, (8)

nd governing nondimensional equations

𝜕𝑢∗

𝜕𝑥∗
+ 𝐽𝐮∗ ⋅ ∇∗𝑢∗ = −

𝜕𝑝∗

𝜕𝑥∗
, (9)

𝜖2
(

𝜕𝑤∗

𝜕𝑥∗
+ 𝐽𝐮∗ ⋅ ∇∗𝑤∗

)

= −
𝜕𝑝∗

𝜕𝑧∗
− 𝜌∗ , (10)

𝜕𝜌∗

𝜕𝑥∗
+ 𝐽𝐮∗ ⋅ ∇∗𝜌∗ = 𝑤∗ , (11)

subject to ∇∗ ⋅ 𝐮∗ = 0 and the kinematic bottom boundary condition
(

1 + 𝐽𝑢∗
) 𝜕ℎ∗

𝜕𝑥∗
= 𝑤∗ . (12)

Note that the vertical momentum equation (10) reduces to the hydro-
static balance when 𝜖 = 0.
3

Upon inspection of the governing nondimensional equations, the
equations are linearized by taking the 𝐽 → 0 limit, giving

𝜕𝑢∗

𝜕𝑥∗
= −

𝜕𝑝∗

𝜕𝑥∗
, (13)

𝜖2 𝜕𝑤
∗

𝜕𝑥∗
= −

𝜕𝑝∗

𝜕𝑧∗
− 𝜌∗, (14)

𝜕𝜌∗

𝜕𝑥∗
= 𝑤∗ . (15)

Combining with ∇∗ ⋅ 𝐮∗ = 0, one can rearrange these equations into a
governing equation for 𝑤∗

𝜕2𝑤∗

𝜕𝑧∗2
+ 𝜖2 𝜕

2𝑤∗

𝜕𝑥∗2
+𝑤∗ = 0 , (16)

which is subject to the linearized bottom boundary condition

𝑤∗(𝑥∗, 0) = 𝜕ℎ∗

𝜕𝑥∗
. (17)

By linear superposition, any shape bathymetry can be decomposed into
a sum of sinusoids with different wavelengths (Bell, 1975). Our interest
is therefore in the solution for one such sinusoidal bathymetry, and we
define a simple nondimensional height function as

ℎ∗(𝑥∗) = 1
2
sin(𝑥∗), (18)

such that the nondimensional trough to crest height is unity.
When 𝜖 < 1, the solution to Eq. (16) that satisfies the sinusoidal

ottom boundary condition is of the form 𝑤∗(𝑥∗, 𝑧∗) = cos(𝑥∗ + 𝑚∗𝑧∗),
hich implies that the nondimensional vertical wavenumber
∗ = (1 − 𝜖2)1∕2. (19)

imensionalizing 𝑚∗ with 𝛿−1 (Eq. (8)), this results in a constant
ropagating lee wave wavenumber (Eq. 6.8.6 in Gill (1982))

𝑙𝑒𝑒 = (𝑚2 + 𝑘2)1∕2 = 𝑁∕𝑈, (20)

nd lee wave wavelength

𝑙𝑒𝑒 = 2𝜋 𝐾−1
𝑙𝑒𝑒 = 2𝜋 𝑈∕𝑁. (21)

ote that upon shifting to the frame of reference moving with the
ater, Eqs. (20) and (21) follow directly from the general dispersion

elation for internal gravity waves in a continuous stratification, 𝜔 =
𝑁𝑘∕(𝑘2 + 𝑚2)1∕2, where the sinusoidal bathymetry propagating to

he left at speed 𝑈 acts as a forcing frequency 𝜔 = 𝑈𝑘 (Pedlosky,
003). In this reference frame, the group velocity vector has magnitude
𝑈2

𝑁𝑚 = 𝑈 (1 − 𝜖2)1∕2 and is perpendicular to the wavenumber vector,
in accordance with what is expected for internal gravity waves in
continuous stratification. However, this is not the reference frame of
most ocean simulations, and viewed in the frame of the hill, vector
addition shows that the group velocity vector of the lee wave has
magnitude

|𝑐𝑔| = 𝜖𝑈 (22)

and is parallel to the wavenumber vector, pointing downstream at
an angle 𝜃 to the horizontal given by the relation (Eq. 6.8.13 in Gill
(1982))

𝜖 = cos(𝜃) (23)

(see also chapter 10 of Pedlosky (2003)). This implies that, as the wave
becomes more nonhydrostatic (𝜖 → 1), the wavenumber vector and
the group velocity vector both tilt increasingly downstream (𝜃 → 0).
Lines of constant phase are perpendicular to the wavenumber vector,
and thus make an angle 𝜃 to the vertical. This means that, as in
internal tides, lines of constant phase point increasingly vertically with
increasing nonhydrostasy. However, unlike internal tides, for the lee
wave the energy propagates parallel to the wavenumber vector, and
thus points increasingly horizontally with increasing nonhydrostasy.
Note that this also implies the relation

𝜃 = tan−1
(𝑚)

= tan−1
(

(1 − 𝜖2)1∕2
)

, (24)

𝑘 𝜖
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which is indeed the inverse relation for an internal tide beam angle (Vi-
tousek and Fringer, 2014).

In the hydrostatic limit, 𝑘 → 0, and the vertical wavenumber 𝑚
asymptotes to the lee wave wavenumber, 𝑁∕𝑈 . Thus, for hydrostatic
simulations, where there is a finite 𝑘 but the model nonetheless en-
forces the hydrostatic vertical wavenumber 𝑚ℎ𝑠 = 𝑁∕𝑈 , the observed
wavenumber vector will instead satisfy 𝐾ℎ𝑠 = (𝑘2 +𝑁2∕𝑈2)1∕2, with a
different angle of propagation given by

𝜃ℎ𝑠 = tan−1
( 1
𝜖

)

. (25)

ote that this relation is equivalent to the 𝜖 ≪ 1 limit of Eq. (24).
Substitution of 𝑤∗(𝑥∗, 𝑧∗) = cos(𝑥∗ +𝑚∗𝑧∗) into the governing linear

quations gives

𝑢∗(𝑥∗, 𝑧∗) = −1
2
𝑚∗ cos(𝑥∗ + 𝑚∗𝑧∗) , (26)

∗(𝑥∗, 𝑧∗) = 1
2
cos(𝑥∗ + 𝑚∗𝑧∗) , (27)

𝜌∗(𝑥∗, 𝑧∗) = 1
2
sin(𝑥∗ + 𝑚∗𝑧∗) , (28)

𝑝∗(𝑥∗, 𝑧∗) = 1
2
𝑚∗ cos(𝑥∗ + 𝑚∗𝑧∗) . (29)

ote that in Eq. (26) and (29), the magnitudes of the horizontal velocity
nd pressure scale with 𝑚∗ = (1 − 𝜖2)1∕2, and are thus only 𝑂(1) in

the hydrostatic limit. This implies that although Mayer and Fringer
(2017) derived Eq. (9)–(12) with the scaling

[

𝑢0, 𝑃
]

=
[

𝐽𝑈, 𝐽𝑈2], a
more general first-order scaling for 𝑢 and 𝑝 is

[

𝑢0, 𝑃
]

=
[

𝐽𝑈𝑚∗, 𝐽𝑈2𝑚∗].
The form drag (per unit width) over one wavelength is given by

𝐹𝑛ℎ𝑠 = ∫

2𝜋∕𝑘

0
𝑝(𝑥, 𝑧 = 0) 𝜕ℎ

𝜕𝑥
𝑑𝑥 , (30)

where we use the sign convention of a positive drag acting to decelerate
the flow. Nondimensionalizing gives

𝐹𝑛ℎ𝑠

𝜌0𝑈3𝑁−1
= 𝐽 2

∫

2𝜋

0
𝑝∗(𝑥∗, 𝑧∗ = 0) 𝜕ℎ

∗

𝜕𝑥∗
𝑑𝑥∗ . (31)

ubstitution of 𝑝∗ and ℎ∗ (Eqs. (18) and (29)) then gives, assuming
< 1,
𝐹𝑛ℎ𝑠

𝜌0𝑈3𝑁−1
= 𝜋

4
𝐽 2 (1 − 𝜖2

)1∕2 , (32)

which shows that the nondimensional drag on the background current
associated with lee waves grows in proportion to 𝐽 2, but decreases with
increasing 𝜖. The 𝜖-dependence is a direct result of the factor 𝑚∗ in the
nonhydrostatic solution for the pressure anomaly (Eq. (29)). Despite
the canonical status of this idealized lee wave in texts on stratified
flows (Gill, 1982; Baines, 1995; Pedlosky, 2003), our derivation of the
lee wave drag is unique in that the result is given in nondimensional
form.

The momentum lost to the form drag results in a vertical momentum
flux, 𝑓𝑓𝑙𝑢𝑥 = 𝜌0𝑢𝑤 away from the bathymetry. Nondimensionaliz-
ng with 𝜌0𝑈2 and inserting the propagating solution for 𝑢∗ and 𝑤∗

(Eqs. (26) and (27)), the nondimensional vertical momentum flux has
the form
𝑓𝑓𝑙𝑢𝑥
𝜌0𝑈2

= −1
4
𝐽 2 𝜖 𝑚∗ cos2(𝑥∗ + 𝑚∗𝑧∗) = −

𝑓0
𝜌0𝑈2

cos2(𝑥∗ + 𝑚∗𝑧∗), (33)

where the scale for the vertical momentum flux is

𝑓0 =
1
4
𝜌0𝑈

2𝐽 2𝜖𝑚∗. (34)

If we define some horizontal surface in (𝑥, 𝑧) space that spans a single
horizontal wavelength of the bathymetry, from [0, 2𝜋∕𝑘], the total
momentum flux through this surface is

𝐹𝑓𝑙𝑢𝑥 = −
2𝜋∕𝑘

𝑓𝑓𝑙𝑢𝑥 𝑑𝑥 =
𝑓0 2𝜋

𝑓 ∗
𝑓𝑙𝑢𝑥 𝑑𝑥∗. (35)
∫0 𝑘 ∫0 t

4

ubstitution of Eq. (33) then gives
𝐹𝑓𝑙𝑢𝑥

𝜌0𝑈3𝑁−1
= −1

4
𝐽 2𝑚∗

∫

2𝜋

0
𝑐𝑜𝑠2(𝑥∗ + 𝑚∗𝑧∗)𝑑𝑥∗ (36)

= −𝜋
4
𝐽 2 (1 − 𝜖2

)1∕2 . (37)

Thus, under our assumptions of linear height bathymetry and inviscid
flow, the flux of momentum through any horizontal plane is equal and
opposite to the form drag of the bathymetry on the flow, 𝐹𝑓𝑙𝑢𝑥=-𝐹𝑛ℎ𝑠
(Eq. 8.8.10 in Gill (1982)).

Finally, in the hydrostatic limit, 𝜖 ≪ 1, the lee wave drag (Eq. (32))
asymptotes to

𝐹ℎ𝑠

𝜌0𝑈3𝑁−1
= 𝜋

4
𝐽 2. (38)

his is the maximum drag that could possibly result from a single lee
ave; the nonhydrostatic drag is always smaller by a factor of 𝑚∗, i.e.

𝑛ℎ𝑠 = 𝑚∗𝐹ℎ𝑠 = (1 − 𝜖2)1∕2𝐹ℎ𝑠. (39)

ℎ𝑠 therefore serves as a scale for drag in what follows. Note further
hat, because only the trough to crest height factors into the hydrostatic
rag (Eq. (38)), any shape hill with a height ℎ0 will produce the
ame drag in the linear, hydrostatic limit. Indeed, even though we
erived 𝐹ℎ𝑠 for a single sinusoidal hill, it is equivalent to the hydrostatic
on-rotating drag given in Gill (1982), Eq. (8.8.20) for flow over an
solated bell shaped mountain. Although 𝐹ℎ𝑠 is the largest drag from
single hill, it does not produce the largest density of drag, given by
𝐹𝑛ℎ𝑠∕(2𝜋). Upon evaluating the derivative of 𝑘𝐹𝑛ℎ𝑠∕(2𝜋) with respect to
he bathymetric wavenumber 𝑘, the largest drag density can be shown
o occur for hills with horizontal wavenumber 𝑘 = 𝑁∕(𝑈

√

2), or 𝜖 ≈ 0.7.
Hence for a given area of ocean floor, a field of strongly nonhydrostatic
hills can remove more momentum from the flow than would a single
hydrostatic hill occupying the same horizontal span.

When 𝜖 ≥ 1, the solution to Eq. (16) is now of the form 𝑤∗(𝑥∗, 𝑧∗) =
os(𝑥∗) exp(−𝑚∗𝑧∗), which implies 𝑚∗ = (𝜖2 −1)1∕2. Substitution into the
overning linear equations gives

𝑢∗(𝑥∗, 𝑧∗) = 1
2
𝑚∗ sin(𝑥∗) exp(−𝑚∗𝑧∗) , (40)

∗(𝑥∗, 𝑧∗) = 1
2
cos(𝑥∗) exp(−𝑚∗𝑧∗) , (41)

𝜌∗(𝑥∗, 𝑧∗) = 1
2
sin(𝑥∗) exp(−𝑚∗𝑧∗) , (42)

𝑝∗(𝑥∗, 𝑧∗) = −1
2
𝑚∗ sin(𝑥∗) exp(−𝑚∗𝑧∗) . (43)

ince the pairs (𝑝∗, 𝜕ℎ
∗

𝜕𝑥∗ ) and (𝑢∗, 𝑤∗) are now 𝜋∕2 out of phase in 𝑥∗, the
momentum flux and the lee wave drag are identically zero, giving

𝐹𝑛ℎ𝑠

𝜌0𝑈3𝑁−1
= 0 (44)

when 𝜖 ≥ 1. Therefore, the background current is unaffected by
teady flow over any small-amplitude hill narrower than the lee wave
avelength 𝜆𝑙𝑒𝑒 = 2𝜋𝑈∕𝑁 . In this regime, the vertical wavenumber 𝑚∗

now increases with 𝜖. As a consequence, with decreasing hill length,
𝑝∗ and 𝑢∗ grow in magnitude while shrinking in vertical scale to a thin
layer above the hills. These are intrinsically nonhydrostatic processes
and are impossible for hydrostatic simulations to capture.

Note that the bifurcation of the lee wave solution around 𝜖 = 1
epends on the scaling of the horizontal length with 𝑘−1 rather than
ℎ𝑖𝑙𝑙. If we had instead formed a nonhydrostatic parameter as 𝑈

𝑁𝐿ℎ𝑖𝑙𝑙
,

as in Baines (1995), we would have obscured this separation of regimes
by a factor of 2𝜋. This has resulted in some studies mischaracterizing
the hydrostasy of lee waves. For example, Gula et al. (2018) and Marez
et al. (2020) simulate lee waves in the Gulf Stream launched by a
chain of linear height seamounts with minimum lengths of from 1 to
2 km and background conditions 𝑈∕𝑁 ≈ 100 m (Zheng et al., 2012),
uch that the intuitive scaling gives 𝑈

𝑁𝐿ℎ𝑖𝑙𝑙
= 0.01–0.05, small values

hat imply hydrostatic behavior. As a result, the authors employed a
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hydrostatic model to save computational resources. However, scaling
with 𝑘−1 gives 𝜖 = 𝑈𝑘

𝑁 = 0.3–0.6, larger values that, based on Eq. (39),
uggest the true lee wave drag could be 5%–20% smaller than reported.

. Simulations

.1. Model set up

We employ two-dimensional (x-z) simulations with the nonhydro-
tatic SUNTANS model (Fringer et al., 2006). Because we consider
nly one-dimensional linear-height bathymetry and ignore rotation,
he physics are symmetrical in the span-wise direction and there is
o difference between two-dimensional and three-dimensional simu-
ations. Indeed, even with strong rotation and nonlinear height one-
imensional bathymetry, Nikurashin et al. (2014) showed there is little
ifference between two- and three-dimensional lee wave simulations.
or our simulations, boundary conditions are periodic in the horizontal,
ree-slip on the bottom and top, and the free surface is a rigid lid. All
imulations begin at rest with uniform linear stratification such that
he buoyancy frequency 𝑁 = 0.002 rad s−1. They are then spun up to a
arget velocity of 𝑈 = 0.2 m s−1 using the adaptive forcing scheme
f Nelson and Fringer (2017). This scheme nudges the flow with a
niform along-stream pressure gradient that is recomputed with each
ime step to enforce a constant volume-averaged horizontal velocity.
he values of 𝑈 and 𝑁 are typical for the abyssal ocean (Nikurashin
nd Ferrari, 2011; Klymak, 2018) and coastal regions such as the Gulf
tream (Zheng et al., 2012), and set the characteristic vertical length
cale to 𝛿 = 𝑈∕𝑁 = 100 m and the wavelength of the lee wave to
𝑙𝑒𝑒 = 2𝜋𝛿 = 628 m.

A primary goal of the simulations is to demonstrate the convergence
of the lee wave drag to the linear theory in both hydrostatic and
nonhydrostatic modes. As such, we simulate waves over idealized linear
height bathymetry of sinusoidal shape, ℎ(𝑥) = 1

2ℎ0 sin(𝑘𝑥). We keep
the hill height fixed at ℎ0 = 2 m, but vary the hill length 𝐿ℎ𝑖𝑙𝑙 =
[4, 2, 1, 0.5] km. Since 𝑁 and 𝑈 are fixed, these bathymetric values give
a linear height hill, with 𝐽 = 0.02, and varying degrees of nonhy-
drostasy, with 𝜖 = [0.16, 0.32, 0.63, 1.26], which includes the evanescent
regime with one hill satisfying 𝜖 > 1. The bathymetry is represented
as a piecewise linear function, referred to as cut cells (Zhang, 2017),
rather than the discontinuous stair-stepping inherent to z-grids. This
avoids both premature separation on the downslope as well as spurious
evanescent waves from a stair-stepping bottom, and has been shown to
provide much more accurate simulations of mountain waves (Adcroft
et al., 1997). To test convergence, we vary the horizontal grid-spacing
over 𝐿ℎ𝑖𝑙𝑙∕100 < 𝛥𝑥 < 𝐿ℎ𝑖𝑙𝑙∕4, or equivalently, 0.06 𝑘−1 < 𝛥𝑥 < 1.57 𝑘−1.
To assess nonhydrostatic effects, the SUNTANS model is run in both
hydrostatic and nonhydrostatic modes. The vertical resolution is held
fixed (see below), and is chosen to accurately resolve the vertical scale,
which is given by the vertical wavelength.

The depth in all simulations is 𝐷 = 7 km, which is just over 11
lee wave wavelengths (11𝜆𝑙𝑒𝑒 = 6912 m). To avoid reflections from the
surface, we use linear damping of perturbation horizontal velocity in
a sponge layer that extends over the top 5 km of the domain. This is
enforced with a source term on the right-hand side of the horizontal
momentum equation of the form

𝑆 = − 𝑢 − 𝑈
𝜏𝑠

,

where

𝜏𝑠 =
2 𝜏0

1 + tanh[(𝑧 − 𝑧𝑠)∕𝐿𝑠]
,

uch that the strength of the damping smoothly transitions into the
ponge layer beginning at distance above the floor 𝑧𝑠 = 2000 m, with

a decay length scale of 𝐿𝑠 = 1
2𝜆𝑙𝑒𝑒 = 314 m, and a minimum damping

imescale of 𝜏0 = 4∕𝑁 = 2000 s. The vertical discretization employs a
onstant resolution of 𝛥𝑧 = 5 m in the bottom 2 km of the domain,
5

nd then stretching over the remaining 5 km such that, at the surface,
𝑧𝑡𝑜𝑝 = 300 m. This is identical to the vertical grid in Nikurashin and
errari (2010). The vertical resolution near the bottom is 𝛥𝑧 = 5 m,

which is quite refined relative to the vertical scale of the lee wave
of 𝜆𝑙𝑒𝑒 = 628 m. Such high vertical resolution minimizes errors with
respect to 𝛥𝑧, allowing us to focus on the nonhydrostatic effects dictated
by convergence with respect to 𝛥𝑥.

All runs simulate 10 excitation periods, where the excitation period
is given by 𝑇𝑒𝑥 = 𝐿ℎ𝑖𝑙𝑙∕𝑈 . In terms of the excitation period and the lee
wave wavelength,

|𝑐𝑔| = 𝜖𝑈 =
(

2𝜋𝑈
𝐿ℎ𝑖𝑙𝑙𝑁

)

𝑈 =
( 2𝜋𝑈

𝑁

)

(

𝑈
𝐿ℎ𝑖𝑙𝑙

)

=
𝜆𝑙𝑒𝑒
𝑇𝑒𝑥

, (45)

implying that in the hydrostatic limit, where the group velocity is
directed vertically (Eq. (23)), the wave propagates upward by one
wavelength for each excitation period. Because the excitation period
scales with the length of the bathymetry, longer hills require longer
simulation times. That is, for 𝐿ℎ𝑖𝑙𝑙 = [0.5, 1, 2, 4] km and 𝑈 = 0.2 m s−1,
𝑇𝑒𝑥 = [0.7, 1.4, 2.8, 5.6] hr, and 𝑇𝑠𝑖𝑚 = [0.3, 0.6, 1.2, 2.3] days.

The kinematic viscosity is constant 𝜈 = 0.01 m2 s−1, and no
urbulence model is employed. Shakespeare and Hogg (2017) suggest
hat this value for 𝜈 is small enough to produce an effectively inviscid
ee wave simulation. This is especially true for a lee wave with linear
eight bathymetry and a free-slip bottom boundary condition, in which
here are no instabilities in the system to drive significant gradients.
ndeed, test simulations with smaller viscosity produce little change in
he measured lee wave drag. Ultimately, the choice of 𝜈 was driven
y balancing stability considerations and a desire to avoid using an
nreasonably small time step. These simulations employ second-order
ccurate central differencing for advection of momentum, which im-
oses the rather severe stability criterion on the size of the time step of
𝑡 ≤ 2𝜈

𝑈2 = 0.5 s (assuming (𝑢0, 𝑤0) ≪ 𝑈). Hence, in all simulations we
use 𝛥𝑡 = 0.1 s.

3.2. Nonhydrostatic effects in resolved simulations

As derived above, the nonhydrostatic pressure in lee waves permits
the wavenumber vector to orient such that its magnitude is always
equal to 𝑁∕𝑈 above variable wavenumber bathymetry (Eqs. (20) and
(23)). In the hydrostatic limit (𝜖 → 0), the wavenumber of the
bathymetry effectively vanishes, and the wavenumber vector points
vertically. As 𝜖 increases towards unity, the wavenumber vector tilts in-
creasingly downstream, up to the limiting point in which the wavenum-
ber of the bathymetry exactly equals the lee wave wavenumber, and the
wavenumber vector points horizontally downstream. Beyond this limit,
in which hills have wavenumbers larger than 𝑁∕𝑈 (𝜖 > 1), there is no
orientation in which the wavenumber vector can have magnitude 𝑁∕𝑈 ,
and thus there is no propagating lee wave. This functional dependence
of the angle of the nonhydrostatic wavenumber vector on 𝜖 is given by
Eq. (24). In hydrostatic simulations, however, the vertical wavenumber
remains fixed at its hydrostatic value, 𝑁∕𝑈 , despite any variations in
the wavenumber of the bathymetry. Hydrostatic simulations should
thus produce a wavenumber vector with a different angle relative to
the horizontal, given in Eq. (25). Furthermore, because the vertical
wavenumber in hydrostatic simulations is insensitive to the wavenum-
ber of the bathymetry, a hydrostatic model will still generate lee waves
when 𝜖 > 1. Well resolved nonhydrostatic and hydrostatic simulations
of lee waves should display these diverging characteristics.

Fig. 2 shows output from the highest resolution nonhydrostatic
simulations for each of the four hill lengths. The horizontal grid-
spacing in each is the same relative to the wavelength of the hill,
that is, 𝑘𝛥𝑥 = 0.063. The right panels in the figure show time series
of the instantaneous wave drag over the course of the simulations
nondimensionalized by 𝐹ℎ𝑠 (Eq. (38)). Note that all simulations begin
by oscillating around the value 𝐹𝑛ℎ𝑠 (Eq. (32)), with maximum values

of 𝑂(𝐹ℎ𝑠). The period of these oscillations is precisely 𝑇𝑒𝑥. From the
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Fig. 2. Left: Average nondimensional perturbation horizontal velocity, 𝑢∕(𝐽𝑈𝑚∗) from high resolution 𝑘𝛥𝑥 = 0.063 simulations for each 𝜖. The axes are nondimensionalized by the lee
wave wavelength, 𝜆𝑙𝑒𝑒, and their aspect ratio is 1:1. The hill length increases from top to bottom as 𝐿ℎ𝑖𝑙𝑙 = [0.5, 1, 2, 4] km (𝜖 = [1.26, 0.63, 0.32, 0.16]). Right: Drag nondimensionalized
by 𝐹ℎ𝑠 as a function of nondimensional time for each simulation. The dotted horizontal lines are the prediction from nonhydrostatic linear theory, i.e. 𝐹𝑛ℎ𝑠∕𝐹ℎ𝑠, and we note that
𝐹𝑛ℎ𝑠∕𝐹ℎ𝑠 = 0 for 𝜖 > 1. The triangles indicate the averaging period.
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standpoint of dimensional analysis, this is not particularly surprising
because, although there are two time scales in the problem arising from
the terms 𝑁 and 𝑈 , only the latter of these relates to the forcing of the
hill on the wave. Nevertheless, recognizing 𝑇𝑒𝑥 as the intrinsic lee wave
time scale is an important observation from the standpoint of numerical
modeling because it sets a lower bound on the necessary duration of
a lee wave simulation. For these linear height hills, the oscillations
decay within the first 3 to 4 excitation periods, and the measured wave
drag asymptotes to 𝐹𝑛ℎ𝑠. Therefore, we define steady state as the period
given by 5 𝑇𝑒𝑥 ≤ 𝑡 < 8 𝑇𝑒𝑥. In what follows, quantities with the overbar
(e.g. 𝑢) are time-averaged over this period.

The left panels in Fig. 2 display the average nondimensional per-
urbation horizontal velocity, 𝑢∗ = 𝑢∕(𝐽𝑈𝑚∗). Note that this nondi-

mensionalization includes the nonhydrostatic factor 𝑚∗ = (1 − 𝜖2)1∕2
(as opposed to 𝑢0 = 𝐽𝑈 from Eq. (8)), and keeps the magnitude of
the nondimensional perturbation 𝑢∗ constant across 𝜖. As predicted by
onhydrostatic linear theory, the lee wave wavelength is also constant
hen 𝜖 < 1, and its orientation tilts downstream with increasing 𝜖.
lso in agreement with linear theory, the 𝜖 > 1 length hill does not
roduce a propagating wave, and exerts almost no drag upon reaching
quilibrium. Note, however, that even in this 𝜖 > 1 case, the maximum

instantaneous drag is of the same order as 𝐹ℎ𝑠. This occurs because it
still requires work to establish the evanescent disturbance.

To offer a qualitative assessment of the role of nonhydrostatic
pressure in these simulations, we show in the top panels of Fig. 3
the time-averaged vertical momentum flux, 𝑓 (𝑥, 𝑧) = 𝜌0𝑢(𝑥, 𝑧)𝑤(𝑥, 𝑧),
ondimensionalized by 𝑓0 (Eq. (34)) from the four nonhydrostatic
imulations shown in Fig. 2. The bottom panels show the time-averaged
lux from the equivalent hydrostatic simulations. As suggested by lin-
ar theory, the difference between the nonhydrostatic and hydrostatic
odels over the longest hill (𝜖 = 0.16; panels D and H) is imperceptible,
hile that over the narrowest hill (𝜖 = 1.26; panels A and E) is striking.

Specifically, the hydrostatic simulation over the 0.5 km hill (𝜖 = 1.26;
panel E) generates a propagating lee wave even though 𝜖 > 1. Less
triking, but still significant, is that the hydrostatic simulation above
he 1 km hill (𝜖 = 0.63; panel F) retains a vertical periodicity of exactly
he lee wave wavelength, 𝜆𝑙𝑒𝑒, while the nonhydrostatic simulation over
his length hill (panel B) correctly permits the wavenumber vector to
ilt downstream, leading to a longer vertical wavelength.

More quantitatively, Fig. 4 compares the angle of the simulated
ime-averaged wavenumber vector to the predictions from nonhydro-
tatic and hydrostatic theory (Eqs. (24) and (25)). The angle was
6

alculated by first determining the location of the maximum time-
veraged vertical velocity as a function of 𝑧, which traces out a line of
onstant phase in the lee wave. We then perform a linear least-squares
it to determine the slope, and thus the angle of the line of constant
hase to the vertical, which is equal to the angle of the wavenumber
ector to the horizontal. As they are sufficiently resolved, both the
imulated nonhydrostatic and hydrostatic wave angles agree with linear
heory. Note that, because the evanescent nonhydrostatic simulation
oes not produce a propagating wave, it has a real 𝑘 but an imaginary
, implying 𝜃 = 0.

. Effect of horizontal grid resolution

For an ocean model to resolve any type of wave, it requires hor-
zontal grid-spacing fine enough to detect the horizontal gradients of
aid wave. Failure to satisfy this resolution requirement can result
n numerically induced physics dominating the system. For example,
hen simulating solitary waves with a second-order accurate discretiza-

ion, Vitousek and Fringer (2011) demonstrate that the horizontal
radients in the wave scale with the depth of the internal interface

1, and thus the resolution must satisfy 𝛤 =
(

𝛥𝑥
ℎ1

)2
≪ 1 to avoid

numerically induced dispersion reducing the speed of the solitary wave.
Additionally Vitousek and Fringer (2011) show that the numerically
induced dispersion can cause a hydrostatic simulation to correctly
predict the speed and wavelength of a nonhydrostatic solitary wave,
albeit for non-physical reasons. A similar analysis of the discrete lee
wave system reveals that the horizontal gradients scale with the inverse
bathymetric wavenumber 𝑘−1, and that poor horizontal grid-spacing
results in the model responding to a smaller effective bathymetric
wavenumber, 𝑘𝑒, with a corresponding adjustment to the predicted lee
wave drag.

To derive the analytical expressions for these numerically induced
physics, we discretize the linear nondimensional steady lee wave equa-
tions (Eqs. (14)–(15)) and the nondimensional linear bottom boundary
condition (Eq. (17)) using central differencing in space. As an illus-
trative example of the process, the second-order accurate in space
discretization of the bottom boundary condition is given by

𝑤∗
𝑖 (𝑥

∗, 0) =
ℎ∗𝑖+1 − ℎ∗𝑖−1

2𝛥𝑥∗
, (46)

where the subscript 𝑖 corresponds to the horizontal index of the grid
point in the computational domain, and 𝛥𝑥∗ =

(

𝑥∗ − 𝑥∗
)

= 𝑘𝛥𝑥 is the
𝑖 𝑖−1
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Fig. 3. Time-averaged vertical momentum flux 𝑓 (𝑥, 𝑧) = 𝜌0𝑢(𝑥, 𝑧)𝑤(𝑧, 𝑥), nondimensionalized by 𝑓0 (Eq. (34)) for the nonhydrostatic (top) and hydrostatic (bottom) simulations.
Black dotted lines in the 𝜖 < 1 panels indicate lines of constant phase predicted by nonhydrostatic linear theory (Eq. (23)). As in Fig. 2, the aspect ratio is 1:1, but now the hill
length increases from left to right, where again 𝐿ℎ𝑖𝑙𝑙 = [0.5, 1, 2, 4] km (𝜖 = [1.26, 0.63, 0.32, 0.16]). The sponge layer is less effective with increasingly nonhydrostatic hills because it
acts only on the perturbation horizontal velocity, which becomes a smaller component of the total perturbation velocity as the hills become narrow (see Eq. (26) and (27)).
o
i

nondimensional horizontal grid spacing. Expanding ℎ∗𝑖+1 and ℎ∗𝑖−1 with
he Taylor series produces the modified equivalent form of the bottom
oundary condition

∗
𝑒 (𝑥

∗, 0) = 𝜕ℎ∗

𝜕𝑥∗
+ 𝛥𝑥∗2

6
𝜕3ℎ∗

𝜕𝑥∗3
+ 𝑂(𝛥𝑥∗4), (47)

where the subscript 𝑒 reflects that this is the modified equivalent
form of the expression from linear theory (Eq. (17)), and we have
dropped the subscript 𝑖 because the equations hold for all discrete
pace. Inserting the sinusoidal bathymetry ℎ∗ = 1

2 sin(𝑥
∗) implies the

quivalent bottom boundary condition (accurate to 𝑂(𝛥𝑥∗4))

𝑤∗
𝑒 (𝑥

∗, 0) = 1
2

(

1 − 𝛥𝑥∗2

6

)

cos(𝑥∗), (48)

which is smaller in magnitude than the analytical solution for 𝑤∗(𝑥∗, 0)
Eq. (27)) by the factor (1 − 𝛥𝑥∗2

6 ). Discretizing the bottom boundary
condition thus reduces the magnitude of the vertical velocity to one
appropriate for a more hydrostatic hill length, implying that we can
rewrite the modified equivalent bottom boundary condition as

𝑤∗
𝑒 (𝑥

∗, 0) = 1
2
𝑘𝑒
𝑘

cos(𝑥∗), (49)

where
𝑘𝑒
𝑘

=
(

1 − 𝛥𝑥∗2

6

)

(50)

s the modified equivalent hill wavenumber. Recalling that the mag-
itude of the lee wave group velocity is equal to 𝜖𝑈 (Eq. (22)), the
iscrete bottom boundary condition effects a modified equivalent group
elocity with magnitude

𝑐𝑔𝑒| =
𝑘𝑒
𝑘
𝜖𝑈, (51)

giving a modified equivalent group velocity that is slower than 𝑐𝑔 by a
factor of (1− 𝛥𝑥∗2

6 ). This is analogous to numerical dispersion slowing the
propagation of solitary internal waves in Vitousek and Fringer (2011).

Performing the same discretization on the linear Euler equations
and cross differentiating gives the modified equivalent form of Eq. (16)

𝜕𝑤∗2
𝑒 + 𝜖2

𝜕𝑤∗2
𝑒 +𝑤 = −𝛥𝑥∗2 𝜖2

𝜕𝑤∗4
𝑒 − 𝛥𝑧∗2 𝜕𝑤∗4

𝑒 +𝑂(𝛥𝑥∗4, 𝛥𝑧∗4). (52)

𝜕𝑧∗2 𝜕𝑥∗2 𝑒 6 𝜕𝑥∗4 6 𝜕𝑧∗4

7

Note that, for a hydrostatic model, where 𝜖 = 0, the error from the
horizontal discretization vanishes. Assuming a solution of the form
𝑤∗

𝑒 = 1
2
𝑘𝑒
𝑘 cos(𝑥∗ + 𝑚∗

𝑒𝑧
∗) and 𝛥𝑧2 ≪ 𝛥𝑥2 (since the vertical grid is very

fine), the effective modified nondimensional vertical wavenumber to
𝑂(𝛥𝑥4, 𝛥𝑧2) is given by

𝑚∗
𝑒 =

(

1 −
𝑘𝑒
𝑘
𝜖2
)1∕2

, (53)

which is larger than the nonhydrostatic wavenumber (Eq. (19)), and
thus more hydrostatic. The second-order accurate discretization of the
linear Euler equations therefore induces another error that also has
the effect of making the flow more hydrostatic. Indeed, at sufficiently
coarse resolutions, even an evanescent length hill (𝜖 ≥ 1) could generate
a non-imaginary vertical wavenumber if 𝑘𝑒

𝑘 𝜖2 < 1. For example, a
hill with 𝜖 = 1 and 𝛥𝑥∗ = 0.5 would have 𝑘𝑒

𝑘 = 0.96, and thus the
effective vertical wavenumber 𝑚∗

𝑒 = 0.2. Note, however, that because
𝐹𝑒 is only asymptotically accurate to 𝑂(𝛥𝑥∗4), it is only strictly valid
for resolutions in the asymptotic limit 𝛥𝑥∗4 ≪ 𝛥𝑥∗2.

Finally, following an identical derivation to that of the analytical
wave drag (Eq. (32)), we arrive at the modified equivalent wave drag

𝐹𝑒 =
𝑘𝑒
𝑘
𝑚∗
𝑒𝐹ℎ𝑠 =

(

1 − 1
6
(𝑘𝛥𝑥)2

) [

1 − 𝜖2
(

1 − 1
6
(𝑘𝛥𝑥)2

)]1∕2
𝐹ℎ𝑠. (54)

Expanding the square root, this gives

𝐹𝑒 =
[

1 − 𝜖2

2
− 1

6
(𝑘𝛥𝑥)2 + 𝜖2

6
(𝑘𝛥𝑥)2 + 𝑂

(

(𝑘𝛥𝑥)4, 𝜖4
)

]

𝐹ℎ𝑠. (55)

Discretization of the lee wave system thus introduces two competing
effects on the wave drag. First, the discrete bottom boundary condition
causes an attenuation of the amplitude of the lee wave by the amount
(𝑘𝛥𝑥)2

6 𝐹ℎ𝑠. Secondly, the nonhydrostatic discretization of the equations
f motion results in an amplification of the vertical wavenumber, which
n turn increases the magnitude of the form drag by approximately
𝜖2(𝑘𝛥𝑥)2

6 𝐹ℎ𝑠. Only the first of these effects persists in the hydrostatic
limit, or when using a hydrostatic model. However, in a coarsely re-
solved nonhydrostatic model over strongly nonhydrostatic bathymetry,
the second effect is not negligible. Lastly, Eq. (54) offers an estimate
of the resolution needed to achieve a desired precision. For example,
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generating a hydrostatic lee wave with 96% of the theoretical wave
drag requires 𝑘𝛥𝑥 = (6 ∗ (1 − .96)) = 0.5, or 𝛥𝑥 = 0.08 𝐿ℎ𝑖𝑙𝑙. Although
this conclusion simply confirms the general notion that resolving a
physical phenomenon requires about ten grid points per length scale
associated with that phenomenon, connecting the numerical error to
the physics is nevertheless a novel pursuit. Indeed, as regional models
increase their resolution to the point that they generate lee waves, this
result provides a useful analytical prediction of the numerical effects
they should expect.

To illustrate the numerical effects in linear lee waves, in Fig. 5
we show the simulated time-averaged wave drags and overlay the
equivalent modified wave drag 𝐹𝑒 (Eq. (54)) corresponding to each of
the four hill lengths (𝜖 = [.16, .32, .63, 1.26]), as well as the hydrostatic
quivalent modified wave drag, given by evaluating 𝐹𝑒 with 𝜖 = 0. The
caling of the axes in Fig. 5 causes the hydrostatic simulations (dashed
ines) to collapse onto a single curve that converges to 𝐹∕𝐹ℎ𝑠 = 1
nd is very well approximated by the hydrostatic form of 𝐹𝑒 (dotted
agenta line) at grid resolution smaller than 𝑘𝛥𝑥 = 0.8. At coarser

rid resolution, the asymptotic theory used to derive 𝐹𝑒 is no longer
alid, and the hydrostatic 𝜖 ≥ 0.32 simulations perform better than
redicted by 𝐹𝑒. Although anticipated by both hydrostatic theory and
𝑒, it is nevertheless noteworthy that all of the hydrostatic simulations
onverge with grid refinement to the same hydrostatic lee wave drag
𝐹ℎ𝑠). This occurs because the hydrostatic simulations generate lee
aves with vertical wavenumbers equaling the hydrostatic value 𝑚 =
∕𝑈 , and thus display waves with maximum perturbation pressure,
hich linear theory shows to be proportional to 𝑚 (Eq. (29)). Like-
ise, the nonhydrostatic simulations converge to the predictions from
onhydrostatic theory, 𝐹∕𝐹ℎ𝑠 = (1 − 𝜖2)1∕2 (Eq. (39)), which follows
rom the same reasoning as in the hydrostatic result with the difference
hat in the nonhydrostatic model, the vertical wavenumber adjusts
uch that the magnitude of the wavenumber vector is a constant 𝑁∕𝑈
Eqs. (20) and (23)). This nonhydrostatic adjustment to the vertical
avenumber entails an attenuation in the perturbation pressure away

rom its maximum hydrostatic value, and an attendant attenuation of
he wave drag. For all but the evanescent 500 m length hill (𝜖 = 1.26),
he drag increases with grid refinement and is well approximated by 𝐹𝑒
or 𝑘𝛥𝑥 < 0.8. Again, at coarser resolution, where 𝐹𝑒 is not valid, the
= 0.32 and 𝜖 = 0.63 simulations perform better than predicted by 𝐹𝑒.

The 500 m hill (𝜖 = 1.26) presents the most surprising, and from
he standpoint of a modeler wishing to resolve lee waves, the most
iscouraging result. Beginning with the hydrostatic model, as in all of
he hydrostatic simulations above longer hills, those above the 500 m
ill exhibit a lee wave with a hydrostatic vertical wavenumber, and
hus the full hydrostatic drag, 𝐹ℎ𝑠. The hydrostatic model thus dra-
atically over predicts the drag compared to the nonhydrostatic result

f the drag-free evanescent wave. And, as in all of the propagating
ength simulations, the predicted drag increases with increasing grid
efinement, following the hydrostatic form of 𝐹𝑒. This implies that

hydrostatic ocean model will generate lee waves even when the
orizontal scale of the bathymetry is less than the evanescent length,
hus producing erroneous numerical drag that increases with grid re-
inement. The nonhydrostatic model, on the other hand, converges to
he correct no-drag result with grid refinement. However, with coarser
esolution, the nonhydrostatic model also incorrectly predicts a finite
rag above the evanescent hill. Even with a reasonable resolution of
𝛥𝑥 = 0.32, or 𝛥𝑥 = 25 m, the nonhydrostatic model predicts a
rag of 0.08 𝐹ℎ𝑠. Although the modified equivalent wave drag 𝐹𝑒 with
= 1.26 (dotted green line) indicates that the nonhydrostatic model
ill produce numerically induced wave drag when 𝑚𝑒 is real, this

equires the coarse resolution of 𝑘𝛥𝑥 > 1.48, a regime in which the
symptotic theory used to derive 𝐹𝑒 is not appropriate. This suggests an
lternative numerical effect not captured by our discretization analysis
hat dominates for simulations over evanescent hill lengths. Noting that
he rate of convergence appears first order and that this is a strongly
onhydrostatic simulation, it is likely that the numerical effect derives
8

Fig. 4. The angle of the lee wave wavenumber vector with respect to the horizontal
as a function of the nonhydrostatic parameter 𝜖 = 𝑈𝑘∕𝑁 . The theoretical curves are
given in Eq. (24) (solid blue line) and Eq. (25) (solid red line) for nonhydrostatic
and hydrostatic waves, respectively. The time-averaged wave angles measured in
the 𝑘𝛥𝑥 = 0.063 simulations are plotted as blue diamonds and red circles for the
onhydrostatic and hydrostatic simulations, respectively. Note that the nonhydrostatic
= 1.26 gives 𝜃 = 0 because the vertical wavenumber in the evanescent regime is

maginary.

rom the bottom boundary condition on the nonhydrostatic pressure,
hich is not second order accurate with cut cells (Zhang, 2017). It is
lso possible that it results from the 𝑂(𝛥𝑧∗2) term that we neglected
n order to simplify the derivation of 𝑚𝑒 (Eq. (53)). In any case, this
tudy shows that, while the nonhydrostatic model significantly reduces
he erroneous drag over evanescent length bathymetry, extremely high
esolution is needed to eliminate it. For numerical studies focused on
imulating the lee wave drag in a region dominated by linear height
athymetry, the best solution could be to low pass filter the bathymetry
o remove evanescent length components, even when using a nonhy-
rostatic model. However, above less linear height bathymetry, there
ay be nonlinear interactions between evanescent and propagating

omponents of the bathymetry, and low pass filtering the bathymetry
ight not be appropriate. Further research is required to determine the

est course of action in this scenario. Nevertheless, this study suggests
hat simulating lee wave drag over narrow hills is a precarious business.

To emphasize the potential for over predicting the true drag with
he hydrostatic model, in Fig. 6 we offer a rescaling of the time-
veraged drag from the three 𝜖 < 1 length hills, now nondimensional-
zing by their respective values from nonhydrostatic linear theory, 𝐹𝑛ℎ𝑠
Eq. (32)). This plot does not show the evanescent case since the exact
esult is 𝐹𝑛ℎ𝑠 = 0, which would yield 𝐹∕𝐹𝑛ℎ𝑠 = ∞. All nonhydrostatic
esults converge to 𝐹∕𝐹𝑛ℎ𝑠 = 1 and all hydrostatic results converge to
𝐹∕𝐹𝑛ℎ𝑠 = (1 − 𝜖2)−1∕2. As observed in Fig. 5, the rates of convergence
are well predicted by 𝐹𝑒 when 𝑘𝛥𝑥 < 0.8, although for clarity, we do
not show 𝐹𝑒 here. For the 1 km hill (𝜖 = 0.63), the convergence of
the hydrostatic model to 𝐹ℎ𝑠 implies that the over prediction in drag
caused by using a high-resolution hydrostatic simulation asymptotes to
28%. On the other hand, using a nonhydrostatic model with coarser
resolution over the same hill leads to an under prediction of the drag.
Interestingly, because drag predicted by the hydrostatic model also
decreases with coarser resolution, there exists a resolution where the
two effects cancel, and the hydrostatic model gives better predictions of
the nonhydrostatic drag than the nonhydrostatic model. For example,
based on our simulations, the hydrostatic model with 𝜖 = 0.63 would
produce the correct drag (𝐹 = 𝐹𝑛ℎ𝑠) when 𝑘𝛥𝑥 = 1.32, although the
nonhydrostatic model would under predict the drag by 16% (𝐹 =
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Fig. 5. Time-averaged drag nondimensionalized by hydrostatic linear theory, 𝐹ℎ𝑠
(Eq. (38)), as a function of nondimensional horizontal grid-spacing 𝛥𝑥∗ = 𝑘𝛥𝑥. The
solid lines represent drag computed from nonhydrostatic simulations, while the dashed
lines are from hydrostatic simulations. The markers along the lines indicate individual
simulations, while the shape of the marker reflects the hill length of the simulation,
where [+, ∗,▵,□] maps to [0.5, 1, 2, 4] km (𝜖 = [1.26, 0.63, 0.32, 0.16]). The dotted lines
represent the modified equivalent wave drag 𝐹𝑒∕𝐹ℎ𝑠 (Eq. (54)) for each 𝜖, which is
accurate to 𝑂(𝛥𝑥∗4 , 𝛥𝑧∗2). The hydrostatic form of 𝐹𝑒 (dotted magenta line) results from
evaluating 𝐹𝑒 with 𝜖 = 0.

0.84𝐹𝑛ℎ𝑠) with this grid resolution. Note also that we can estimate this
fortuitous resolution, which we will denote as 𝛥𝑥𝑙𝑢𝑐𝑘, by equating the
hydrostatic form of equation 𝐹𝑒 (Eq. (54) with 𝜖 = 0) to 𝐹𝑛ℎ𝑠 (Eq. (32)),
giving the relation

𝛥𝑥∗𝑙𝑢𝑐𝑘 =
[

6
(

1 − (1 − 𝜖2)1∕2
)]1∕2 . (56)

With 𝜖 = 0.63, this predicts 𝛥𝑥∗𝑙𝑢𝑐𝑘 = 1.16, which is close to the observed
value of 𝑘𝛥𝑥 = 1.32 even though this is much too coarse a resolution
for 𝐹𝑒 to be asymptotically valid. Running the hydrostatic model at this
coincidental resolution is thus a case of getting the right answer for the
wrong reason, and should not be taken as an endorsement for using
coarse resolution hydrostatic models over nonhydrostatic bathymetry.
Nevertheless, this analysis points to the folly of blindly refining the grid
without considering the nonhydrostatic effect.

With this in mind, consider the hydrostatic simulations reported
in Klymak (2018), Gula et al. (2018), and Marez et al. (2020), where
𝛥𝑥 ≈ 100 m, 𝜆𝑙𝑒𝑒 = 2𝜋𝑈

𝑁 ≈ 628 m, and the minimum hill lengths were
ℎ𝑖𝑙𝑙 ≈ 1–2 km, meaning 𝜖 ≈ 0.3–0.6 and 𝑘𝛥𝑥 ≈ 0.3–0.6. Using 𝐹𝑒, we

ketch this region in Fig. 6 with the cross hatch pattern. In this range
f grid resolution, these simulations likely over predicted the drag from
he narrowest components of their bathymetry by as much as 20%.

Although a hydrostatic simulation over nonhydrostatic bathymetry
esults in an over prediction of the drag, it is nevertheless significantly
heaper from a computational point of view. Fig. 7 displays the ratio of
omputation time required for otherwise identical simulations run with
onhydrostatic pressure (𝑡𝑛ℎ𝑠) and without (𝑡ℎ𝑠). The nonhydrostatic

SUNTANS model employs the block Jacobi preconditioner to solve the
pressure-Poisson equation with the preconditioned conjugate gradient
algorithm, which is less effective for increasing 𝜖 (Fringer et al., 2006).
Thus, for a given resolution, the computational cost of a nonhydrostatic
simulation increases with 𝜖. For example, in the case of the strongly
nonhydrostatic propagating length bathymetry (𝐿ℎ𝑖𝑙𝑙 = 1 km, 𝜖 = 0.63)
with a resolution of 𝑘𝛥𝑥 = 0.32, it takes roughly five times as long
to run in nonhydrostatic mode as in hydrostatic mode, while the same
resolution over the most hydrostatic bathymetry (𝜖 = 0.16) is only twice
as time consuming. However, because the 𝜖 = 0.16 hill is practically
hydrostatic, the difference between the hydrostatic and nonhydrostatic
 b

9

Fig. 6. As in Fig. 5 but the 𝑦-axis is now scaled by 𝐹𝑛ℎ𝑠 (Eq. (32)) and we only
show the 𝜖 < 1 simulations. The hatching indicates the region simulated in Klymak
(2018), Gula et al. (2018), and Marez et al. (2020). and was computed using the
modified equivalent wave drag 𝐹𝑒 (Eq. (54)). The light blue asterisks at the intersections
of the light blue dotted lines identify the resolutions at which the three hydrostatic
models predict the correct nonhydrostatic drag. For the 𝜖 = [0.16, 0.32, 0.63] hills, these
resolutions are 𝑘𝛥𝑥 = [0.16, 0.41, 1.3]. The purple asterisk identifies the predicted drag
in the nonhydrostatic model with 𝜖 = 0.63 at the resolution 𝑘𝛥𝑥 = 0.16, which is equal
to 0.84𝐹𝑛ℎ𝑠.

Fig. 7. Ratio of computation time for otherwise identical simulations run with (𝑡𝑛ℎ𝑠)
and without (𝑡ℎ𝑠) the nonhydrostatic pressure for different values of the nonhydrostatic
parameter 𝜖. The dotted black line indicates 𝑡𝑛ℎ𝑠∕𝑡ℎ𝑠 = 1. Run times from simulations
coarser than 𝑘𝛥𝑥 > 0.9 are not shown.

drag is very small, i.e. (𝐹ℎ𝑠 − 𝐹𝑛ℎ𝑠)∕(𝐹ℎ𝑠) = (1 − 𝑚∗) = 0.013, and thus
here is little benefit to computing the nonhydrostatic pressure even if it
s comparatively inexpensive. In addition to the increasing cost related
o increasing 𝜖, Fig. 7 also shows that for a given 𝜖, the expense of a

nonhydrostatic simulation increases dramatically with grid refinement.
For example, with 𝜖 = 0.63, the nonhydrostatic overhead is roughly two
when 𝑘𝛥𝑥 = 0.63, and it increases to nearly twenty when 𝑘𝛥𝑥 = 0.063.

. Application to nonlinear lee waves

Unlike the simulations in the previous sections, realistic abyssal hill
athymetry is often taller than 𝑈∕𝑁 and generates nonlinear lee waves.
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n a separate paper, we present a series of high resolution nonhydro-
tatic lee wave simulations over nonlinear height (𝐽 = 𝑂(1)) sinusoidal

bathymetry (Mayer and Fringer, 2020). The study reveals that for hills
tall enough to cause blocking, wherein stagnant water becomes trapped
in the valleys, the steady-state overtopping flow behaves as if flowing
over a new bathymetry defined by the time-average lowest overtopping
streamline (LOTS), whose height ℎ𝑒𝑓𝑓 is always subcritical to the lee
wave (𝐽𝑒𝑓𝑓 < 1). Furthermore, we demonstrated that the lee wave
drag can be computed by applying linear theory to the LOTS. The
accuracy of the drag-measurement therefore depends on resolving the
LOTS at appropriate scale for the associated linear lee wave, implying
that the resolution requirements identified in this paper are applicable
to nonlinear lee waves.

Mayer and Fringer (2020) identified two common nonhydrostatic
features of the LOTS that can render the entire LOTS evanescent, even
above bathymetry otherwise long enough to radiate lee waves. The first
nonhydrostatic process, termed an ‘‘evanescent undulation’’, develops
on the portion of the LOTS that separates the blocked layer from the
overtopping flow. For the more hydrostatic hills, with 𝜖 < 0.5, the
treamline above the blocked layer develops a sinusoidal shape with a
avelength equal to 𝜆𝑙𝑒𝑒. Hence, if treated as bathymetry, this portion
f the LOTS is evanescent, with 𝜖 = 1, and does not contribute to the
ave drag. The second nonhydrostatic component, ‘‘evanescent mask-

ng’’, results from the blocked layer filling in so much of the valley that
he portion of the streamline still connected to the bathymetry shrinks
n length, becoming shorter than 𝜆𝑙𝑒𝑒. In the presence of evanescent
asking, the entirety of the LOTS is evanescent to the overtopping flow,

nd the wave drag vanishes.
10
Both of these phenomena are invisible to hydrostatic simulations.
s a result, using a hydrostatic model with nonlinear-height peri-
dic bathymetry can result in significant over predictions of the wave
rag. To demonstrate as much, this section presents hydrostatic ver-
ions of the 𝐽 = 2 simulations of Mayer and Fringer (2020) for the
= [0.16, 0.32, 0.63] length hills. As in Mayer and Fringer (2020), the

horizontal resolution of all simulations in this section is 𝛥𝑥 = 10 m.
Fig. 8 shows snapshots of the nondimensional vorticity in the 𝐿ℎ𝑖𝑙𝑙 =

2 km simulation with and without nonhydrostatic pressure over the
first 2.5 𝑇𝑒𝑥. Note the hydrostatic simulations generate a vertically-
propagating lee wave with a narrow, grid-scale wavelength from the
jump-like feature in the LOTS associated with its separation from
the bathymetry. Downstream of the separation, the LOTS is relatively
quiescent, showing no indication of evanescent undulations. The jump-
like feature is similar to the result in Vitousek and Fringer (2011),
in which hydrostatic simulations produce grid-scale solitary waves
with numerical dispersion balancing the nonlinear steepening. It thus
appears that, in the absence of nonhydrostatic dispersion needed to
generate the evanescent undulations, the hydrostatic model produces
a strong jump with a width of a few grid-spaces.

Fig. 9 shows the drag as a function of time for the 𝐿ℎ𝑖𝑙𝑙 = 2 km
simulations in Fig. 8. We display two measurements of the drag: 1) the
form drag, 𝐹𝑓𝑜𝑟𝑚 (Eq. (30)), computed using the simulated pressure and
the analytical bathymetry and 2) the wave drag, 𝐹𝑓𝑙𝑢𝑥 (Eq. (35)), com-
puted by integrating the vertical momentum flux through a horizontal
plane 15 m above the bathymetry. As shown in Mayer and Fringer

(2020), the two measurements are identical when the lee wave reaches
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teady state, indicating that all of the momentum removed from the
ackground flow by the form drag is radiated away in the lee wave
y the momentum flux. There is, however, a saturation limit to the
omentum flux before a stably stratified fluid collapses into instability,

pproximated by Pierrehumbert (1987) as

𝑠𝑎𝑡 = 𝜌0𝑈
3𝑁−1. (57)

ndeed, in Fig. 9, both of the 𝐿ℎ𝑖𝑙𝑙 = 2 km simulations show the wave
rag 𝐹𝑓𝑙𝑢𝑥 saturating at 𝑂(𝐹𝑠𝑎𝑡) within the first 𝑇𝑒𝑥 of the simulation.
ny form drag larger than this saturation limit cannot radiate as
omentum flux, and must therefore contribute to local changes in
omentum. In Mayer and Fringer (2020), we demonstrate that for the

pin up of supercritical lee wave simulations, the form drag is always
omentarily much larger than the momentum flux, with a maximum

lose to the linear prediction 𝐹𝑛ℎ𝑠, because the form drag is temporarily
cting to establish the blocked layer. This tendency is well represented
n the nonhydrostatic 𝐿ℎ𝑖𝑙𝑙 = 2 km simulation of Fig. 9. The hydrostatic
imulation also produces excess form drag during spin up. However, the
ime-series has two local maximums, with the first better approximated
y twice the linear prediction for hydrostatic lee waves, 2 𝐹ℎ𝑠. After the
locked layer stabilizes, both simulations show the form and wave drag
oming into equilibrium. However, the hydrostatic simulation again
roduces more drag than its nonhydrostatic companion.

The hydrostatic over prediction of drag both in the spin-up phase
nd in the quasi-steady phase is a numerical artifact. It results from the
ydrostatic simulation permitting the short length scale components of
he LOTS to generate drag-producing lee waves, while the nonhydro-
tatic simulation correctly treats these features as evanescent. Fig. 10
hows the time-averaged vorticity for the six simulations. The three
onhydrostatic simulations (top panels) demonstrate the evanescent
rocesses very well. The 𝐿ℎ𝑖𝑙𝑙 = 1 km simulation (top left) offers
n especially satisfying demonstration of evanescent masking. And
vanescent undulations above the blocked layer are evident for both
he 2 km and the 4 km (top center and top right) hills. Faint lee waves
an be seen propagating at an angle downstream from the beginning
f the blocked layer, where the LOTS separates from the bathymetry.
y contrast, all of the hydrostatic simulations (bottom panels) produce
 o

11
persistent vertically propagating lee wave from the beginning of the
locked layer. In the 𝐿ℎ𝑖𝑙𝑙 = 1 km simulation, the wave has an especially
arrow horizontal wavelength, smaller than 𝜆𝑙𝑒𝑒, and is therefore not
hysical.

The time-averaged drag for these 𝜖 = [0.63, 0.32, 0.16] simulations
is 𝐹 𝑛ℎ𝑠∕𝐹𝑠𝑎𝑡 = [0.02, 0.06, 0.14] for the nonhydrostatic simulations and
𝐹 ℎ𝑠∕𝐹𝑠𝑎𝑡 = [0.12, 0.28, 0.29] for the hydrostatic simulations. Note there
is very little difference in the drag between the hydrostatic 𝐿ℎ𝑖𝑙𝑙 = 2 km
nd 4 km simulations. This is because all the drag is generated by
he narrow-width lee wave at the separation point; the rest of the
locked layer is flat. The hydrostatic model thus predicts a factor of

𝐹 𝑛ℎ𝑠∕𝐹 ℎ𝑠 = [7.4, 4.6, 2.0] more drag than the nonhydrostatic models.
Compared to the result from linear theory, in which the over prediction
is given by 𝐹𝑛ℎ𝑠∕𝐹ℎ𝑠 = (1 − 𝜖2)1∕2 = [1.29, 1.06, 1.01] (Eq. (39)), we see
hat the supercritical lee wave accentuates the nonhydrostatic effects,
nd linear theory serves as a lower bound for 𝐹 ℎ𝑠∕𝐹𝑠𝑎𝑡. Note that with

𝛥𝑥∕𝜆𝑙𝑒𝑒 = 0.016, the nonhydrostatic models also over predict the drag
in these simulations because they do not have enough resolution to
generate fully evanescent lee waves, as demonstrated in Section 4.
Thus, the ratio 𝐹 ℎ𝑠∕𝐹 𝑛ℎ𝑠 offers a conservative estimate for how much
a hydrostatic simulation of a 𝐽 = 2 lee wave over predicts the lee
wave drag. Even in the most hydrostatic of these simulations, with
𝜖 = 0.16, the hydrostatic simulation produces twice as much drag as
its nonhydrostatic counterpart, while in the linear regime, an 𝜖 = 0.16-
ength hill should be well simulated by a hydrostatic simulation. Hence
hese nonlinear simulations offer further support for the general notion
hat lee waves are essentially nonhydrostatic features of ocean currents,
nd the ocean modeler is cautioned against treating them as otherwise.

. Conclusion

In this paper, we derived a nondimensional form of the linear theory
or lee wave drag above sinusoidal bathymetry and used SUNTANS with
nd without the nonhydrostatic pressure to demonstrate the conver-
ence to theory of wave drag in simulated lee waves above bathymetry
f linear height (𝐽 ≪ 1) and varying length (𝜖 = [0.16, 0.32, 0.63, 1.26]).
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Using central differencing in space, we derived a modified equiva-
lent form of the steady lee wave drag, 𝐹𝑒 (Eq. (54)), accurate to
𝑂(𝛥𝑥∗4, 𝛥𝑧∗2), where 𝛥𝑥∗ = 𝑘𝛥𝑥 and 𝛥𝑧∗ = 𝑁

𝑈 𝛥𝑧, which shows that
discretizing the lee wave system results in two forms of numerically
induced physics, one effecting the magnitude of the group velocity
vector, and the other its direction. Both of these numerically induced
physics can be viewed as making the wave more hydrostatic, and yet
they have opposite effects on the magnitude of the lee wave drag. The
primary source of numerical physics results from the discretization of
the bottom boundary condition, which results in a modification of the
lee wave drag by the factor 𝑘𝑒∕𝑘 = 1 − 1

6 (𝑘𝛥𝑥)
2. We observed that 𝐹𝑒

correctly predicted the convergence of our numerical simulations to
the predictions of linear theory for 𝑘𝛥𝑥 < 0.8, meaning that 𝐹𝑒 offers

good estimate of the precision of a lee wave simulation such that,
or example, achieving 96% accuracy requires 𝑘𝛥𝑥 < 0.5, or about
𝑥 = 0.08𝐿ℎ𝑖𝑙𝑙. In both the abyssal ocean and coastal regions such
s the Gulf Stream, typical bathymetry that generates lee waves has
orizontal length scales of O(km) (Goff and Arbic, 2010; Zheng et al.,
012). Resolving the resulting lee wave drag thus requires horizontal
rid-spacing of 𝛥𝑥 = 𝑂(100 𝑚).

At the finest resolutions in this study, 𝑘𝛥𝑥 = 0.063, the lee waves
isplay wavenumber vectors that agree with those predicted by linear
heory. Specifically, in the nonhydrostatic model, the pressure allows
he magnitude of the wavenumber vector to remain fixed at 𝑁∕𝑈 , thus
equiring the vertical component of the wavenumber vector to decrease
s 𝑚 = 𝑁

𝑈 (1 − 𝜖2)1∕2. In the hydrostatic model, however, the vertical
omponent of the wavenumber vector remains fixed at the value given
y the hydrostatic limit, 𝑚ℎ𝑠 = 𝑁∕𝑈 , irrespective of the wavenumber
f the bathymetry. Over nonhydrostatic bathymetry, this implies that
ydrostatic models generate larger magnitude pressure perturbations
han dynamically required, resulting in an over prediction of the wave
rag. Our simulations demonstrate that this over prediction converges
o that predicted by the comparison of hydrostatic and nonhydrostatic
inear theory, 𝐹𝑛ℎ𝑠 = 𝑚∗𝐹ℎ𝑠, where 𝑚∗ = (1 − 𝜖2)1∕2. Additionally,
or evanescent length hills (𝜖 > 1), the nonhydrostatic drag vanishes,
𝑛ℎ𝑠 = 0, which is in stark contrast to hydrostatic simulations above
vanescent hills, which still generate a hydrostatic lee wave, producing
he full hydrostatic drag, 𝐹ℎ𝑠.

At coarser resolutions, for all but the nonhydrostatic model above
he evanescent bathymetry, the computed drags were lower than those
redicted by theory in accordance with 𝐹𝑒. Therefore, coarsely resolved
ydrostatic simulations can produce the ‘‘correct" nonhydrostatic drag,
ut for the wrong reason. On the other hand, for the nonhydrostatic
odel above evanescent bathymetry, the coarser resolution simulations
 D

12
generate significant drag even though it should vanish. Indeed, even at
a resolution of 𝛥𝑥 = 25 m (𝑘𝛥𝑥 = 0.32), the nonhydrostatic model still
redicts drag of 𝑂(0.1) 𝐹ℎ𝑠. This is a particularly unwelcome discovery
s it suggests that both hydrostatic and nonhydrostatic simulations
f stratified flow over evanescent length bathymetry will produce
umerically induced lee waves unless they employ spectacularly fine
esolution.

Finally, in the supercritical (𝐽 > 1) regime with periodic bathy-
etry, where blocking results in wave-drag saturation, we showed

hat hydrostatic lee wave simulations dramatically over predict the
rag, even above hydrostatic-length bathymetry, due to a non-physical
epresentation of the blocked layer.

As a whole, this paper has demonstrated that resolving lee waves
equires the dual constraint of very fine horizontal grid-spacing and
omputation of the nonhydrostatic pressure. Failure to satisfy the res-
lution requirement generally results in a moderate under prediction
f drag, while failure to compute the nonhydrostatic pressure results in
n over prediction of the drag, which is negligible above hydrostatic-
ength and linear-height bathymetry, but becomes dramatic as 𝜖 → 1 or
> 1. Satisfying both of these constraints is computationally expensive.

n cases where the nonhydrostatic pressure is important, the time
equired to run a sufficient resolution nonhydrostatic model was found
o be about five times that of an otherwise identical hydrostatic model.
owever, above nonhydrostatic length bathymetry (𝜖 ≥ 𝑂(0.1)), this
aper demonstrates that choosing only to improve resolution without
lso computing the nonhydrostatic pressure amounts to doing more
ork for a wrong answer.
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